Histones and Histone Modifications

Total Page:16

File Type:pdf, Size:1020Kb

Histones and Histone Modifications Magazine R546 Primer compacted metaphase domains, although more and more chromosome structures. This examples of modifications within organization of DNA into the central domains of the chromatin fibers hinders its histones have been identified Histones and accessibility to proteins that must (Figure 1). Given the number of histone ‘read’ and/or copy the nucleotide new modification sites that are base sequence, and consequently identified each year, it seems modifications such structures must be dynamic likely that nearly every histone and capable of regulated residue that is accessible to unfolding–folding transitions. solvent may be a target for post- Craig L. Peterson and Each of the core histones has a translational modification. Marc-André Laniel related globular domain that Why should histones be the mediates histone–histone target for so much enzymatic Imagine trying to stuff about interactions within the octamer, activity? Given that chromatin is 10,000 miles of spaghetti inside a and that organizes the two wraps the physiological template for all basketball. Then, if that was not of nucleosomal DNA. Each DNA-mediated processes, histone difficult enough, attempt to find a histone also harbors an amino- modifications are likely to control unique one inch segment of pasta terminal 20–35 residue segment the structure and/or function of from the middle of this mess, or that is rich in basic amino acids the chromatin fiber, with different try to duplicate, untangle and and extends from the surface of modifications yielding distinct separate individual strings to the nucleosome; histone H2A is functional consequences. Indeed, opposite ends. This simple unique in having an additional ~37 recent studies have shown that analogy illustrates some of the amino acid carboxy-terminal site-specific combinations of daunting tasks associated with domain that protrudes from the histone modifications correlate the transcription, repair and nucleosome. These histone ‘tails’ well with particular biological replication of the nearly 2 meters do not contribute significantly to functions (see Table 1). For of DNA that is packaged into the the structure of individual instance, the combination of H4 confines of a tiny eukaryotic nucleosomes nor to their stability, K8 acetylation, H3 K14 nucleus. The solution to each of but they do play an essential role acetylation, and H3 S10 these problems lies in the in controlling the folding of phosphorylation is often assembly of the eukaryotic nucleosomal arrays into higher- associated with transcription. genome into chromatin, a order structures. Indeed, in vitro Conversely, tri-methylation of H3 structural polymer that not only removal of the histone tails results K9 and the lack of H3 and H4 solves the basic packaging in nucleosomal arrays that cannot acetylation correlates with problem, but also provides a condense past the beads-on-a- transcriptional repression in dynamic platform that controls all string 10 nm fiber. Although the higher eukaryotes. Particular DNA-mediated processes within highly basic histone tails are patterns of histone modifications the nucleus. generally viewed as DNA-binding also correlate with global The basic unit of chromatin is modules, their essential roles in chromatin dynamics, as the nucleosome core particle, tail-mediated chromatin folding diacetylation of histone H4 at K4 which contains 147 bp of DNA also involve inter-nucleosomal and K12 is associated with wrapped nearly twice around an histone–histone interactions. histone deposition at S phase, octamer of the core histones. The and phosphorylation of histone histone octamer is composed of a Post-translational modifications H2A (at S1 and T119) and H3 (at central heterotetramer of histones of histones: encoding or T3, S10 and S28) appear to be H3 and H4, flanked by two patterning? hallmarks of condensed mitotic heterodimers of histones H2A and Histones are subject to an chromatin. H2B. Each nucleosome is enormous number of post- These and other observations separated by 10–60 bp of ‘linker’ translational modifications, have led to the idea of a histone DNA, and the resulting including acetylation and modification ‘code’ which might nucleosomal array constitutes a methylation of lysines (K) and be read by various cellular chromatin fiber of ~10 nm in arginines (R), phosphorylation of machineries. The term ‘code’ may diameter. This simple ‘beads-on- serines (S) and threonines (T), be a misnomer, however, as it a-string’ arrangement is folded ubiquitylation and sumoylation of implies that a particular into more condensed, ~30 nm lysines, as well as ribosylation combination of histone marks will thick fibers that are stabilized by (Figure 1; Table 1). Adding to the always dictate the same biological binding of a linker histone to each complexity is the fact that each function. By analogy, the genetic nucleosome core (note that linker lysine residue can accept one, two code is always the same no histones are not related in or even three methyl groups, and matter which gene is analyzed, in sequence to the core histones). an arginine can be either mono- or any cell type or tissue: TAG Such 30 nm fibers are then further di-methylated. The majority of always means STOP. In the case condensed in vivo to form these post-translational marks of histone modifications, however, 100–400 nm thick interphase occur on the amino-terminal and there are clear exceptions — a fibers or the more highly carboxy-terminal histone tail particular mark or set of marks Magazine R547 can have different or even opposite biological P Ac Ub consequences. For instance, the H2A Ac- S G R G K Q G G K A R A ... A V L L P K K T E S H H K A K G K -COOH generally inhibitory H3 K9 1 5 119 methylation can in some cases be associated with actively Ac AcP Ac Ac Ub transcribed genes, and histone H2B NH2- P E P V K S A P V P K K G S K K A I N K ... V K Y T S S K -COOH acetylation can be inhibitory 5 12 14 15 20 120 (123 in yeast) rather than stimulatory for Me Me Me transcription. Thus, rather than a Me P Ac Ac P P Ac MeAc Ac Me Ac P Me Me histone code there are instead clear patterns of histone marks H3 NH2- A R T K Q T A R K S T G G K A P R K Q L A S K A A R K S A ... G V K K ... E F K T D ... 2 3 4 9 10 11 14 17 18 23 262728 36 79 that can be differentially interpreted by cellular factors, depending on the gene being P MeAc Ac Ac Ac Me studied and the cellular context. H4 Ac- S G R G K G G K G L G K G G A K R H R K V L R D N I Q G I T ... 1 3 5 8 12 16 20 Current Biology Patterning chromatin: targeting the enzymes Figure 1. Post-translational modifications of the core histones. Although histone modifications The colored shapes represent known post-translational modifications of the core his- have been studied for over 30 tones. The histone tails can be methylated at lysines and arginines (green pentagons), years, the identification of the phosphorylated at serines or threonines (yellow circles), ubiquitylated (blue stars) and acetylated (red triangles) at lysines. histone modifying enzymes themselves remained elusive until the first nuclear histone SAGA interacts with the subunits that recognize DNA acetyltransferase (HAT), a transcriptional activation backbone-distorting base Tetrahymena homolog of yeast domains of a variety of yeast adducts, targeting histone H3 Gcn5, was identified in 1996. In gene-specific activator proteins, acetylation activity to sites of vivo studies in yeast had and these interactions target HAT nucleotide excision repair. previously characterized Gcn5 as activity to specific promoter A quite different strategy uses a transcriptional co-activator regions in vivo. Likewise, small noncoding RNAs to target protein, and thus its identification unliganded nuclear hormone histone H3 K9 methylation to as a HAT solidified the view that receptors interact with HDAC chromatin surrounding histone modifications directly complexes, such as NCoR and mammalian and fission yeast regulate transcription. SMRT, which direct histone centromeres. These centromeric Subsequently, a variety of other deacetylase activity to target regions are characterized by transcriptional co-activators, genes and contribute to repetitive DNA sequences that such as CBP/p300 were found to subsequent gene repression. In are transcribed at low levels. The have intrinsic HAT activity, and addition to targeting via gene- resulting double-stranded RNAs many co-repressors, such as specific regulators, the yeast provide substrates for processing Rpd3, were found to have histone Set1 and Set2 HMTs are found by the RNA interference (RNAi) deacetylation (HDAC) activity. associated with RNA polymerase machinery which produces small, Histone modification enzymes II holoenzymes, directing histone 21–23 nucleotide RNAs. Recent are now organized into large H3 K4 or K36 methylation, studies have shown that an intact HAT, HDAC, histone respectively, during RNAi pathway is essential for methyltransferase (HMT) and transcriptional elongation. targeting H3 K9 methylation to histone kinase families Targeting histone modifications centromeric chromatin, and (see Table 1). is not unique to transcriptional furthermore that these small The precise combination of control, as DNA repair and RNAs actually associate with locus-specific histone centromeric heterochromatin use several chromatin components. modifications is due to the distinct mechanisms to generate The resulting novel combined effects of targeting novel patterns of histone marks. ribonucleoprotein complex histone modifying enzymes to In the case of DNA repair, the ultimately targets the Clr4p HMT specific loci, as well as to the DNA lesion itself seems to play a to centromeric repeats, via either inherent substrate specificity of central role in targeting histone RNA–RNA (nascent centromeric the enzymes themselves.
Recommended publications
  • Datasheet for Histone H2B Human, Recombinant (M2505; Lot 0031404)
    Supplied in: 20 mM Sodium Phosphate (pH 7.0), Quality Control Assays: Ionization-Time of Flight Mass Spectrometry). The Histone H2B 300 mM NaCl and 1 mM EDTA. SDS-PAGE: 0.5 µg, 1.0 µg, 2.0 µg, 5.0 µg, average mass calculated from primary sequence Human, Recombinant 10.0 µg Histone H2B Human, Recombinant were is 13788.97 Da. This confirms the protein identity Note: The protein concentration (1 mg/ml, 73 µM) loaded on a 10–20% Tris-Glycine SDS-PAGE gel as well as the absence of any modifications of the is calculated using the molar extinction coefficient and stained with Coomassie Blue. The calculated histone. 1-800-632-7799 for Histone H2B (6400) and its absorbance at molecular weight is 13788.97 Da. Its apparent [email protected] 280 nm (3,4). 1.0 A units = 2.2 mg/ml N-terminal Protein Sequencing: Protein identity 280 molecular weight on 10–20% Tris-Glycine SDS- www.neb.com was confirmed using Edman Degradation to PAGE gel is ~17 kDa. M2505S 003140416041 Synonyms: Histone H2B/q, Histone H2B.1, sequence the intact protein. Histone H2B-GL105 Mass Spectrometry: The mass of purified Histone H2B Human, Recombinant is 13788.5 Da Protease Assay: After incubation of 10 µg of M2505S B r kDa 1 2 3 4 5 6 7 as determined by ESI-TOF MS (Electrospray Histone H2B Human, Recombinant with a standard 250 4.0 mixture of proteins for 2 hours at 37°C, no 100 µg 1.0 mg/ml Lot: 0031404 150 13788.5 100 proteolytic activity could be detected by SDS- RECOMBINANT Store at –20°C Exp: 4/16 80 PAGE.
    [Show full text]
  • Variants of the Elongator Protein 3 (ELP3) Gene Are Associated with Motor Neuron Degeneration
    Human Molecular Genetics, 2009, Vol. 18, No. 3 472–481 doi:10.1093/hmg/ddn375 Advance Access published on November 7, 2008 Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration Claire L. Simpson1,{, Robin Lemmens4,{, Katarzyna Miskiewicz6,7, Wendy J. Broom8, Valerie K. Hansen1, Paul W.J. van Vught9, John E. Landers8, Peter Sapp8,11, Ludo Van Den Bosch4,5, Joanne Knight3, Benjamin M. Neale3, Martin R. Turner1, Jan H. Veldink9, Roel A. Ophoff10,12, Vineeta B. Tripathi1, Ana Beleza1, Meera N. Shah1, Petroula Proitsi2, Annelies Van Hoecke4,5, Peter Carmeliet5, H. Robert Horvitz11, P. Nigel Leigh1, Christopher E. Shaw1, Leonard H. van den Berg9, Pak C. Sham13, John F. Powell2, Patrik Verstreken6,7, Robert H. Brown Jr8, Wim Robberecht4,5 and Ammar Al-Chalabi1,Ã 1Department of Neurology, 2Department of Neuroscience, MRC Centre for Neurodegeneration Research and 3MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London SE5 8AF, UK, 4Service of Neurology (University Hospital Leuven) and Laboratory for Neurobiology, Section of Experimental Neurology, University of Leuven, Leuven B-3000, Belgium, 5Vesalius Research Center, Flanders Institute for Biotechnology (VIB) and 6Center for Human Genetics, Laboratory of Neuronal Communication, KU Leuven, Leuven B-3000, Belgium, 7Department of Molecular and Developmental Genetics, VIB, Leuven B-3000, Belgium, 8Cecil B Day Laboratory for Neuromuscular Research, Massachusetts General Hospital East, Charlestown, MA,
    [Show full text]
  • How Human H1 Histone Recognizes DNA
    molecules Article How Human H1 Histone Recognizes DNA Olesya P. Luzhetskaya, Sergey E. Sedykh and Georgy A. Nevinsky * Institute of Chemical Biology and Fundamental Medicine, SD of Russian Academy of Sciences, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia; [email protected] (O.P.L.); [email protected] (S.E.S.) * Correspondence: [email protected]; Tel.: +7-383-363-51-26; Fax: +7-383-363-51-53 Received: 11 August 2020; Accepted: 1 October 2020; Published: 5 October 2020 Abstract: Linker H1 histone is one of the five main histone proteins (H1, H2A, H2B, H3, and H4), which are components of chromatin in eukaryotic cells. Here we have analyzed the patterns of DNA recognition by free H1 histone using a stepwise increase of the ligand complexity method; the affinity of H1 histone for various single- and double-stranded oligonucleotides (d(pN)n; n = 1–20) was evaluated using their competition with 12-mer [32P]labeled oligonucleotide and protein–oligonucleotide complex delaying on nitrocellulose membrane filters. It was shown that minimal ligands of H1 histone (like other DNA-dependent proteins and enzymes) are different mononucleotides (dNMPs; Kd = (1.30 0.2) 2 ± 10 M). An increase in the length of single-stranded (ss) homo- and hetero-oligonucleotides (d(pA)n, × − d(pT)n, d(pC)n, and d(pN)n with different bases) by one nucleotide link regardless of their bases, leads to a monotonic increase in their affinity by a factor of f = 3.0 0.2. This factor f corresponds ± to the Kd value = 1/f characterizing the affinity of one nucleotide of different ss d(pN)n for H1 at n = 2–6 (which are covered by this protein globule) is approximately 0.33 0.02 M.
    [Show full text]
  • Interplay Between Epigenetics and Metabolism in Oncogenesis: Mechanisms and Therapeutic Approaches
    OPEN Oncogene (2017) 36, 3359–3374 www.nature.com/onc REVIEW Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches CC Wong1, Y Qian2,3 and J Yu1 Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer. Oncogene (2017) 36, 3359–3374; doi:10.1038/onc.2016.485; published online 16 January 2017 INTRODUCTION metabolic genes have also been identified as driver genes It has been appreciated since the early days of cancer research mutated in some cancers, such as isocitrate dehydrogenase 1 16 17 that the metabolic profiles of tumor cells differ significantly from and 2 (IDH1/2) in gliomas and acute myeloid leukemia (AML), 18 normal cells. Cancer cells have high metabolic demands and they succinate dehydrogenase (SDH) in paragangliomas and fuma- utilize nutrients with an altered metabolic program to support rate hydratase (FH) in hereditary leiomyomatosis and renal cell 19 their high proliferative rates and adapt to the hostile tumor cancer (HLRCC).
    [Show full text]
  • Re-Coding the ‘Corrupt’ Code: CRISPR-Cas9 Interventions in Human Germ Line Editing
    Re-coding the ‘corrupt’ code: CRISPR-Cas9 interventions in human germ line editing CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation Master Thesis Tilburg University- Law and Technology 2018-19 Tilburg Institute for Law, Technology, and Society (TILT) October 2019 Student: Srishti Tripathy Supervisors: Prof. Dr. Robin Pierce SRN: 2012391 Dr. Emre Bayamlioglu ANR: 659785 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation This page is intentionally left blank 2 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation 3 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation Table of Contents CHAPTER 1: Introduction .............................................................................................................. 6 1.1 Introduction and Review - “I think I’m crazy enough to do it” ......................................................................... 6 1.2 Research Question and Sub Questions .......................................................................................................................... 9 1.4 Methodology ............................................................................................................................................................................. 9 1.4 Thesis structure: .................................................................................................................................................................
    [Show full text]
  • Topography of the Histone Octamer Surface: Repeating Structural Motifs Utilized in the Docking of Nucleosomal
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 10489-10493, November 1993 Biochemistry Topography of the histone octamer surface: Repeating structural motifs utilized in the docking of nucleosomal DNA (histone fold/helix-strand-helix motif/parallel fi bridge/binary DNA binding sites/nucleosome) GINA ARENTS* AND EVANGELOS N. MOUDRIANAKIS*t *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and tDepartment of Biology, University of Athens, Athens, Greece Communicated by Christian B. Anfinsen, August 5, 1993 ABSTRACT The histone octamer core of the nucleosome is interactions. The model offers strong predictive criteria for a protein superhelix offour spirally arrayed histone dimers. The structural and genetic biology. cylindrical face of this superhelix is marked by intradimer and interdimer pseudodyad axes, which derive from the nature ofthe METHODS histone fold. The histone fold appears as the result of a tandem, parallel duplication of the "helix-strand-helix" motif. This The determination of the structure of the histone octamer at motif, by its occurrence in the four dimers, gives rise torepetitive 3.1 A has been described (3). The overall shape and volume structural elements-i.e., the "parallel 13 bridges" and the of this tripartite structure is in agreement with the results of "paired ends of helix I" motifs. A preponderance of positive three independent studies based on differing methodolo- charges on the surface of the octamer appears as a left-handed gies-i.e., x-ray diffraction, neutron diffraction, and electron spiral situated at the expected path of the DNA. We have microscopic image reconstruction (4-6). Furthermore, the matched a subset of DNA pseudodyads with the octamer identification of the histone fold, a tertiary structure motif of pseudodyads and thus have built a model of the nucleosome.
    [Show full text]
  • REVIEW Chromatin Modifications and DNA Double-Strand Breaks
    Leukemia (2007) 21, 195–200 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu REVIEW Chromatin modifications and DNA double-strand breaks: the current state of play TC Karagiannis1,2 and A El-Osta3 1Molecular Radiation Biology, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; 2Department of Pathology, The University of Melbourne, Parkville, Melbourne, Victoria, Australia and 3Epigenetics in Human Health and Disease, Baker Medical Research Institute, The Alfred Medical Research and Education Precinct, Prahran, Victoria, Australia The packaging and compaction of DNA into chromatin is mutated (ATM) and ataxia telangiectasia-related (also known as important for all DNA-metabolism processes such as transcrip- Rad3-related, ATR), which are members of the phosphoinositide tion, replication and repair. The involvement of chromatin 4,5 modifications in transcriptional regulation is relatively well 3-kinase (PI(3)K) superfamily. They catalyse the phosphoryla- characterized, and the distinct patterns of chromatin transitions tion of numerous downstream substrates that are involved in 4,5 that guide the process are thought to be the result of a code on cell-cycle regulation, DNA repair and apoptosis. the histone proteins (histone code). In contrast to transcription, In mammalian cells, DSBs are repaired by one of two distinct the intricate link between chromatin and responses to DNA and complementary pathways – homologous recombination damage has been given attention only recently. It is now (HR) and non-homologous end-joining (NHEJ).6,7 Briefly, NHEJ emerging that specific ATP-dependent chromatin remodeling involves processing of the broken DNA terminii to make them complexes (including the Ino80, Swi/Snf and RSC remodelers) 3 and certain constitutive (methylation of lysine 79 of histone H3) compatible, followed by a ligation step.
    [Show full text]
  • Annotated Classic Histone Code and Transcription
    Annotated Classic Histone Code and Transcription Jerry L. Workman1,* 1Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA *Correspondence: [email protected] We are pleased to present a series of Annotated Classics celebrating 40 years of exciting biology in the pages of Cell. This install- ment revisits “Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activa- tion” by C. David Allis and colleagues. Here, Jerry Workman comments on how the discovery of Tetrahymena histone acetyltrans- ferase A, a homolog to a yeast transcriptional adaptor Gcn5p, by Allis led to the establishment of links between histone acetylation and gene activation. Each Annotated Classic offers a personal perspective on a groundbreaking Cell paper from a leader in the field with notes on what stood out at the time of first reading and retrospective comments regarding the longer term influence of the work. To see Jerry L. Workman’s thoughts on different parts of the manuscript, just download the PDF and then hover over or double- click the highlighted text and comment boxes on the following pages. You can also view Workman’s annotation by opening the Comments navigation panel in Acrobat. Cell 158, August 14, 2014, 2014 ©2014 Elsevier Inc. Cell, Vol. 84, 843±851, March 22, 1996, Copyright 1996 by Cell Press Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation James E. Brownell,* Jianxin Zhou,* Tamara Ranalli,* 1995; Edmondson et al., submitted). Thus, the regulation Ryuji Kobayashi,² Diane G. Edmondson,³ of histone acetylation is an attractive control point for Sharon Y.
    [Show full text]
  • Mir-17-92 Fine-Tunes MYC Expression and Function to Ensure
    ARTICLE Received 31 Mar 2015 | Accepted 22 Sep 2015 | Published 10 Nov 2015 DOI: 10.1038/ncomms9725 OPEN miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth Marija Mihailovich1, Michael Bremang1, Valeria Spadotto1, Daniele Musiani1, Elena Vitale1, Gabriele Varano2,w, Federico Zambelli3, Francesco M. Mancuso1,w, David A. Cairns1,w, Giulio Pavesi3, Stefano Casola2 & Tiziana Bonaldi1 The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 30 untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c- MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 30 UTR shortening at different stages of tumorigenesis. 1 Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy. 2 Units of Genetics of B cells and lymphomas, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy.
    [Show full text]
  • Histone Methylases As Novel Drug Targets. Focus on EZH2 Inhibition. Catherine BAUGE1,2,#, Céline BAZILLE 1,2,3, Nicolas GIRARD1
    Histone methylases as novel drug targets. Focus on EZH2 inhibition. Catherine BAUGE1,2,#, Céline BAZILLE1,2,3, Nicolas GIRARD1,2, Eva LHUISSIER1,2, Karim BOUMEDIENE1,2 1 Normandie Univ, France 2 UNICAEN, EA4652 MILPAT, Caen, France 3 Service d’Anatomie Pathologique, CHU, Caen, France # Correspondence and copy request: Catherine Baugé, [email protected], EA4652 MILPAT, UFR de médecine, Université de Caen Basse-Normandie, CS14032 Caen cedex 5, France; tel: +33 231068218; fax: +33 231068224 1 ABSTRACT Posttranslational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. Particularly, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase Enhancer of Zeste homolog 2 (EZH2), emerges as a key control of gene expression, and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines roles of histone lysine methylases and demetylases in cells, and focuses on the recent knowledge and developments about EZH2. Key-terms: epigenetic, histone methylation, EZH2, cancerology, tumors, apoptosis, cell death, inhibitor, stem cells, H3K27 2 Histone modifications and histone code Epigenetic has been defined as inheritable changes in gene expression that occur without a change in DNA sequence. Key components of epigenetic processes are DNA methylation, histone modifications and variants, non-histone chromatin proteins, small interfering RNA (siRNA) and micro RNA (miRNA).
    [Show full text]
  • DNA Condensation and Packaging
    DNA condensation and packaging October 13, 2009 Professor Wilma K. Olson Viral DNA - chain molecules in confined spaces Viruses come in all shapes and sizes Clockwise: Human immuno deficiency virus (HIV); Aeromonas virus 31, Influenza virus, Orf virus, Herpes simplex virus (HSV), Small pox virus Image from U Wisconsin Microbial World website: http://bioinfo.bact.wisc.edu DNA packaging pathway of T3 and T7 bacteriophages • In vivo pathway - solid arrows Fang et al. (2008) “Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo.” J. Mol. Biol. 384, 1384-1399 Cryo EM images of T3 capsids with 10.6 kbp packaged DNA • Labels mark particles representative of different types of capsids • Arrows point to tails on capsids Fang et al. (2008) “Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo.”” J. Mol. Biol. 384, 1384-1399 Cryo EM images of representative particles • (b) 10.6 kbp DNA • (c) 22 kbp DNA • (d) bacteriophage T3 Fang et al. (2008) “Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo.” J. Mol. Biol. 384, 1384-1399 3D icosohedral reconstructions of cryo-EM-imaged particles Threefold surface views and central cross sections • (b) 10.6 kbp DNA • (c) 22 kbp DNA • (d) bacteriophage T3 Fang et al. (2008) “Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo.” J. Mol. Biol. 384, 1384-1399 Top-down views of λ phage DNA toroids captured in cryo-EM micrographs Note the circumferential winding of DNA found in collapsed toroidal particles produced in the presence of multi-valent cations. Hud & Vilfan (2005) “Toroidal DNA condensates: unraveling the fine structure and the role of nucleation in determining size.” Ann.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]