Essor Mayer Humi, Advisor Project Number: MH-0140

Total Page:16

File Type:pdf, Size:1020Kb

Essor Mayer Humi, Advisor Project Number: MH-0140 URN: 02D1071 Project Number: MH-0140- HUMANITY AND SPACE An Interactive Qualifying Project Report submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Victoria Chaplick 6vCjek Berlinda Fernan ez Nathaniel Godin Ian Walton Date: April 26, 2002 essor Mayer Humi, Advisor Table of Contents Abstract 4 Executive Summary 5 Introduction 6 1.2 Motivations for and Dangers of Space Travel 16 1.3 Additional Considerations 26 1.3.1 Humanity's Needs in Space 27 1.3.2 The Possibility of Alien Life Forms 30 1.4 Destinations for Space Colonization 34 1.4.1 Space Station Colonization 34 1.4.2 Safety Concerns for Permanently Inhabited Space Stations 35 1.4.3 Economic Possibilities and Social Situations in Space Stations 36 1.4.4 Lunar Colonization 39 1.4.5 Asteroid Colonization 42 1.4.6 Martian Colonization 47 2.1 Stages for the Colonization of Mars 49 2.1.1 Scientific Research 50 2.1.2 Human Exploration and Colonization of Mars 52 2.1.3 Commercialization of Mars 53 2.1.4 Terraforming Mars 54 2.2 The Pros and Cons of Colonizing Mars 55 2.2.1 The Technological and Scientific Benefits of Colonizing Mars 56 2.2.2 The Case Against Colonizing Mars 60 2.3 Historical and Legal Aspects of Colonization 64 2.3.1 Historical Analogies 64 2.3.2 Legal Aspects of Mars Colonization 67 2.4 NASA's Current Preparations for a Mission to Mars 70 2.4.1 Proposed Plans for a Manned Mission to Mars 71 2.4.2 Mars Direct Mission Plan 72 2.4.3 Mars Semi-Direct Mission Plan 74 2.4.4 Transportation to Mars 75 2.4.5 Radiation Hazards of Interplanetary Space Travel 86 2.4.6 Dangers from Martian Dust Storms 89 2.4.7 The Existence of Water on Mars 91 2.5 Biological Considerations for Colonization 93 2.5.1 Physical Effects of Reduced Gravity 93 2.5.2 Physical Effects of Radiation 98 2.5.3 Mental Health 100 2.6 Making Mars Fit for Human Habitation 103 2.6.1 Considerations for Shelter Upon Mars 104 2.6.2 Terraforming Mars 108 2.6.3 Suitable Plant Life for a Terraformed Mars 112 Conclusion and Recommendations 115 2 Bibliography 119 Section 1.1 119 Section 1.2 120 Section 1.3 121 Section 1.4 121 Section 2.1 123 Section 2.2 123 Section 2.3 124 Section 2.4 125 Section 2.5 126 Section 2.6 127 Conclusion 128 Appendices 129 Appendix A: Known Meteor Craters vs The Geologic Time Scale 129 Appendix B: Distribution of Asteroids 133 Appendix C: Probability of a Meteor Impact 134 Appendix D: Pictures of Recent Impact Sites 135 Appendix E: Tunguska: The Cosmic Mystery of the Century 136 Appendix F: Solar Output Models 140 Appendix G: Recent Temperature Trends 143 Appendix H: The Aurora 144 Appendix I: Devon Island 145 Appendix J: Haughton Crater Field Report 148 Appendix L: Threshold Effects of Prompt Radiation Doses 171 3 Abstract This project examined the perennial desire of humanity to travel through and colonize space. We explored the obstacles that must be overcome and research that has to be performed in order to attain this goal. In particular, a blueprint for establishing a colony on Mars has been developed. Using our findings, it is conceivable for humanity to establish its first colony on Mars within 50 years. We have made recommendations regarding policies and research into space exploration. 4 Executive Summary The goal of this paper is to explore the possibilities that exist for human colonization of outer space over the next one hundred years. To begin with, the potential worth of space colonization and the motivations behind such are examined. Following that, potential locations for colonization are discussed and contrasted. The details behind actual colonization are then evaluated, wherein the specific obstacles to this project are outlined and potential solutions are offered. Throughout the course of this paper, it is shown that there are many potential benefits to colonizing space, among them a wealth of scientific and applied knowledge, a unifying goal for the people of the world to rally around, and the advancement of the human species as a whole through further adaptation to the universe around us. It is also asserted that Mars is the best available location for a human settlement off of the planet Earth, due to its relative proximity to this planet and its close approximation of the conditions that humans have evolved to live in when compared to the other potential locations. Although space stations and the Moon could have value as way stations and asteroids could be mined for valuable minerals in support of an outer space colony, Mars is by far the preferable location for the colony itself. If the people of Earth wish to colonize Mars within a reasonable time frame, an organized plan must be followed. It is suggested in this paper that the project be split into four main phases. The first phase, which is already under way, would involve research varying from radiation shielding for space shuttles to the effects of a low gravity environment upon various organisms to initial surveys of Mars by non-manned probes sent to locate ideal landing sites and possible sources of water. It is estimated that this phase could be completed in a fully satisfactory manner within a few decades. The second phase would involve manned exploration of the surface of the planet Mars in order to prepare for the eventual construction of a permanent colony. The next phase would call for the start of a colony of limited size. Finally, long-term preparations for the eventual prosperity of the colony would need to be addressed, including economic independence from Earth, a permanent governmental system, and the process of terraforming the planet into a more habitable land. 5 Introduction When we look up at the stars in the night sky, we know a good amount about what we are looking at due to modern technology. However, there were many generations who didn't yet have the precious knowledge that we have today. Even without that knowledge, our ancestors developed their own ideas and theories to explain the mysteries of the heavens. It is believed now that astronomy is the oldest science in existence. Many different cultures, including the Greeks, Babylonians, Chinese, Egyptians, Celts, Aztecs and Mayans all devised theories simply by looking at the stars. The ancient Greeks studied the sky by creating constellations. They paid close attention to the stars and noticed that several stars appeared to move, and would show up and disappear at various times of the year. They named these stars "wandering stars," or planets, and these planets were named after their Gods. These five planets that can be identified without a telescope are: Mercury, Venus, Jupiter, Mars and Saturn. The Greeks also believed that the God Helios drove a chariot across the sky, what we now call the Sun (Seimens). Ptolemy added his ideas to Aristotle's ideas to come up with the "Geocentric" theory, which is a theory that claimed that the Earth was the center of the universe and that everything else revolved around it. This theory maintained that the sky was a crystal sphere and that as the sphere turned, so did the stars in it (Seimens). Stonehenge is thought to be an intricate calendar that used the stars as a guide. Current estimates list its creation as some time between the years 3000 B.C. and 1500 B.C. By 1200 B.C. the Chinese astrologers had a calendar worked out that had 365.25 days per year, the same that we follow today. The Babylonians created a calendar that was based on the phases of the moon, and they also created the sundial. "The Egyptian calendar was based upon the times when the star, Sirius and the constellation of Osirus (we call it Orion) came into view. Because the earth revolves around the sun, these stars were out of view for about 70 days. They came back into view just before the Nile flooded. The ancient Egyptians believed that [the sun was]... the red disk born from Nut (the god of the sky) and traveled along the length of her body then was swallowed in the evening. The empty sun returned beneath her body at night to begin the cycle again the next morning" (Seimens). 6 Time Line 15,000 B.C.- Humans in the Ice Age start to track the number of moons by scratching marks into bones. 1500B.C.- Stonehenge was built outside of Salisbury, England. It was used to track the movement of the sun and mark the solstice. Only seven stones still stand today. This photo shows it as it would have stood when it was built. Stonehenge, 1500 B.C. (Copyright by Aardvark Communications. All rights reserved) Stonehenge, 1996 A.D. (Copyright © 1996 by Bradley Keyes. All rights reserved) 7 1200-1000 BC- Babylonians study 'astrology,' the belief that people's lives were influenced by the stars. They invented the 12 signs that are still used today. Around the same time, the Greeks name most of the stars and the constellations (Hercules, Perseus, Cassiopea and Cygnus). They also name the "the wandering stars". We now know these wandering stars as planets. The Greeks named these after their gods, Mercury, Venus, Mars & Jupiter. 332 B.C.- Alexander the Great builds a great museum-library-observatory at the mouth of the Nile in Alexandra.
Recommended publications
  • (Uth)He Age for the Shallowmarine Wetumpka Impact Structure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OceanRep Meteoritics & Planetary Science 47, Nr 8, 1243–1255 (2012) doi: 10.1111/j.1945-5100.2012.01381.x An (U-Th)⁄He age for the shallow-marine Wetumpka impact structure, Alabama, USA Jo-Anne WARTHO1*, Matthijs C. van SOEST1, David T. KING, Jr.2, and Lucille W. PETRUNY2 1School of Earth and Space Exploration, Arizona State University, PO Box 876004, Tempe, Arizona 85287, USA 2Geology Office, Auburn University, Auburn, Alabama 36849, USA *Corresponding author. E-mail: [email protected] (Received 12 January 2012; revision accepted 27 May 2012) Abstract–Single crystal (U-Th) ⁄ He dating was applied to 24 apatite and 23 zircon grains from the Wetumpka impact structure, Alabama, USA. This small approximately 5–7.6 km impact crater was formed in a shallow marine environment, with no known preserved impact melt, thus offering a challenge to common geochronological techniques. A mean (U-Th) ⁄ He apatite and zircon age of 84.4 ± 1.4 Ma (2r) was obtained, which is within error of the previously estimated Late Cretaceous impact age of approximately 83.5 Ma. In addition, helium diffusion modeling of apatite and zircon grains during fireball ⁄ contact, shock metamorphism, and hydrothermal events was undertaken, to show the influence of these individual thermal processes on resetting (U-Th) ⁄ He ages in the Wetumpka samples. This study has shown that the (U-Th) ⁄ He geochronological technique has real potential for dating impact structures, especially smaller and eroded impact structures that lack impact melt lithologies.
    [Show full text]
  • U.S. Postal Service Salutes Legendary Author Celebrating 100Th Anniversary of Edgar Rice Burroughs’ Creation of Tarzan
    FOR IMMEDIATE RELEASE National Contact: Roy Betts August 16, 2012 [email protected] 202-268-3207 Local Contact: Richard Maher [email protected] 714-662-6350 usps.com/news Release No. 12-094 U.S. Postal Service Salutes Legendary Author Celebrating 100th anniversary of Edgar Rice Burroughs’ Creation of Tarzan To obtain a high-resolution image of the stamp for media use only, email [email protected]. TARZANA, CA — The U.S. Postal Service will honor tomorrow one of the most prolific authors of the early 20th century and inventor of the iconic character Tarzan with the issuance of the Edgar Rice Burroughs Forever Stamp. The stamp issuance coincides with the 100th anniversary of the publication of Burroughs’ first story, Under the Moons of Mars, and his first Tarzan story, Tarzan of the Apes, in 1912. The Edgar Rice Burroughs Forever Stamp will be dedicated tomorrow at 11:30 a.m. PT at the Tarzana Community and Cultural Center in Tarzana, CA, and will go on sale tomorrow at Post Offices nationwide, online at usps.com and by phone at 800-782-6724. Best known for inventing the legendary character Tarzan, Burroughs wrote more than 70 books, including historical fiction and several popular series of science fiction tales. “At the Postal Service, we’re proud to honor wonderful writers like Mr. Burroughs,” said Giselle Valera, vice president and managing director, Global Business. “These creative geniuses make lasting contributions to our cultural heritage, and we want more Americans to learn about them. Our stamp featuring Mr.
    [Show full text]
  • General Vertical Files Anderson Reading Room Center for Southwest Research Zimmerman Library
    “A” – biographical Abiquiu, NM GUIDE TO THE GENERAL VERTICAL FILES ANDERSON READING ROOM CENTER FOR SOUTHWEST RESEARCH ZIMMERMAN LIBRARY (See UNM Archives Vertical Files http://rmoa.unm.edu/docviewer.php?docId=nmuunmverticalfiles.xml) FOLDER HEADINGS “A” – biographical Alpha folders contain clippings about various misc. individuals, artists, writers, etc, whose names begin with “A.” Alpha folders exist for most letters of the alphabet. Abbey, Edward – author Abeita, Jim – artist – Navajo Abell, Bertha M. – first Anglo born near Albuquerque Abeyta / Abeita – biographical information of people with this surname Abeyta, Tony – painter - Navajo Abiquiu, NM – General – Catholic – Christ in the Desert Monastery – Dam and Reservoir Abo Pass - history. See also Salinas National Monument Abousleman – biographical information of people with this surname Afghanistan War – NM – See also Iraq War Abousleman – biographical information of people with this surname Abrams, Jonathan – art collector Abreu, Margaret Silva – author: Hispanic, folklore, foods Abruzzo, Ben – balloonist. See also Ballooning, Albuquerque Balloon Fiesta Acequias – ditches (canoas, ground wáter, surface wáter, puming, water rights (See also Land Grants; Rio Grande Valley; Water; and Santa Fe - Acequia Madre) Acequias – Albuquerque, map 2005-2006 – ditch system in city Acequias – Colorado (San Luis) Ackerman, Mae N. – Masonic leader Acoma Pueblo - Sky City. See also Indian gaming. See also Pueblos – General; and Onate, Juan de Acuff, Mark – newspaper editor – NM Independent and
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Acadia Geology Alumni/Ae Newsletter
    Acadia Geology Alumni/ae Newsletter Issue 21 December, 2009 Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia, B4P 2R6 [email protected] VIEW FROM ACADIA As I write this message, my term as the “acting head” course, it costs less to deliver. Another aspect of of Earth and Environmental Science is rapidly budgetary constraints is a lack of replacements for drawing to a close. Rob Raeside returns as head faculty on sabbatical. In the “good old days” such beginning Jan. 1, 2010, and it is probably a “toss-up” absences were typically covered by a full-time faculty as to which one of us is happier about that! To be replacement, but now we are lucky to receive one honest, however, I found many aspects of being “per-course replacement”. Such replacements have department head to be rewarding, and if we did not been great but they are paid specifically to teach the have a capable and willing incumbent returning to the single course assigned to them, and hence do not job, continuing in the role would have been OK. provide any coverage for other activities integral to running a department, such as counselling students, The past year at Acadia has more than lived up to the supervising honours and special project students, supposed ancient Chinese curse “may you live in serving on committees, and so on. This ripple-down interesting times”. The main topic occupying effect hits especially hard in a small department such everyone’s mind on campus has been the university as ours. Fortunately, faculty in E&ES have been budget.
    [Show full text]
  • Australian Aborigines and Meteorites
    Records of the Western Australian Museum 18: 93-101 (1996). Australian Aborigines and meteorites A.W.R. Bevan! and P. Bindon2 1Department of Earth and Planetary Sciences, 2 Department of Anthropology, Western Australian Museum, Francis Street, Perth, Western Australia 6000 Abstract - Numerous mythological references to meteoritic events by Aboriginal people in Australia contrast with the scant physical evidence of their interaction with meteoritic materials. Possible reasons for this are the unsuitability of some meteorites for tool making and the apparent inability of early Aborigines to work metallic materials. However, there is a strong possibility that Aborigines witnessed one or more of the several recent « 5000 yrs BP) meteorite impact events in Australia. Evidence for Aboriginal use of meteorites and the recognition of meteoritic events is critically evaluated. INTRODUCTION Australia, although for climatic and physiographic The ceremonial and practical significance of reasons they are rarely found in tropical Australia. Australian tektites (australites) in Aboriginal life is The history of the recovery of meteorites in extensively documented (Baker 1957 and Australia has been reviewed by Bevan (1992). references therein; Edwards 1966). However, Within the continent there are two significant areas despite abundant evidence throughout the world for the recovery of meteorites: the Nullarbor that many other ancient civilizations recognised, Region, and the area around the Menindee Lakes utilized and even revered meteorites (particularly of western New South Wales. These accumulations meteoritic iron) (e.g., see Buchwald 1975 and have resulted from prolonged aridity that has references therein), there is very little physical or allowed the preservation of meteorites for documentary evidence of Aboriginal acknowledge­ thousands of years after their fall, and the large ment or use of meteoritic materials.
    [Show full text]
  • Raman Spectroscopy of Shocked Gypsum from a Meteorite Impact Crater
    International Journal of Astrobiology 16 (3): 286–292 (2017) doi:10.1017/S1473550416000367 © Cambridge University Press 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Raman spectroscopy of shocked gypsum from a meteorite impact crater Connor Brolly, John Parnell and Stephen Bowden Department of Geology & Petroleum Geology, University of Aberdeen, Meston Building, Aberdeen, UK e-mail: c.brolly@ abdn.ac.uk Abstract: Impact craters and associated hydrothermal systems are regarded as sites within which life could originate onEarth,and onMars.The Haughtonimpactcrater,one ofthemost well preservedcratersonEarth,is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basementrocks, which havebeenshocked,aremoreabundantinendolithicorganisms,whencomparedwithun- shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopyand resultsshow nosignificant statistical difference between gypsumthat has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This showsthat Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.
    [Show full text]
  • Mars Exploration Rovers: 4 Years on Mars
    https://ntrs.nasa.gov/search.jsp?R=20080047431 2019-10-28T16:17:34+00:00Z Mars Exploration Rovers: 4 Years on Mars Geoffrey A. Landis This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond. Four Years on Mars: the Mars Exploration Rovers Geoffrey A. Landis NASA John Glenn Research Center http://www.sff.net/people/geoffrey.landis Presentation at MIT Department of Aeronautics and Astronautics, January 18, 2008 Exploration - Landis Mars viewed from the Hubble Space Telescope Exploration - Landis Views of Mars in the early 20th century Lowell 1908 Sciaparelli 1888 Burroughs 1912 (cover painting by Frazetta) Tales of Outer Space ed. Donald A. Wollheim, Ace D-73, 1954 (From Winchell Chung's web page projectrho.com) Exploration - Landis Past Missions to Mars: first close up images of Mars from Mariner 4 Mariner 4 discovered Mars was a barren, moon-like desert Exploration - Landis Viking 1976 Signs of past water on Mars? orbiter Photo from orbit by the 1976 Viking orbiter Exploration - Landis Pathfinder and Sojourner Rover: a solar-powered mission
    [Show full text]
  • A Novel Geomatics Method for Assessing the Haughton Impact Structure
    Meteoritics & Planetary Science 1–13 (2020) doi: 10.1111/maps.13573-3267 Electronic-Only Article A novel geomatics method for assessing the Haughton impact structure Calder W. PATTERSON * and Richard E. ERNST Department of Earth Sciences, Ottawa Carleton Geoscience Center, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada *Corresponding author. E-mail: [email protected] (Received 22 July 2019; revision accepted 22 August 2020) Abstract–Terrestrial impact structures are typically modified by erosion, burial, and tectonic deformation. Their systematic morphologies are typically reconstructed through a combination of geological and topographic mapping, satellite imagery, and geophysical surveys. This study applies a novel geomatics approach to assessment of the morphology of the extensively studied Haughton impact structure (HIS), Devon Island, Nunavut, in order to test its potential to improve the accuracy and quality of future impact structure reconstruction. This new methodology integrates HIS lithological data, in the form of digitized geologic mapping, with a digital elevation model, within diametrically opposed, wedge-shaped couplets, and plots these data as pseudo cross sections that capitalize on the radial symmetry of the impact structure. The pseudo cross sections provide an accurate reconstruction of the near- surface stratigraphic sequences and terraces in the faulted annulus of the modified crater rim. The resultant pseudo cross sections support current interpretations regarding the 10–12 km diameter of the transient cavity, and successfully reproduce the visible outer ring and intermediate uplifted zone within the central basin. Observed positions of vertical offsets suggest that the extent of impact deformation extends beyond the current estimates of the apparent crater rim to radial distances of between 14 and 15 km.
    [Show full text]
  • Persevering with Our Martian Fantasies Unresolved Questions and the Hope of fiNding Life on the Planet Have Intrigued Experts for Decades
    Persevering with our Martian fantasies Unresolved questions and the hope of finding life on the planet have intrigued experts for decades er will roam around this crater and sample carbonate rocks that might host algal mats called stromatolites, as we find in the oldest carbonate rocks on Earth. C.P. Rajendran Still a mystery But as a geologist, I will remain scep- tical until I see some hard evidence The recent NASA mission of putting on biogenic remains. My concern is its latest rover, Perseverance, on not about the existence of the origi- Mars — a breathtaking technological nal conducive conditions for the mi- feat — has once again ignited our Mar- crobial forms of life to thrive, some tian fantasies and the fascination four billion years ago. It may have with discovering alien life forms. In- New horizons: A section of a composite image taken by the Perseverance rover been a reality. My concern would be grained in our minds is the idea that shows the rim of the Jezero crater. * AP the complex factors that control the Mars holds some sort of wherewithal preservation potential of organic in the innumerable crannies within After painstaking telescopic work dence of clays that may have formed matter and other biosignatures in the its rocks to support traces of life. The that was set up on the desert of Ari- after solid rocks were exposed to wa- four-billion to 3.5-billion-year-old question that whether humans will zona, Lowell, after years of observa- ter, as analogous examples of Earth’s phyllosilicate-rich terrain of Mars, be able to make use of even such tion, talked about hundreds of canals rock inventory would testify.
    [Show full text]
  • Nucleic Acid Extraction and Sequencing from Low-Biomass Synthetic Mars Analog Soils for in Situ Life Detection
    bioRxiv preprint doi: https://doi.org/10.1101/358218; this version posted June 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Nucleic acid extraction and sequencing from low-biomass synthetic Mars analog soils for in situ life detection Angel Mojarro1, Julie Hachey2, Ryan Bailey3, Mark Brown3, Robert Doebler3, Gary Ruvkun4, Maria T. Zuber1, and Christopher E. Carr1,4 1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts. 2Readcoor, Cambridge, Massachusetts. 3Claremont Biosolutions, LLC, Upland, California 4Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts. *Address correspondence to: Angel Mojarro Massachusetts Institute of Technology 77 Massachusetts Ave, Room E25-610 Cambridge, MA, 02139 E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/358218; this version posted June 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract: Recent studies regarding the origin of life and Mars-Earth meteorite transfer simulations suggest that biological informational polymers, such as nucleic acids (DNA and RNA), have the potential to provide unambiguous evidence of life on Mars. To this end, we are developing a metagenomics- based life-detection instrument which integrates nucleic acid extraction and nanopore sequencing: The Search for Extra-Terrestrial Genomes (SETG).
    [Show full text]
  • Crater Ice Deposits Near the South Pole of Mars Owen William Westbrook
    Crater Ice Deposits Near the South Pole of Mars by Owen William Westbrook Submitted to the Department of Earth, Atmospheric, and Planetary Sciences in partial fulfillment of the requirements for the degree of Master of Science in Earth and Planetary Sciences at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2009 © Massachusetts Institute of Technology 2009. All rights reserved. A uth or ........................................ Department of Earth, Atmospheric, and Planetary Sciences May 22, 2009 Certified by . Maria T. Zuber E. A. Griswold Professor of Geophysics Thesis Supervisor 6- Accepted by.... ...... ..... ........................................... Daniel Rothman Professor of Geophysics Department of Earth, Atmospheric and Planetary Sciences MASSACHUSETTS INSTWITE OF TECHNOLOGY JUL 2 0 2009 ARCHIES LIBRARIES Crater Ice Deposits Near the South Pole of Mars by Owen William Westbrook Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on May 22, 2009, in partial fulfillment of the requirements for the degree of Master of Science in Earth and Planetary Sciences Abstract Layered deposits atop both Martian poles are thought to preserve a record of past climatic conditions in up to three km of water ice and dust. Just beyond the extent of these south polar layered deposits (SPLD), dozens of impact craters contain large mounds of fill material with distinct similarities to the main layered deposits. Previously identified as outliers of the main SPLD, these deposits could offer clues to the climatic history of the Martian south polar region. We extend previous studies of these features by cataloging all crater deposits found near the south pole and quantifying the physical parameters of both the deposits and their host craters.
    [Show full text]