Bee Conservation in Sub-Saharan Africa and Madagascar: Diversity, Status and Threats*

Total Page:16

File Type:pdf, Size:1020Kb

Bee Conservation in Sub-Saharan Africa and Madagascar: Diversity, Status and Threats* Apidologie 40 (2009) 355–366 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2009 www.apidologie.org DOI: 10.1051/apido/2009016 Review article Bee conservation in Sub-Saharan Africa and Madagascar: diversity, status and threats* Connal D. Eardley1,MaryGikungu2, Michael P. Schwarz3 1 Agricultural Research Council, Private Bag X134, Queenswood, 0121, Pretoria, South Africa 2 Zoology Department, National Museums of Kenya, PO Box 40658-00100, Nairobi, Kenya 3 School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia Received 14 October 2008 – Revised 2 February 2009 – Accepted 4 February 2009 Abstract – Sub-Saharan Africa and Madagascar contain a wealth of bee diversity, with particularly high levels of endemicity in Madagascar. Although Africa contains seven biodiversity hotspots, the bee fauna appears rather moderate given the size of the continent. This could be due to various factors, an important one being the dearth of bee taxonomists working in Africa and difficulties in carrying out research in many regions. Anecdotal observations suggest a very large number of undescribed bee species. A number of se- rious threats to this diversity exist, especially habitat destruction and degradation. Bee diversity in these regions is likely to be important for both agriculture and indigenous ecosystems, but is under-appreciated. Reliance on conserved areas such as National Parks will not be sufficient to preserve bee diversity in Africa and Madagascar; changes to land use practices and development of industries that facilitate conservation, such as ecotourism, will be essential. There is also a strong need to build regional expertise and infrastruc- ture that can be used for documenting bee diversity, identifying the most urgent conservation issues, and implementing conservation strategies. Support from developed countries and international funding agencies is needed for this. bees / conservation / biodiversity / Africa / Madagascar / Apoidea 1. INTRODUCTION ing materials, the beetle larvae that San peo- ple used for poison arrows (Koch, 1958;Shaw Trying to understand the issues surrounding et al., 1963) and harmful species like agricul- bee conservation in sub-Saharan Africa and tural pests. They have names for all of these Madagascar is complex. It requires consider- species. Food and medicinal uses for honey ation of both the history of bee research in from stingless bees are known (Macharia, un- these regions, as well as the prevailing socio- publ. data), but today these are better known to economic and cultural circumstances. These rural communities than urban people. are vastly different from North America and Europe, and the strategies that are needed to While honey bees and sometimes stingless conserve bee diversity are similarly very dif- bees are widely regarded for their pollina- ferent (cf. Byrne and Fitzpatrick, 2009). tion services, the benefits from other bees are African and Malagasy people appreciate the largely overlooked by farmers – to what ex- aspects of biodiversity that tangibly affect their tent they were recognised in the past is not daily lives. These include beneficial species, known. Increased crop production has been such as those used for medicine, food, build- mainly based on the use of agronomic inputs, such as quality seeds, fertilizers and pesticides, Corresponding author: M.P. Schwarz, with little regard to non-Apis pollination as an Michael.Schwarz@flinders.edu.au agricultural eco-service that may require pro- * Manuscript editor: Tomas Murray tection. Article published by EDP Sciences 356 C.D. Eardley et al. Figure 1. Map of Sub-Saharan Africa showing broad distribution of vegetation types. Adapted from the NASA Scientific Visualization Stu- dio maps (http://svs.gsfc.nasa.gov/ vis/) and the University of Chicago Fathom Archive African map series (http://fathom.lib.uchicago.edu/). Bee research in sub-Saharan Africa has in- deals with the protection of Kakamega Forest cluded extensive research on the honey bee, in Kenya. Apis mellifera L., especially in South Africa Although Africa and Madagascar are ge- (Hepburn and Guye, 1993; Johannsmeier, ographical neighbours, they are in many 2001), limited work on stingless bees, haphaz- respects very different. They are therefore ard descriptions of new species, revisional tax- mostly treated separately in the discussions onomic studies for two-thirds of the known that follow. genera, a host of distributional records, and a relatively small number of studies on ecol- ogy and social biology. Eardley and Urban 2. BEE DIVERSITY (in preparation) provide complete references to the non-Apis studies in a species catalogue. 2.1. Sub-Saharan Africa Research on Malagasy bees has been simi- lar, except that all previous studies have been Sub-Saharan Africa is an enormous and di- brought together with a full revision of the bee verse continent with a host of different ecosys- fauna by Pauly et al. (2001). tems, from rain forest to desert. A broad veg- Prospects for bee research in sub-Saharan etation map for regions south of the Sahara is Africa are improving, and there is a growing given in Figure 1. A large proportion of the awareness of the need to conserve pollinator continent is savannah, with many different bee diversity. This is largely driven by an interest pollinated plants, and with biotypes ranging in agricultural pollination management. How- from dry to relatively wet. The continent has ever, the potential importance of all bees, as seven biodiversity hotspots, as identified by part of an ecosystem approach to conserva- Conservation International (CI). (http://www. tion, is recognized in a number of projects. biodiversityhotspots.org), making it second to One such project is BIOTA East Africa, which Asia and the Pacific Islands in biologically rich Bee conservation in Africa and Madagascar 357 areas. The highest temperate plant biodiver- sity in the world occurs in the winter rain- fall areas in the south-western region of Africa (Koekemoor, unpubl. data). All this should suggest a rich bee fauna. The described bee fauna in sub-Saharan Africa can, however, at best be described as moderately diverse. Six of the seven bee fam- ilies recognized by Michener (2007) occur in Sub-Saharan Africa, with the Stenotriti- dae being confined to Australia. About 21% of the World’s bee genera occur in Sub- Saharan Africa (102 from a total of about 476; Michener, 2007), and about half of these are either cosmopolitan or Old World en- demics. At a generic level, this suggests rea- sonably high diversity. However, at a species level diversity is less rich. The 2600 de- scribed Sub-Saharan species comprise only about 13% of the global fauna of around 19400 species (http://www.itis.gov./ and Eardley, un- publ. data). Some highly speciose genera, like Perdita and Centris, do not occur in Africa, whilst Andrena, which is diverse in the Ho- larctic (about 1500 species), has only nine African species. The most speciose genera in Africa are Lasioglossum (about 260 species, Figure 2. Map of Madagascar showing broad vege- no revision available) and Megachile (about tation types (excluding marshlands). Adapted from 322 species, Pasteels, 1965), and these are the Food and Agriculture Organization (United fairly small proportions of their global species Nations) (http://www.fao.org/ag/AGP/agpc/doc/ numbers. Counprof/Madagascar/madagascareng.htm)and It is possible that low species diversity in the University of Texas Perry-Castañeda Map Africa is more apparent than real. Schwarz Collection (www.lib.utexas.edu/maps/madagascar. and Bull (unpublished) found that in extensive html). nest collections of allodapines in South Africa, about one third of species encountered did not fit current species descriptions, and less- 2.2. Madagascar intensive allodapine collections from Uganda indicate a great many undescribed species and Madagascar is the World’s 4th largest is- possibly new genera (McLeish and Schwarz, land. It exhibits a much wider range of ecosys- unpubl. data). For allodapines at least, this tems and biodiversity than most other large suggests a wealth of unrecorded diversity, de- islands. This is probably due to its physi- spite the Herculean efforts of Michener (1975) cal geography, the times since it rifted from in revising the African allodapines. The prob- other major land masses, and its distance from lem appears to be one of a mismatch be- sources for cross-ocean dispersal (Yoder and tween the sheer size of sub-Saharan Africa Nowak, 2006). The eastern mountain range and the number of African bee taxonomists. also leads to very different climatic regimes Even with the involvement of taxonomists across the island. There is lowland rainforest from other regions, political and infrastruc- in the east, montane and dry deciduous forest tural circumstances make biodiversity research in the west and high elevation thicket in the very difficult in many important regions. central highlands (Fig. 2). The south-west is 358 C.D. Eardley et al. arid with spiny forests and scrub. All regions represent dispersal via vegetation rafts aris- have suffered from prolonged slash and burn ing from tsunamis or extreme floods in east- agriculture, leading to extensive grassland and ern Africa, since several large rivers flow into areas dominated by exotic weeds such as Eu- the Mozambique Channel separating Africa calyptus and Grevillea. from Madagascar. On the other hand, another Madagascar has played an important role in wood nesting bee, Lithurgus pullatus, occurs our understanding of historical biogeography in Madagascar, East Africa, India, Mauritius, (Yoder and Novak, 2006). However, for many the Seychelles and the Maldives (Pauly et al., groups of organisms it is still not clear whether 2001), and it is unlikely this could be ex- affinities with African taxa represent vicariant plained by vegetation rafting. The possible origins, dating back to the rifting of Madagas- role of anthropogenic dispersal for some bees car+India from Africa, or whether this is due in Madagascar is something that needs study. to dispersal across the Mozambique Channel.
Recommended publications
  • The Bees of Sub-Saharan Africa
    A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Genus Nasutapis Michener (Fig. 36E) Nasutapis has a distinct projection medioventrally on the clypeus. This genus is monotypic (Nasutapis straussorum Michener) and endemic to KwaZulu-Natal, South Africa, and found in nests of Braunsapis facialis (Gerstaecker). 8.6.2. Subfamily Nomadinae In sub-Saharan Africa the Nomadinae comprises four tribes and six genera. They are all cleptoparasitic. Diagnostic features for the subfamily are difficult to define, but almost each tribe has a distinctive feature, except Ammobatoidini. 8.6.2.1. Tribe Nomadini Genus Nomada Scopoli (Fig. 37A) Nomadini has one genus in sub-Saharan Africa, namely Nomada. There are ten species, occurring mostly in North-East and southern Africa. 8.6.2.2. Tribe Epeolini Genus Epeolus Latreille (Fig. 37B) Epeolini has one genus in sub-Saharan Africa, namely Epeolus. There are 13 species that occur mostly on the east side of the continent, along its entire length. 8.6.2.3. Tribe Ammobatoidini Genus Ammobatoides Radoszkowski (Fig. 37C) Ammobatoidini has one genus in sub-Saharan Africa, and it is known only from the holotype of Ammobatoides braunsi Bischoff. It was collected in Willowmore, South Africa. It therefore goes without saying that it is extremely rare. 8.6.2.4. Tribe Ammobatini The Ammobatini has four sub-Saharan genera. They all comprise cleptoparasitic bees. Ammobates has its centre of diversity in the Palaearctic, as does Chiasmognathus, which occurs just north of the Afrotropical Region and intrudes into sub-Saharan Africa. Pasites is mostly Afrotropical and Sphecodopsis is endemic to southern Africa.
    [Show full text]
  • Hymenoptera) Associated with Crops and Ornamental Plant in Obafemi Awolowo University, Nigeria
    International Journal of Zoology and Applied Biosciences ISSN: 2455-9571 Volume 4, Issue 5, pp: 195-206, 2019 http://www.ijzab.com https://doi.org/10.5281/zenodo Research Article DIVERSITY ASSESSMENT OF BEES (HYMENOPTERA) ASSOCIATED WITH CROPS AND ORNAMENTAL PLANT IN OBAFEMI AWOLOWO UNIVERSITY, NIGERIA Oyewole O.A.1, Oyelade O.J.1* and Ogbogu S.S.2 1Natural History Museum, Obafemi Awolowo University, Ile-Ife, Nigeria, 2Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria Article History: Received 16th May 2019; Accepted 27th June 2019; Published 9th October 2019 ABSTRACT This study investigated the various species of bees in the Order Hymenoptera responsible for pollinating crop and ornamental plants in Obafemi Awolowo University (O.A.U.), Ile-Ife, and the study covered habitat preference, abundance and distribution of the bee species in various seasons. This was with a view to identifying and documenting the diversity of bees pollinating agricultural and ornamental plants for a meaningful conservation and management of insects in Nigeria. Bees collection was done using standard sweep net, to collect free range bees species on the sites. Standard yellow pan traps were also set using pineapple as bait to entice bees. Trapped bees were collected and baits were changed on daily basis. The bees were described and identified to species level using existing bee taxonomic keys. Host plants visited by the bee species were identified in the Natural History Museum Herbarium (UNIFEM) and Department of Botany Herbarium (IFE) in Obafemi Awolowo University, Ile-Ife. Paleontological Statistic Software Package (PAST) was used to analyze the collected data.
    [Show full text]
  • Figure 1. Bird Island: Physical Map, with Position of Tern Colony and Location of Vegetation Plots
    Approximate of Sooty Ter~ Leqend (XI Vegetat~onplots 9 Building 6 Beach 200 metres Figure 1. Bird Island: Physical map, with position of tern colony and location of vegetation plots. BIRD MICHAEL J. HILL', TERENCE M. VEL', KATHRYN J. HOLM^, STEVEN J. PARR~ and NIRMAL J. SHAH' GEOLOGY, TOPOGRAPHY AND CLIMATE Bird is the northernmost island of the Seychelles, lying around 90 km north of Mahe, the largest of the granitic Seychelles, at the northern edge of the Seychelles bank. Different published sources vary in the estimated area of Bird Island with figures of c. 70 ha given by Feare (1979), 82 ha in Stoddart and Fosberg (1981), 101 ha in Skerrett et al. (2001), and 120.7 ha from recent aerial photographs (Ministry of Land Use and Habitat, Seychelles, unpublished data). In part, this variation may be explained by seasonal or longer-term variations in the vegetated area of the island; Bird Island is relatively dynamic, experiencing considerable coastal changes over time (Feare, 1979). The maximum elevation is less than 4 m above sea level. Unlike the majority of islands on the Seychelles Bank, Bird has no exposed granite and it is entirely formed of reef-derived sands. The accumulation of guano on sand deposits has led to the formation of phosphatic sandstone over 26% of the island's surface (Baker, 1963). Phosphatic sandstone is concentrated in a central band; the island's coastal zone is entirely sandy. Most of the original guano has now been removed for export. The soils of Bird Island are of two main series; over the central phosphatic sandstone area, Jemo series soils (missing their upper layer of guano) occur.
    [Show full text]
  • The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution
    EN58CH04-Danforth ARI 5 December 2012 7:55 The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution Bryan N. Danforth,1∗ Sophie Cardinal,2 Christophe Praz,3 Eduardo A.B. Almeida,4 and Denis Michez5 1Department of Entomology, Cornell University, Ithaca, New York 14853; email: [email protected] 2Canadian National Collection of Insects, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada; email: [email protected] 3Institute of Biology, University of Neuchatel, Emile-Argand 11, 2009 Neuchatel, Switzerland; email: [email protected] 4Departamento de Biologia, FFCLRP-Universidade de Sao˜ Paulo, 14040-901 Ribeirao˜ Preto, Sao˜ Paulo, Brazil; email: [email protected] 5University of Mons, Laboratory of Zoology, 7000 Mons, Belgium; email: [email protected] Annu. Rev. Entomol. 2013. 58:57–78 Keywords First published online as a Review in Advance on Hymenoptera, Apoidea, bees, molecular systematics, sociality, parasitism, August 28, 2012 plant-insect interactions The Annual Review of Entomology is online at ento.annualreviews.org Abstract by 77.56.160.109 on 01/14/13. For personal use only. This article’s doi: Our understanding of bee phylogeny has improved over the past fifteen years 10.1146/annurev-ento-120811-153633 as a result of new data, primarily nucleotide sequence data, and new methods, Copyright c 2013 by Annual Reviews. primarily model-based methods of phylogeny reconstruction. Phylogenetic All rights reserved Annu. Rev. Entomol. 2013.58:57-78. Downloaded from www.annualreviews.org studies based on single or, more commonly, multilocus data sets have helped ∗ Corresponding author resolve the placement of bees within the superfamily Apoidea; the relation- ships among the seven families of bees; and the relationships among bee subfamilies, tribes, genera, and species.
    [Show full text]
  • Pollinator Biodiversity in Uganda and in Sub- Sahara Africa: Landscape and Habitat Management Strategies for Its Conservation
    International Journal of Biodiversity and Conservation Vol. 3(11), pp. 551-609, 19 October, 2011 Available online at http://www.academicjournals.org/IJBC ISSN 2141-243X ©2011 Academic Journals Full Length Research Paper Pollinator biodiversity in Uganda and in Sub- Sahara Africa: Landscape and habitat management strategies for its conservation M. B. Théodore MUNYULI1, 2 1Department of Biology, National Center for Research in Natural Sciences, CRSN-Lwiro, D.S. Bukavu, South-Kivu Province, Democratic Republic of Congo. 2Department of Environmental and Natural Resource Economics, Faculty of Natural Resources and Environmental Sciences, Namasagali Campus, Busitema University., P .0. Box. 236, Tororo, eastern Uganda. E-mail: [email protected], [email protected], [email protected] Tel: +256-757356901, +256-772579267, +243997499842. Accepted 9 July, 2011 Previous pollinator faunistic surveys conducted in 26 different sites indicated that farmlands of central Uganda supported more than 650 bee species, 330 butterfly species and 57 fly species. Most crop species grown in Uganda are pollinator-dependents. There is also a high dependency of rural communities on pollination services for their livelihoods and incomes. The annual economic value attributable to pollinating services delivered to crop production sector was estimated to be worth of US$0.49 billion for a total economic value of crop production of US$1.16 billion in Uganda. Despite the great contribution of pollinators to crop yields, there is still lack of knowledge of their
    [Show full text]
  • Genetic Diversity, Nutritional and Biological Activity of Momordica
    Genetic diversity, nutritional and biological activity of Momordica cochinchinensis (Cucurbitaceae) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Applied Biology and Biotechnology) Dilani Chathurika Wimalasiri BSc (Hons) (Institute of Chemistry, Sri Lanka) BSc (Spectrum Institute of Science and Technology, Sri Lanka) School of Applied Sciences College of Science Engineering and Health RMIT University August, 2015 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. Dilani Chathurika Wimalasiri 31 August 2015 ii ACKNOWLEDGEMENTS I wish to express my greatest gratitude to my supervisor, Dr Tien Huynh, for her mentoring, guidance and constant encouragement throughout the years. I’m also thankful to her for collecting the plant samples for me to work on. I would like to thank my co supervisors Associate Professor Terrence Piva and Dr Sylvia Urban for their patience, guidance and helpful discussions throughout this project. I’m thankful for Professor Ann Lawrie for her comments on the project and my thesis chapters. I am grateful for the help from Dr Robert Brkljača and his assistance in the nutritional analysis section of my project. I am also thankful for Mr Paul Morrison’s (School of Applied Sciences - Applied Chemistry, RMIT Unniversity) guidance in UPLC analysis.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • A Plant Ecological Study and Management Plan for Mogale's Gate Biodiversity Centre, Gauteng
    A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG By Alistair Sean Tuckett submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject ENVIRONMENTAL MANAGEMENT at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: PROF. L.R. BROWN DECEMBER 2013 “Like winds and sunsets, wild things were taken for granted until progress began to do away with them. Now we face the question whether a still higher 'standard of living' is worth its cost in things natural, wild and free. For us of the minority, the opportunity to see geese is more important that television.” Aldo Leopold 2 Abstract The Mogale’s Gate Biodiversity Centre is a 3 060 ha reserve located within the Gauteng province. The area comprises grassland with woodland patches in valleys and lower-lying areas. To develop a scientifically based management plan a detailed vegetation study was undertaken to identify and describe the different ecosystems present. From a TWINSPAN classification twelve plant communities, which can be grouped into nine major communities, were identified. A classification and description of the plant communities, as well as, a management plan are presented. The area comprises 80% grassland and 20% woodland with 109 different plant families. The centre has a grazing capacity of 5.7 ha/LSU with a moderate to good veld condition. From the results of this study it is clear that the area makes a significant contribution towards carbon storage with a total of 0.520 tC/ha/yr stored in all the plant communities. KEYWORDS Mogale’s Gate Biodiversity Centre, Braun-Blanquet, TWINSPAN, JUICE, GRAZE, floristic composition, carbon storage 3 Declaration I, Alistair Sean Tuckett, declare that “A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG” is my own work and that all sources that I have used or quoted have been indicated and acknowledged by means of complete references.
    [Show full text]
  • The Bees of Sub-Saharan Africa
    A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Fig. 39. A-B. Tetralonia macrognatha (Gerstaecker): A. Female; B. Male; Tetraloniella braunsiana (Friese): C. Female; D. Male. 112 Fig. 40. A-B. Amegilla calens (Lepeletier). A. Female; B. Male; C-D. Anthophora vestita Smith: C. Female; D. Male E-F; Pachymelus festivus (Dours); E. Female; F. Male. 113 Fig. 41. A-B. Afromelecta fulvohirta (Cameron). A. Female. B. Male; C-D. Thyreus pictus (Smith); C. Female; D. Male. 114 Fig. 42. A. Cleptotrigona cubiceps (Friese), worker; B. Dactylurina staudingeri (Gribodo), worker; C. Hypotrigona gribodoi (Magretti), worker; D-E. Meliponula beccarii (Gribodo); D. Worker. E. Male; F. Plebeina denoiti (Vachal), worker. Fig. 43. A-B. Apis mellifera Linnaeus. A. Worker; B. Male. 115 9. Conclusion Understanding the interactions between organisms is key to the conservation of biological diversity and sustainable management. Gaining knowledge on ecosystem interactions involved identifying the organisms involved. Although the identification is important for recording data and communicating information, it also unlocks information on the species concerned. For example the identity of a bee will enable the researcher to find out much about its nesting biology and/or host plant preferences. Similarly, in bee/plant interactions the plant‟s identity is also important. The sooner one identifies the species involved the greater the probability of a worthwhile project reaching completion. 116 10. References ARDUSER, M.S. & MICHENER C.D., 1987. An African genus of cleptoparasitic halictid bees (Hymenoptera, Halictidae). Journal of the Kansas Entomological Society 60: 324-329. BAKER, D.B. 1999. On new stelidine bees from S.
    [Show full text]
  • Wasps and Bees in Southern Africa
    SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI.
    [Show full text]
  • Biosearch 2004 Report
    Biosearch Nyika: Malawi 2004 Edited by Marianne J Overton FOREWORD Peter Overton It is ten years since the Biosearch Nyika project was first mooted and agreement with the Director of National Parks and Wildlife obtained for our exploration of the remoter parts of the Nyika National Park. Over this period the teams have focused mainly on the northern part of the park where patrolling has been very limited and our gathering of intelligence has been most helpful to the Nyika management. In 2004 we undertook the most challenging expedition to date, launched from the extreme north of the park at Uledi, a four-hour drive from Thazima. The team‟s first challenge was to cross the unbridged North Rukuru River with all their supplies. They then had to climb up the western escarpment of the Mpanda ridge to a point on the Mpero River, where they set up a Base Camp, from which to launch out on their surveys. The greatest achievement was to climb both Mpanda and Kawozya and discover the remote Bleak House, now derelict but offering stunning views over Lake Malawi and far beyond. At this point they could certainly claim to be in remote country since this old site is much talked about but very rarely seen by visitors. We have yet to have clear information about who built it, when and why. Perhaps it was a holiday „retreat‟ for Livingstonia or a staging post for missionaries who conducted business on the west of the Nyika National Park and into Zambia. In many ways this expedition was the pinnacle of logistical achievement.
    [Show full text]
  • Bee Conservation in Sub-Saharan Africa and Madagascar: Diversity, Status and Threats Connal D
    Bee conservation in Sub-Saharan Africa and Madagascar: diversity, status and threats Connal D. Eardley, Mary Gikungu, Michael P. Schwarz To cite this version: Connal D. Eardley, Mary Gikungu, Michael P. Schwarz. Bee conservation in Sub-Saharan Africa and Madagascar: diversity, status and threats. Apidologie, Springer Verlag, 2009, 40 (3), 10.1051/apido/2009016. hal-00892023 HAL Id: hal-00892023 https://hal.archives-ouvertes.fr/hal-00892023 Submitted on 1 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 40 (2009) 355–366 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2009 www.apidologie.org DOI: 10.1051/apido/2009016 Review article Bee conservation in Sub-Saharan Africa and Madagascar: diversity, status and threats* Connal D. Eardley1,MaryGikungu2, Michael P. Schwarz3 1 Agricultural Research Council, Private Bag X134, Queenswood, 0121, Pretoria, South Africa 2 Zoology Department, National Museums of Kenya, PO Box 40658-00100, Nairobi, Kenya 3 School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia Received 14 October 2008 – Revised 2 February 2009 – Accepted 4 February 2009 Abstract – Sub-Saharan Africa and Madagascar contain a wealth of bee diversity, with particularly high levels of endemicity in Madagascar.
    [Show full text]