Systematik Morphologie Palökologie Paläogeographie Stratigraphie

Total Page:16

File Type:pdf, Size:1020Kb

Systematik Morphologie Palökologie Paläogeographie Stratigraphie Verlag Dr. Friedrich PfeilPalaeo Ichthyologica Systematik Morphologie Palökologie Paläogeographie Stratigraphie Werner SCHWARZHANS Otolithen aus den Gerhartsreiter Schichten (Oberkreide: Maastricht) 4 des Gerhartsreiter Grabens (Oberbayern) Palaeo Ichthyologica 4 Werner SCHWARZHANS Otolithen aus den Gerhartsreiter Schichten (Oberkreide: Maastricht) des Gerhartsreiter Grabens (Oberbayern) In der Reihe Palaeo Ichthyologica erscheinen zoologische und paläontologische Arbeiten zur Systematik Morphologie Palökologie Paläogeographie Stratigraphie der Fische. Palaeo Ichthyologica Systematik Morphologie Palökologie Paläogeographie Stratigraphie Werner SCHWARZHANS Otolithen aus den Gerhartsreiter Schichten 4 (Oberkreide: Maastricht) des Gerhartsreiter Grabens (Oberbayern) Verlag Dr. Friedrich Pfeil • München, Mai 2010 ISSN 0724-6331 • ISBN 978-3-923871-44-5 Palaeo Ichthyologica 4 1-100 214 fi gs. München, Mai 2010 Begründet und herausgegeben von Dr. Friedrich H. PFEIL, München In der Reihe Palaeo Ichthyologica werden Originalarbeiten und Dissertationen zur Systematik, Morphologie, Palökologie, Paläogeographie und Stratigraphie rezenter und fossiler Fische veröffentlicht. Die Arbeiten können in deutscher, englischer oder französischer Sprache verfasst sein. Autoren, die eine Arbeit zum Druck einreichen wollen, sollten sich vorher mit dem Herausgeber zwecks Absprache von Satzspiegel, Format und Gestaltung von Textabbildungen und Tafeln in Verbindung setzen. Der Schriftwechsel ist ausschließlich zu richten an: Verlag Dr. Friedrich Pfeil, Wolfratshauser Straße 27, 81379 München, Germany Für den Inhalt der Arbeiten sind die Autoren allein verantwortlich. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Copyright © 2010 by Verlag Dr. Friedrich PFEIL, München All rights reserved. Verlag Dr. Friedrich Pfeil, Wolfratshauser Straße 27, 81379 München, Germany Druckvorstufe: Verlag Dr. Friedrich Pfeil, München Druck: Advantage Printpool, Gilching Printed in the European Union ISSN 0724-6331 ISBN 978-3-923871-44-5 5 Palaeo Ichthyologica 4 1-100 214 fi gs. München, Mai 2010 Otolithen aus den Gerhartsreiter Schichten (Oberkreide: Maastricht) des Gerhartsreiter Grabens (Oberbayern) Werner SCHWARZHANS* Kurzfassung Aus den Gerhartsreiter Schichten (Oberkreide: Mittleres Maastricht, Globotruncana-gansseri-Zone) des Gerhartsreiter Grabens (Oberbayern) werden 44 Otolithen-Arten beschrieben; darunter sind 25 neue Arten und 11 verbleiben in of- fener Nomenklatur. Bislang sind nur vereinzelte und dazu auf wenige Exemplare begründete Otolithen-Faunen aus der Oberkreide beschrieben worden, darunter bereits auch drei Arten aus dem Gerhartsreiter Graben (KOKEN 1891). Diese und andere Oberkreide-Otolithen-Befunde werden erläutert. Die Otolithen-Fauna aus dem Gerhartsreiter Graben stellt die bisher umfangreichste Aufsammlung von Oberkreide- Otolithen dar und ermöglicht zum ersten Mal »indirekte« Vergleiche mit den gut bekannten oberkretazischen Teleosteer- Skelettbefunden. Erwartungsgemäß ergibt sich auf dem Niveau der Familien und Unterordnungen eine recht gute Über- einstimmung zwischen Skelett- und Otolithenbefunden, vor allem, was den Artenreichtum und die Diversifizierung der Beryciformes angeht, einer Ordnung, die in der Oberkreide in etwa den breitgefächerten ökologischen Raum einnimmt, in dem ab dem Tertiär die Perciformes dominieren. Eine wesentliche Diskrepanz zwischen Skelett- und Otolithenbefunden, die noch stärker für das Alt-Tertiär zutrifft, ist das Fehlen ophidiiformer Skelette, wo doch die Ordnung Ophidiiformes unter den Otolithen zu den häufigsten und artenreichsten zählt. Wie von oberkretazischen Skelettfunden zu erwarten war, repräsentieren die meisten Otolithen fossile Gattungen, einige wohl auch ausgestorbene Familien oder höhere systematische Einheiten, und deren systematische Zuordnung erfolgt unter Vorbehalt. Hier sind vor allem zu nennen: Kokenichthys (? Osteoglossiformes), Argyroberyx, Beauryia und Traunichthys (Berycoidei) und Sillaginocentrus, Traubiella und Pfeilichthys (Holocentroidei). Neben dieser Gruppe ausgestorbener spe- zialisierter oberkretazischer Fische kann man zwei andere wesentliche »evolutorische Gruppen« ausmachen: Zum einen Fische, deren Otolithen sich seit der Oberkreide morphologisch nur unwesentlich verändert haben und so mit einiger Berechtigung zu rezenten Gattungen gestellt werden können, so zum Beispiel Pterothrissus, Argentina, Chlorophthalmus, Bidenichthys, Centroberyx, Diretmus und Antigonia und zum anderen sehr plesiomorphe, »archetypische« Otolithen, die wie generalisierte Vorfahren oder »missing links« moderner Fischfamilien erscheinen, hier besonders zu erwähnen: Auriculithus (Sternoptychidae), Bavariscopelus (Myctophidae), Protobythites (Ophidiidae), Isozen (Zeiformes) und Plesio- poma (Percoidei). * Dr. Werner SCHWARZHANS, Ahrensburger Weg 103, 22359 Hamburg, Germany; E-Mail: [email protected]. Palaeo Ichthyologica 4 Palaeo© 2010 Ichthyologica Verlag Dr. Friedrich 4 Pfeil, München 6 Abstract Otoliths of 44 Teleost species are described from the Maastrichtian (Late Cretaceous) of the Gerhartsreiter Graben (Ba- varia); 25 of these are new, 11 presently remain in open nomenclature. So far only few otoliths from the Late Cretaceous have been described, among them three species by KOKEN (1891) from the Gerhartsreiter Graben. These and other Late Cretaceous otoliths are being discussed. Now the otolith fauna from the Gerhartsreiter Graben ranks as the largest so far from the Late Cretaceous and for the first time allows reasonable comparison with the well known Teleost skeleton fauna of the same geologic age. Expectedly, the two correspond relatively good with one another, particularly as far as diversity of the Beryciformes is concerned. The Beryciformes have probably been adapted to the very “set of environments” during Late Cretaceous that since Terti- ary has become the domain of the Perciformes. A major discrepancy in the skeleton and otolith record both from Late Cretaceous and Early Tertiary is the distribution of the Ophidiiformes. While virtually no skeleton has been reported their otoliths belong to the most common and most specious ones. Similar to the skeleton findings most otoliths represent fossil genera and some also extinct families or higher systematic units. To this group of extinct specialized Late Cretaceous otoliths who’s systematic arrangement remains somewhat ten- tative do belong for example: Kokenichthys (? Osteoglossiformes), Argyroberyx, Beauryia and Traunichthys (Berycoidei) and Sillaginocentrus, Traubiella and Pfeilichthys. Two more principal »evolutionary groups« can be distinguished. One comprises fishes who’s otoliths have not undergone much morphological change since Late Cretaceous and therefore can be placed into living genera: Pterothrissus, Argentina, Chlorophthalmus, Bidenichthys, Centroberyx, Diretmus and Antigonia. The third group includes very plesiomorph otoliths that in a broad sense could be regarded as generalized ancestors or »missing links« of modern Teleost families: Auriculithus (Sternoptychidae), Bavariscopelus (Myctophidae), Protobythites (Ophidiidae), Isozen (Zeiformes) and Plesiopoma (Percoidei). Werner SCHWARZHANS 7 Inhalt 1. Einleitung ............................................................................................................................................ 7 2. Oberkreide-Otolithen (eine Bestandsaufnahme) ........................................................................ 9 3. Systematischer Teil ............................................................................................................................ 14 3.1 Artenliste ...................................................................................................................................... 15 3.2 Beschreibung der Arten ................................................................................................................ 16 3.2.1 Ordnung Osteoglossiformes .......................................................................................... 16 3.2.2 Ordnung Elopiformes .................................................................................................... 16 3.2.3 Ordnung Anguilliformes ................................................................................................ 21 3.2.4 Ordnung Siluriformes .................................................................................................... 26 3.2.5 Ordnung Salmoniformes ............................................................................................... 26 3.2.6 Ordnung Stomiiformes .................................................................................................. 30 3.2.7 Ordnung Aulopiformes .................................................................................................. 33 3.2.8 Ordnung Myctophiformes .............................................................................................. 36 3.2.9 Ordnung Ophidiiformes ................................................................................................ 38 3.2.10 Ordnung Beryciformes .................................................................................................. 46 3.2.11 Ordnung Zeiformes ....................................................................................................... 68 3.2.12 Ordnung Perciformes ...................................................................................................
Recommended publications
  • New Insights on the Sister Lineage of Percomorph Fishes with an Anchored Hybrid Enrichment Dataset
    Molecular Phylogenetics and Evolution 110 (2017) 27–38 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset ⇑ Alex Dornburg a, , Jeffrey P. Townsend b,c,d, Willa Brooks a, Elizabeth Spriggs b, Ron I. Eytan e, Jon A. Moore f,g, Peter C. Wainwright h, Alan Lemmon i, Emily Moriarty Lemmon j, Thomas J. Near b,k a North Carolina Museum of Natural Sciences, Raleigh, NC, USA b Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA c Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA d Department of Biostatistics, Yale University, New Haven, CT 06510, USA e Marine Biology Department, Texas A&M University at Galveston, Galveston, TX 77554, USA f Florida Atlantic University, Wilkes Honors College, Jupiter, FL 33458, USA g Florida Atlantic University, Harbor Branch Oceanographic Institution, Fort Pierce, FL 34946, USA h Department of Evolution & Ecology, University of California, Davis, CA 95616, USA i Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306, USA j Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA k Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA article info abstract Article history: Percomorph fishes represent over 17,100 species, including several model organisms and species of eco- Received 12 April 2016 nomic importance. Despite continuous advances in the resolution of the percomorph Tree of Life, resolu- Revised 22 February 2017 tion of the sister lineage to Percomorpha remains inconsistent but restricted to a small number of Accepted 25 February 2017 candidate lineages.
    [Show full text]
  • Identification Guide to the Common Coatal Food Fishes of the Pacific Region-48-53
    YDX Myripristis adusta Holocentridae / Soldierfish and Squirrelfish Shadowfin soldierfish Silvery-salmon pink with 1 dark 3 1 scale margins, particularly on upper body. 2 Reddish-black spot on rear margin of gill covers and 3 reddish-black margins on soft dorsal, anal and caudal fins. Max length: 30 cm FL AS CK FJ FM GU KI 2 MH MP NC NR NU PF PG PN PW SB TK TO TV VU WF WS YDX Myripristis amaena Holocentridae / Soldierfish and Squirrelfish Brick soldierfish Silvery-red with 1 dark scale 1 margins and 2 dark red band on margin of gill covers. 3 Dorsal, anal and caudal fins red without white margins. Max length: 27 cm FL AS CK FJ FM GU KI MH MP NC NR NU PF 2 3 PG PN PW SB TK TO TV VU WF WS Similar to Myripristis violacea but without white margins on soft dorsal, anal and caudal fins. YJW Myripristis berndti Holocentridae / Soldierfish and Squirrelfish Blotcheye soldierfish, bigscale soldierfish 4 White with red tints and 1 red 1 scale margins. 2 Dark margin on gill covers and 3 white margins on soft dorsal, pelvic, anal and caudal fins.4 Outer part of spiny dorsal fin orange-yellow. Max length: 28 cm FL AS CK FJ FM GU KI 2 MH MP NC NR NU PF PG PN PW SB TK TO 3 TV VU WF WS Similar to Myripristis kuntee but with much larger scales and a redder overall appearance. 48 Holocentridae / Soldierfish and Squirrelfish Myripristis kuntee YJZ Shoulderbar soldierfish 2 Silvery orange-red with 1 darker scale margins.
    [Show full text]
  • Myripristis Jacobus (Blackbar Soldierfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Myripristis jacobus (Blackbar Soldierfish) Family: Holocentridae (Squirrelfish) Order: Beryciformes (Night Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Blackbar soldierfish, Myripristis jacobus. [http://www.lifeintheseas.com/blackbar1.html, downloaded 18 October 2016] TRAITS. The blackbar soldierfish is bright red in colour and has thin white edges on the fins (Live Aquaria, 1997). Their eyes are large (Fig. 1), to enable them to see in the water at night when they are searching for food (Petcha, 2016). There is a black bar situated behind the gills, hence its name blackbar soldierfish. The maximum this species can grow in length is 25cm, however they usually do not grow larger than about 20cm (Georgia Aquarium, 2016). Both the male and female look alike, and when threatened they may change colour. The blackbar soldierfish is also known as the big-eye soldierfish (Whatsthatfish, 2016). DISTRIBUTION. This fish can found in Trinidad and Tobago and is widespread in the Caribbean Sea and the West Indies, the western Atlantic from North Carolina to the Bahamas and Gulf of UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Mexico to south Brazil (Wikipedia, 2016). They also occur in the eastern Atlantic from Cape Verde islands, St. Helena and Principe and West Africa (Fig. 2) (Petcha, 2016). HABITAT AND ECOLOGY. The blackbar soldierfish can be found in marine habitats, in coral reefs and in deeper waters of depth 2-30m. Even though this range is preferred by the fish, they have also been spotted in offshore waters of depth 100m.
    [Show full text]
  • View/Download
    OPHIDIIFORMES (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 9.0 - 24 Aug. 2020 Order OPHIDIIFORMES (part 2 of 2) Suborder BYTHITOIDEI Family BYTHITIDAE Viviparous (or Livebearing) Brotulas 34 genera · 125 species · Taxonomic note: includes taxa sometimes placed in Aphyonidae. Acarobythites Machida 2000 acaro, small, referring to its small size (up to 25.2 mm SL); Bythites, type genus of family Acarobythites larsonae Machida 2000 in honor of Helen Larson, Curator of Fishes, Museum and Art Gallery of the Northern Territory (Darwin, Australia), who kindly sent bythitid and ophidiid specimens to Machida for study Anacanthobythites Anderson 2008 an-, not and acanthus, thorn or prickle, referring to lack of developed gill rakers on first branchial arch; Bythites, type genus of family Anacanthobythites platycephalus Anderson 2008 platys, broad; cephalus, head, referring to its depressed head Anacanthobythites tasmaniensis Anderson 2008 -ensis, suffix denoting place: Tasmania, Australia, type locality Aphyonus Günther 1878 aphya, anchovy or small, translucent fish, referring to its transparent, colorless skin; onus, presumably a latinization of onos, a name dating to Aristotle, originally referring to Phycis blennoides (Gadiformes: Gadidae) but often mistakenly applied to Merluccius merluccius (Gadiformes: Merlucciidae) and hence used several times by Günther as a suffix for a hake-like fish Aphyonus gelatinosus Günther 1878 gelatinous or jelly-like, referring to “thin, scaleless, loose” skin, forming
    [Show full text]
  • Order BERYCIFORMES ANOPLOGASTRIDAE Anoplogaster
    click for previous page 2210 Bony Fishes Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths by J.R. Paxton iagnostic characters: Small (to 16 cm) Dberyciform fishes, body short, deep, and compressed. Head large, steep; deep mu- cous cavities on top of head separated by serrated crests; very large temporal and pre- opercular spines and smaller orbital (frontal) spine in juveniles of one species, all disap- pearing with age. Eyes smaller than snout length in adults (but larger than snout length in juveniles). Mouth very large, jaws extending far behind eye in adults; one supramaxilla. Teeth as large fangs in pre- maxilla and dentary; vomer and palatine toothless. Gill rakers as gill teeth in adults (elongate, lath-like in juveniles). No fin spines; dorsal fin long based, roughly in middle of body, with 16 to 20 rays; anal fin short-based, far posterior, with 7 to 9 rays; pelvic fin abdominal in juveniles, becoming subthoracic with age, with 7 rays; pectoral fin with 13 to 16 rays. Scales small, non-overlap- ping, spinose, cup-shaped in adults; lateral line an open groove partly covered by scales. No light organs. Total vertebrae 25 to 28. Colour: brown-black in adults. Habitat, biology, and fisheries: Meso- and bathypelagic. Distinctive caulolepis juvenile stage, with greatly enlarged head spines in one species. Feeding mode as carnivores on crustaceans as juveniles and on fishes as adults. Rare deepsea fishes of no commercial importance. Remarks: One genus with 2 species throughout the world ocean in tropical and temperate latitudes. The family was revised by Kotlyar (1986). Similar families occurring in the area Diretmidae: No fangs, jaw teeth small, in bands; anal fin with 18 to 24 rays.
    [Show full text]
  • Page 1 Page 2 [=Fiordichthys] Species Bidenichthys Beeblebroxi
    FAMILY Bythitidae Gill, 1863 - viviparous brotulas [=Brosmophycinae, Lucifugae, Pteridiidae, Protulina, Hephthocarinae] GENUS Acarobythites Machida, 2000 - viviparous brotulas Species Acarobythites larsonae Machida, 2000 - Larson's cusk GENUS Anacanthobythites Anderson, 2008 - viviparous brotulas Species Acanthobythites platycephalus Anderson, 2008 - Lucky Bay brotula Species Acanthobythites tasmaniensis Anderson, 2008 - Tasmanian brotula GENUS Aphyonus Gunther, 1878 - brotulas Species Aphyonus gelatinosus Gunther, 1878 - brotulas [=mollis] GENUS Barathronus Goode & Bean, 1886 - brotulas [=Alexeterion] Species Barathronus affinis Brauer, 1906 - Chagos brotula Species Barathronus bicolor Goode and Bean, 1886 - Guadeloupe Island brotula Species Barathronus bruuni Nielsen, 1969 - Bruun's brotula Species Barathronus diaphanus Brauer, 1906 - Valdivia brotula Species Barathronus linsi Nielsen et al., 2015 - Potiguar brotula Species Barathronus maculatus Shcherbachev, 1976 - Mozambique brotula Species Barathronus multidens Nielsen, 1984 - multidens brotula Species Barathronus pacificus Nielsen & Eagle, 1974 - Pacific brotula Species Barathronus parfaiti (Vaillant, 1888) - Parfait's brotula Species Barathronus unicolor Nielsen, 1984 - unicolor brotula GENUS Bellottia Giglioli, 1883 - viviparous brotulas [=Xenobythites] Species Bellottia apoda Giglioli, 1883 - apoda brotula Species Bellottia armiger (Smith & Radcliffe, in Radcliffe, 1913) - Macajalar Bay brotula Species Bellottia cryptica Nielson et al., 2009 - cryptic brotula Species Bellottia
    [Show full text]
  • A Preliminary Assessment of Exploited Reef-Fish Populations at Kamiali Wildlife Management Area, Papua New Guinea
    A Preliminary Assessment of Exploited Reef-fish Populations at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Allen Allison, Holly Bolick, Shelley James, Ross Langston, Richard Pyle, David Pence, and Simon Talbot Honolulu, Hawaii December 2009 COVER Conducting a laser-videogrammetry survey while ascending from a 67 m dive on an offshore pinnacle at Kamiali Wildlife Management Area. Photograph by Simon Talbot. A Preliminary Assessment of Exploited Reef-fish Populations at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Allen Allison, Holly Bolick, Shelley James, Ross Langston, and Richard Pyle Pacific Biological Survey Bishop Museum Honolulu, Hawaii 96817, USA David Pence University of Hawaii Diving Safety Program Honolulu, Hawaii 96822, USA Simon Talbot University of Tasmania & Tasmanian Aquaculture and Fisheries Institute Hobart, Tasmania 7001, Australia Bishop Museum Technical Report 49 Honolulu, Hawaii December 2009 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2009 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2009-017 to the Pacific Biological Survey Contents EXECUTIVE SUMMARY ................................................................................................ 8 INTRODUCTION .............................................................................................................. 9 METHODS ......................................................................................................................
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • Highly Diversified Late Cretaceous Fish Assemblage Revealed by Otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, Usa)
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 111-155. March 2020 HIGHLY DIVERSIFIED LATE CRETACEOUS FISH ASSEMBLAGE REVEALED BY OTOLITHS (RIPLEY FORMATION AND OWL CREEK FORMATION, NORTHEAST MISSISSIPPI, USA) GARY L. STRINGER1, WERNER SCHWARZHANS*2 , GEORGE PHILLIPS3 & ROGER LAMBERT4 1Museum of Natural History, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA. E-mail: [email protected] 2Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100, Copenhagen, Denmark. E-mail: [email protected] 3Mississippi Museum of Natural Science, 2148 Riverside Drive, Jackson, Mississippi 39202, USA. E-mail: [email protected] 4North Mississippi Gem and Mineral Society, 1817 CR 700, Corinth, Mississippi, 38834, USA. E-mail: [email protected] *Corresponding author To cite this article: Stringer G.L., Schwarzhans W., Phillips G. & Lambert R. (2020) - Highly diversified Late Cretaceous fish assemblage revealed by otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, USA). Riv. It. Paleontol. Strat., 126(1): 111-155. Keywords: Beryciformes; Holocentriformes; Aulopiformes; otolith; evolutionary implications; paleoecology. Abstract. Bulk sampling and extensive, systematic surface collecting of the Coon Creek Member of the Ripley Formation (early Maastrichtian) at the Blue Springs locality and primarily bulk sampling of the Owl Creek Formation (late Maastrichtian) at the Owl Creek type locality, both in northeast Mississippi, USA, have produced the largest and most highly diversified actinopterygian otolith (ear stone) assemblage described from the Mesozoic of North America. The 3,802 otoliths represent 30 taxa of bony fishes representing at least 22 families. In addition, there were two different morphological types of lapilli, which were not identifiable to species level.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • An Early Oligocene Fish-Fauna from Japan Reconstructed from Otoliths
    3 Zitteliana 90 An Early Oligocene fish-fauna from Japan reconstructed from otoliths Paläontologie GeoBio- 1 2 3 Bayerische Werner Schwarzhans *, Fumio Ohe & Yusuke Ando & Geobiologie Staatssammlung Center LMU München für Paläontologie und Geologie LMU München 1Ahrensburger Weg 103, D-22359 Hamburg, and Natural History Museum of Denmark, Zoological n München, 2017 Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark 2Nara National Research Institute for Cultural Properties, Nara 630-8577, Japan n Manuscript received 3Mizunami Fossil Museum, Mizunami, Gifu Prefecture 509-6132, Japan 27.04.2016; revision accepted 07.09.2016; *Corresponding author; E-mail: [email protected] available online: 30.05.2017 n ISSN 0373-9627 n ISBN 978-3-946705-02-4 Zitteliana 90, 3–26. Abstract The otoliths described in this study from the Late Eocene to Early Oligocene (biozone P18) of the Kishima Formation near Karatsu, Saga Prefecture, represent the earliest record of fossil otoliths from Japan and in fact the entire Northwest Pacific. They were obtained from outcrops along the Shimohirano River. A total of 13 otolith-based teleost taxa are recognized, 11 of which being identifiable to species level and new to science and five new genera. The new otolith-based genera are: Nishiberyx n. gen. (Berycidae), Sagaberyx n. gen. (Berycoidei family indet.), Namicauda n. gen. (Polymixiidae), Ortugobius n. gen. (tentatively placed in Gobiidae) and Cornusolea n. gen. (Soleidae); the new species are: Rhynchoconger placidus n. sp., Rhynchoconger subtilis n. sp., Saurida macilenta n. sp., Nishiberyx nishimotoi n. sp., Sagaberyx kishimaensis n. sp., Namicauda pulvinata n. sp., Liza brevirostris n. sp., Pontinus? karasawai n. sp., Ortugo- bius cascus n.
    [Show full text]
  • Biogenic Habitats on New Zealand's Continental Shelf. Part II
    Biogenic habitats on New Zealand’s continental shelf. Part II: National field survey and analysis New Zealand Aquatic Environment and Biodiversity Report No. 202 E.G. Jones M.A. Morrison N. Davey S. Mills A. Pallentin S. George M. Kelly I. Tuck ISSN 1179-6480 (online) ISBN 978-1-77665-966-1 (online) September 2018 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright – Fisheries New Zealand TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Overview 3 1.2 Objectives 4 2. METHODS 5 2.1 Selection of locations for sampling. 5 2.2 Field survey design and data collection approach 6 2.3 Onboard data collection 7 2.4 Selection of core areas for post-voyage processing. 8 Multibeam data processing 8 DTIS imagery analysis 10 Reference libraries 10 Still image analysis 10 Video analysis 11 Identification of biological samples 11 Sediment analysis 11 Grain-size analysis 11 Total organic matter 12 Calcium carbonate content 12 2.5 Data Analysis of Core Areas 12 Benthic community characterization of core areas 12 Relating benthic community data to environmental variables 13 Fish community analysis from DTIS video counts 14 2.6 Synopsis Section 15 3. RESULTS 17 3.1
    [Show full text]