bioRxiv preprint doi: https://doi.org/10.1101/422360; this version posted September 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Article The Oligomerization Landscape of Histones Haiqing Zhao1,2, David Winogradoff3,4, Yamini Dalal5,*, and Garegin A. Papoian1,3,6,** 1Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA 2Present address: Department of Systems Biology, Columbia University, New York, NY 10032, USA 3Chemical Physics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA 4Present address: Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 5Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA 6Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA *Correspondence:
[email protected] **Correspondence:
[email protected] ABSTRACT In eukaryotes, DNA is packaged through nucleosomes. Each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here we investigate the canonical histone assembly and that of the centromere-specific histone variant CENP-A using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that the canonical H3 tetramer exhibits large instability around the central interface manifested via a swiveling motion of two halves, supporting the recently observed DNA handedness flipping of the tetrasome.