The Future of Astronomy with Small Satellites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HD 97658 and Its Super-Earth Spitzer & MOST Transit Analysis and Seismic Modeling of the Host Star
The space photometry revolution CoRoT3-KASC7 joint meeting HD 97658 and its super-Earth Spitzer & MOST transit analysis and seismic modeling of the host star Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge), D. Dragomir (UC Santa Barbara), and the Spitzer team 1. Introducing HD 97658 and its super-Earth The second brightest star harboring a transiting super-Earth HD 97658 (V=7.7, K=5.7) HD 97658 b, a transiting super-Earth • • Teff = 5170 ± 50 K (Howard et al. 2011) Discovery by Howard et al. (2011) from Keck- Hires RVs: • [Fe/H] = -0.23 ± 0.03 ~ Z - M sin i = 8.2 ± 1.2 M • d = 21.11 ± 0.33 pc ; from Hipparcos P earth - P = 9.494 ± 0.005 d (Van Leeuwen 2007) orb • Transits discovered by Dragomir et al. (2013) with MOST: RP = 2.34 ± 0.18 Rearth From Howard et al. (2011) From Dragomir et al. (2013) Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 2 2. Modeling the host star HD 97658 Rp α R* 2/3 Mp α M* Radial velocities Transits + the age of the star is the best proxy for the age of its planets (Sun: 4.57 Gyr, Earth: 4.54 Gyr) • With Asteroseismology: T. Campante, V. Van Eylen’s talks • Without Asteroseismology: stellar evolution modeling Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 3 2. Modeling the host star HD 97658 • d = 21.11 ± 0.33 pc, V = 7.7 L* = 0.355 ± 0.018 Lsun • +Teff from spectroscopy: R* = 0.74 ± 0.03 Rsun • Stellar evolution code CLES (Scuflaire et al. -
Epo in a Multinational Context
→EPO IN A MULTINATIONAL CONTEXT Heidelberg, June 2013 ESA FACTS AND FIGURES • Over 40 years of experience • 20 Member States • Six establishments in Europe, about 2200 staff • 4 billion Euro budget (2013) • Over 70 satellites designed, tested and operated in flight • 17 scientific satellites in operation • Six types of launcher developed • Celebrated the 200th launch of Ariane in February 2011 2 ACTIVITIES ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. • Space science • Navigation • Human spaceflight • Telecommunications • Exploration • Technology • Earth observation • Operations • Launchers 3 →SCIENCE & ROBOTIC EXPLORATION TODAY’S SCIENCE MISSIONS (1) • XMM-Newton (1999– ) X-ray telescope • Cluster (2000– ) four spacecraft studying the solar wind • Integral (2002– ) observing objects in gamma and X-rays • Hubble (1990– ) orbiting observatory for ultraviolet, visible and infrared astronomy (with NASA) • SOHO (1995– ) studying our Sun and its environment (with NASA) 5 TODAY’S SCIENCE MISSIONS (2) • Mars Express (2003– ) studying Mars, its moons and atmosphere from orbit • Rosetta (2004– ) the first long-term mission to study and land on a comet • Venus Express (2005– ) studying Venus and its atmosphere from orbit • Herschel (2009– ) far-infrared and submillimetre wavelength observatory • Planck (2009– ) studying relic radiation from the Big Bang 6 UPCOMING MISSIONS (1) • Gaia (2013) mapping a thousand million stars in our galaxy • LISA Pathfinder (2015) testing technologies -
Uv Astronomy with Small Satellites
UV ASTRONOMY WITH SMALL SATELLITES Pol Ribes-Pleguezuelo(1), Fanny Keller(1), Matteo Taccola(1) (1) ESA-ESTEC, Keplerlaan 1, 2201AZ Noordwijk, Netherlands, [email protected], [email protected], [email protected] ABSTRACT Small satellite platforms with high performance avionics are becoming more affordable. So far, with a few exceptions, small satellites have been mainly dedicated to earth observation. However, astronomy is a fascinating field with a history of large missions and a future of promising large mission candidates. This prompts many questions; can the recent affordability of small satellites change the landscape of space astronomy? What are the potential applications and scientific topics of interest, where small satellites could be instrumental for astronomy? What are the requirements and objectives that need to be fulfilled to successfully address the astronomical investigations of interest? Which kind of instrumentation suits the small platforms and the scientific use cases best? This paper discusses possible scientific use cases that can be achievable with a relatively small telescope aperture of 36 cm, as an example. The result of this survey points to a specific niche market -astronomy observation in the UV spectral range. UV astronomy is a research field which has had valuable scientific impact. It is, however, not the focus of many current or past astronomical investigations. UV astronomy measurements cannot be made from earth, due to atmospheric absorption in this spectral range. Only a few current space missions, such as the Hubble and Gaia, cover the UV spectral range, some of them only in the near-UV (NUV). The research field is currently sparsely addressed but of scientific interest for a large community. -
Echo Exoplanet Characterisation Observatory
Exp Astron (2012) 34:311–353 DOI 10.1007/s10686-012-9303-4 ORIGINAL ARTICLE EChO Exoplanet characterisation observatory G. Tinetti · J. P. Beaulieu · T. Henning · M. Meyer · G. Micela · I. Ribas · D. Stam · M. Swain · O. Krause · M. Ollivier · E. Pace · B. Swinyard · A. Aylward · R. van Boekel · A. Coradini · T. Encrenaz · I. Snellen · M. R. Zapatero-Osorio · J. Bouwman · J. Y-K. Cho · V. Coudé du Foresto · T. Guillot · M. Lopez-Morales · I. Mueller-Wodarg · E. Palle · F. Selsis · A. Sozzetti · P. A. R. Ade · N. Achilleos · A. Adriani · C. B. Agnor · C. Afonso · C. Allende Prieto · G. Bakos · R. J. Barber · M. Barlow · V. Batista · P. Bernath · B. Bézard · P. Bordé · L. R. Brown · A. Cassan · C. Cavarroc · A. Ciaravella · C. Cockell · A. Coustenis · C. Danielski · L. Decin · R. De Kok · O. Demangeon · P. Deroo · P. Doel · P. Drossart · L. N. Fletcher · M. Focardi · F. Forget · S. Fossey · P. Fouqué · J. Frith · M. Galand · P. Gaulme · J. I. González Hernández · O. Grasset · D. Grassi · J. L. Grenfell · M. J. Griffin · C. A. Griffith · U. Grözinger · M. Guedel · P. Guio · O. Hainaut · R. Hargreaves · P. H. Hauschildt · K. Heng · D. Heyrovsky · R. Hueso · P. Irwin · L. Kaltenegger · P. Kervella · D. Kipping · T. T. Koskinen · G. Kovács · A. La Barbera · H. Lammer · E. Lellouch · G. Leto · M. A. Lopez Valverde · M. Lopez-Puertas · C. Lovis · A. Maggio · J. P. Maillard · J. Maldonado Prado · J. B. Marquette · F. J. Martin-Torres · P. Maxted · S. Miller · S. Molinari · D. Montes · A. Moro-Martin · J. I. Moses · O. Mousis · N. Nguyen Tuong · R. -
What Is CHEOPS?
Swiss and ESA satellite CHEOPS launching soon! CHEOPS will be launching into space on the 17th of December! You may be wondering: what is CHEOPS? CHEOPS stands for CHaracterising ExOPlanet Satellite. Its goal is to study transits of already-known exoplanets to gain more knowledge about them. What type of information are we looking for? Scientists want to know detailed information about planets outside our Solar System, such as the mass, planet size, and density, which will in turn help to figure out the composition of these exoplanets. Studying exoplanet composition and their atmospheres is important especially for astrobiology. A planet’s chemical composition can affect its habitability for life as we know it. Scientists usually look for biosignatures such as the presence of methane or oxygen in the planet’s atmosphere, which could indicate presence of past or present life. Artist’s impression of CHEOPS. Credits: ESA / ATG medialab. The major contributors CHEOPS is a collaboration between ESA and the Swiss Space Office. The mission was proposed and is now headed by Prof. Willy Benz, from the University of Bern, which houses the mission’s consortium. The science operations consortium is at the University of Geneva, where they have many collaborators, such as the Swiss Space Center at EPFL. As it is an ESA endeavour, many other European institutions are also contributing to the mission. For example, the mission operations consortium is located in Torrejón de Ardoz, Spain. The launch The satellite has already been shipped to Kourou, French Guiana, where it will be launched by the ESA spaceport. -
Cheops Cheops
cheops cheops Assemble your own planet watcher Paper Model Scale 1:15 About CHEOPS The CHaracterising ExOPlanet Satellite, or CHEOPS, is a space science mission dedicated to the study of known exoplanets orbiting bright, nearby stars. It will use the technique of ultra-high precision photometry to measure accurate sizes of a large sample of Earth to Neptune-sized planets. By combining the accurate sizes determined by CHEOPS with existing mass measurements, it will be possible to establish the bulk density and composition of the planets; these, together with information on the host stars and the planets’ orbits will be used to determine the planets' formation and evolutionary history. CHEOPS is a small satellite with a total launch mass of approximately 300 kg and dimensions of 1.55m (height) x 1.49m (width, measured from solar array edge to edge) x 1.4m (depth). The dark colours used in this paper model are representative of the true colours of the various spacecraft components. CHEOPS is a partnership between the European Space Agency (ESA) and Switzerland. REQUIRES: SCISSORS AND GLUE. 1. Assemble the Platform Body a) Cut out all the pieces for the Platform Body. b) Assemble the Platform Body (page 6), folding the side panels and gluing them via their tabs. Close the Platform Body by folding and gluing the top side of the platform. c) Fold the Satellite Interface Ring (page 7) along the length and fold the tabs at 90°. Bend the paper strip in a circle and close it via the gluing tab. d) Position the Satellite Interface Ring on the bottom side of the Platform Body and glue it with the tabs in the indicated position. -
Cosmic Vision and Other Missions for Space Science in Europe 2015-2035
Cosmic Vision and other missions for Space Science in Europe 2015-2035 Athena Coustenis LESIA, Observatoire de Paris-Meudon Chair of the Solar System and Exploration Working Group of ESA Member of the Space Sciences Advisory Committee of ESA Cosmic Vision 2015 - 2025 The call The call for proposals for Cosmic Vision missions was issued in March 2007. This call was intended to find candidates for two medium-sized missions (M1, M2 class, launch around 2017) and one large mission (L1 class, launch around 2020). Fifty mission concept proposals were received in response to the first call. From these, five M-class and three L- class missions were selected by the SPC in October 2007 for assessment or feasibility studies. In July 2010, another call was issued, for a medium-size (M3) mission opportunity for a launch in 2022. Also about 50 proposals were received for M3 and 4 concepts were selected for further study. Folie Cosmic Vision 2015 - 2025 The COSMIC VISION “Grand Themes” 1. What are the conditions for planetary formation and the emergence of life ? 2. How does the Solar System work? 3. What are the physical fundamental laws of the Universe? 4. How did the Universe originate and what is it made of? 4 COSMIC VISION (2015-2025) Step 1 Proposal selection for assessment phase in October 2007 . 3 M missions concepts: Euclid, PLATO, Solar Orbiter . 3 L mission concepts: X-ray astronomy, Jupiter system science, gravitational wave observatory . 1 MoO being considered: European participation to SPICA Selection of Solar Orbiter as M1 and Euclid JUICE as M2 in 2011. -
The Atacama Pathfinder Experiment — Reaching New Heights in Submillimetre Astronomy
The Atacama Pathfinder Experiment — Reaching New Heights in Submillimetre Astronomy European Southern Observatory APEX on watch at Chajnantor. Credit: ESO/B. Tafreshi (twanight.org) The Atacama Pathfinder Experiment — Reaching New Heights in Submillimetre Astronomy ESO operates the Atacama Pathfinder “thermometers” known as bolometers submillimeter Array, a revolutionary new Experiment telescope, APEX, at one of to detect submillimetre light. In order to telescope that ESO, together with its the highest observatory sites on Earth, at be able to detect the tiny temperature international partners, is now operating an elevation of 5100 metres, high on the changes caused by the faint submillimetre on the Chajnantor Plateau. APEX is based Chajnantor Plateau in Chile’s Atacama radiation, each of these thermometers on a prototype antenna constructed for region. is cooled to less than 0.3 degrees above the ALMA project, and it will find many absolute zero — a frigid –272.85 °C. targets that ALMA will be able to study in APEX is a 12-metre diameter telescope, LABOCA’s high sensi tivity, together with great detail. operating at millimetre and submillimetre its wide field of view (one third of the wavelengths — between infrared light diameter of the full Moon), make it an APEX is a collaboration between the and radio waves. Submillimetre astronomy invaluable tool for imaging the submilli- Max Planck Institute for Radio Astronomy, opens a window into the cold, dusty metre Universe. the Onsala Space Observatory and ESO. and distant Universe, but the faint signals The telescope is operated by ESO. from space are heavily absorbed by APEX was developed as a pathfinder for water vapour in the Earth’s atmosphere. -
Site Testing for Submillimetre Astronomy at Dome C, Antarctica
A&A 535, A112 (2011) Astronomy DOI: 10.1051/0004-6361/201117345 & c ESO 2011 Astrophysics Site testing for submillimetre astronomy at Dome C, Antarctica P. Tremblin1, V. Minier1, N. Schneider1, G. Al. Durand1,M.C.B.Ashley2,J.S.Lawrence2, D. M. Luong-Van2, J. W. V. Storey2,G.An.Durand3,Y.Reinert3, C. Veyssiere3,C.Walter3,P.Ade4,P.G.Calisse4, Z. Challita5,6, E. Fossat6,L.Sabbatini5,7, A. Pellegrini8, P. Ricaud9, and J. Urban10 1 Laboratoire AIM Paris-Saclay (CEA/Irfu, Univ. Paris Diderot, CNRS/INSU), Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France e-mail: [pascal.tremblin;vincent.minier]@cea.fr 2 University of New South Wales, 2052 Sydney, Australia 3 Service d’ingénierie des systèmes, CEA/Irfu, Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France 4 School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK 5 Concordia Station, Dome C, Antarctica 6 Laboratoire Fizeau (Obs. Côte d’Azur, Univ. Nice Sophia Antipolis, CNRS/INSU), Parc Valrose, 06108 Nice, France 7 Departement of Physics, University of Roma Tre, Italy 8 Programma Nazionale Ricerche in Antartide, ENEA, Rome Italy 9 Laboratoire d’Aérologie, UMR 5560 CNRS, Université Paul-Sabatier, 31400 Toulouse, France 10 Chalmers University of Technology, Department of Earth and Space Sciences, 41296 Göteborg, Sweden Received 25 May 2011 / Accepted 17 October 2011 ABSTRACT Aims. Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. -
The Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey
ariel The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey Towards an H-R Diagram for Planets A Candidate for the ESA M4 Mission TABLE OF CONTENTS 1 Executive Summary ....................................................................................................... 1 2 Science Case ................................................................................................................ 3 2.1 The ARIEL Mission as Part of Cosmic Vision .................................................................... 3 2.1.1 Background: highlights & limits of current knowledge of planets ....................................... 3 2.1.2 The way forward: the chemical composition of a large sample of planets .............................. 4 2.1.3 Current observations of exo-atmospheres: strengths & pitfalls .......................................... 4 2.1.4 The way forward: ARIEL ....................................................................................... 5 2.2 Key Science Questions Addressed by Ariel ....................................................................... 6 2.3 Key Q&A about Ariel ................................................................................................. 6 2.4 Assumptions Needed to Achieve the Science Objectives ..................................................... 10 2.4.1 How do we observe exo-atmospheres? ..................................................................... 10 2.4.2 Targets available for ARIEL .................................................................................. -
PLATO Revealing Habitable Worlds Around Solar-Like Stars
ESA-SCI(2017)1 April 2017 PLATO Revealing habitable worlds around solar-like stars Definition Study Report European Space Agency PLATO Definition Study Report page 2 The front page shows an artist’s impression reflecting the diversity of planetary systems and small planets expected to be discovered and characterised by PLATO (©ESA/C. Carreau). PLATO Definition Study Report page 3 PLATO Definition Study – Mission Summary Key scientific Detection of terrestrial exoplanets up to the habitable zone of solar-type stars and goals characterisation of their bulk properties needed to determine their habitability. Characterisation of hundreds of rocky (including Earth twins), icy or giant planets, including the architecture of their planetary system, to fundamentally enhance our understanding of the formation and the evolution of planetary systems. These goals will be achieved through: 1) planet detection and radius determination (3% precision) from photometric transits; 2) determination of planet masses (better than 10% precision) from ground-based radial velocity follow-up, 3) determination of accurate stellar masses, radii, and ages (10% precision) from asteroseismology, and 4) identification of bright targets for atmospheric spectroscopy. Observational Ultra-high precision, long (at least two years), uninterrupted photometric monitoring in the concept visible band of very large samples of bright (V ≤11-13) stars. Primary data High cadence optical light curves of large numbers of bright stars. products Catalogue of confirmed planetary systems fully characterised by combining information from the planetary transits, the seismology of the planet-host stars, and the ground-based follow-up observations. Payload Payload concept • Set of 24 normal cameras organised in 4 groups resulting in many wide-field co-aligned telescopes, each telescope with its own CCD-based focal plane array; • Set of 2 fast cameras for bright stars, colour requirements, and fine guidance and navigation. -
Lessons from COROT, M. Ollivier
CoRoT&in&Brief& • «&Small&»&CNES&Mission&+&Belgium&+&Germany&+& Austria&+&Spain&+&Brasil+&ESA& Lessons&from&CoRoT& • 3rd&PROTEUS&mission&(minisat)& Marc&Ollivier& • DouBle&program&:&asteroseismology&and&search&for& Ins5tut&d’Astrophysique&Spa5ale&d’Orsay& planetary&transits& • Launch&:&27&Dec&2006&:&Soyouz&Starsem&2B&from& LESIA&–&OBservatoire&de&Paris& Baïkonour& & • Circular&polar&orbit&at&896&km&& & • Loss&of&detec5on&chain&2&in&March&2009& • Loss&of&detec5on&chain&1&in&Nov&2012& & • End&of&the&mission&june&2013& • End&of&opera5ons&june&2014& CHEOPS&Workshop&_&Madrid&_&18&june&2015& 2& The&CoRoT&oBservatory& The&CoRoT&satellite& CHEOPS&Workshop&_&Madrid&_&18&june&2015& 3& CHEOPS&Workshop&_&Madrid&_&18&june&2015& 4& &&&&&The&focal&plane& CoRoT&:&OBserva5on&and&orBital& constraints& 1.3 ° secondary targets (≤ 9) * * • faint stars (11-16) main target (≤ 6) * • • * * 12000 targets 10 targets! sampling 8.5 min sampling 1 s * (32 s.) to 32s * • * * • * field of view Seismology field Exoplanet field highly defocussed On focus + bi-prism CHEOPS&Workshop&_&Madrid&_&18&june&2015& 6& CHEOPS&Workshop&_&Madrid&_&18&june&2015& 5& Modeling&of&op5cal&chain& 1st&lesson&:&it&is&necessary&to& understand&as&much&as&possiBle& how&the&instrument&works&and& responds& CHEOPS&Workshop&_&Madrid&_&18&june&2015& 7& CHEOPS&Workshop&_&Madrid&_&18&june&2015& 8& Modeling&of&op5cal&chain& PSFs&Huygens&at&INFA2&point& Measured&PSFs& Computed&PSFs& Defoc¶bole&=& 0mm& Defoc¶bole&=& +10mm& CHEOPS&Workshop&_&Madrid&_&18&june&2015& 9& CHEOPS&Workshop&_&Madrid&_&18&june&2015&