Does the African Native Host Explain the African Origin of the Parasite? the Maltese Geckobia Estherae N

Total Page:16

File Type:pdf, Size:1020Kb

Does the African Native Host Explain the African Origin of the Parasite? the Maltese Geckobia Estherae N Acarologia 52(4): 353–366 (2012) DOI: 10.1051/acarologia/20122073 DOES THE AFRICAN NATIVE HOST EXPLAIN THE AFRICAN ORIGIN OF THE PARASITE? THE MALTESE GECKOBIA ESTHERAE N. SP. PARASITIC ON TARENTOLA MAURITANICA (ACARI: RAPHIGNATHOIDEA: PTERYGOSOMATIDAE) Michel BERTRAND1, Walter P. PFLIEGLER2 and Arnold SCIBERRAS3 (Received 04 May 2012; accepted 20 August 2012; published online 21 December 2012) 1 UMR5175 CEFE, Université Montpellier 3, Route de Mende, 34199 Montpellier cedex5, France. [email protected] (corresponding author) 2 Department of Genetics and Applied Microbiology, University of Debrecen, Egyetem tér 1., H-4010 Debrecen, Hungary. walterpfl[email protected] 3 Nature Trust (Malta) 133 ‘Arnest‘, Arcade Str, Paola, Malta. [email protected] ABSTRACT — As in other geographic situations, Maltese populations of the common Mediterranean wall gecko, Tarentola mauritanica, were found to be simultaneously infested by two species of geckobians, Geckobia loricata and Geckobia estherae n.sp.. The latter species exhibits modified scale-like setae. The geckobians, protected ventrally by such scale-like setae, are widely distributed: in and around the Mediterranean Basin, these species were described notably on Phyllodactylidae (Tarentola). Most of them belong to the group I defined by Jack (1964) considering the leg chaetotaxy. The distribution of geckobians allied to the new species is discussed and correlated to the most recent knowledge on the genus Tarentola. The host being primarily African, the possible African origin and the dispersion by wall geckoes of these geckobians is discussed. As far as we know, such scaly species are not present in South or North America. The acquisition of this adaptation should therefore date from the early Cenozoic. The authors conclude that new investigations are necessary to examine this hypothesis on the Mediterranean gekkotans. Three identification keys are provided, a general key for the genera, one improved key for the identification of the groups of species of the geckobians, and the third for the described species with scale like setae. KEYWORDS — Geckobia; Pteygosomatidae; Tarentola; Gekkonidae; parasites; host-parasite relationship; adaptation; bio- geography INTRODUCTION With few exceptions, the Pterygosomatidae (of- ten called as "scale mites") are specialist parasites of "Delineating species boundaries is crucial because it reptiles. These blood suckers spend more than 90% is the first step toward discussing broader questions of their lifetime fixed deeply by their chelicerae on on biogeography, ecology, conservation, or evolu- the host’s teguments. If the most primitive genera tion. The gap in communication between differ- are not greatly modified by the parasitic way of life ent disciplines currently related to species recogni- (Pimeliaphilus, Hirstiella and Geckobiella), the others tion is an important but often overlooked problem" have integrated the constraints of life on a type of (Carranza et al. 2002). host and are highly specialized: the diverse Geck- http://www1.montpellier.inra.fr/CBGP/acarologia/ 353 ISSN 0044-586-X (print). ISSN 2107-7207 (electronic) Bertand M. et al. oes are targeted by the genus Geckobia, the Agami- i) Why is it possible that, repeatedly, two so sim- dae by Pterygosoma spp. ilar parasites share the same host? May be In this article, the new Maltese species Gecko- because the parameters of infestation by two bia estherae n. sp. found on the common wall species respectively with normal and scale gecko is described. It was the opportunity to com- like ventral setae differ? This problem was al- plement (and to interrogate on) the larger ques- ready investigated by Girot (1969). tion of the links between the genus Tarentola L., ii) Can we reckon that the presence of highly 1758 and the geckobians in the Mediterranean Re- modified ventral setae reveals a possible com- gion. Recently, the phylogenetic classification of mon origin of the Geckobians exhibiting this Gekkotans integrated new analysis and discrimi- character, at least among the species parasitiz- nates now the Phyllodactylidae (i.e. genera Taren- ing the host Tarentola spp.? tola, Phyllodactylus) from the Gekkonidae (Gamble et al. 2008a, 2010). These two families diverged during the Mesozoic (Vidal and Hedges 2009). The genus MATERIAL AND METHODS Tarentola (around 20 species) belongs to the Phyllo- dactylids. All species are robust, without divided Mites were collected on one male and two females subdigital lamellae, and well-developed claws on (altogether 3 specimens) of the hosts, on the back of the third and fourth digits and, with a unique ex- their heads, with spraying a small amount of sur- ception, have a conservative morphology (Carranza gical spirit onto the geckos body and then remov- et al. 2002). The genus Tarentola sensu stricto is ing mites with a pincer. Some mites were cleared distributed in North Africa, southern Europe, and in lactic acid, and dissection of mouthparts and legs the eastern Canary Islands. The Linnaean species were done. Microscopic observation was helped by "Tarentola mauritanica" can be regarded now as a a microscope Wild Leitz 20 EB, measurements (in complex of species and subspecies with an African µm) were made on pictures taken with calibrated origin (Harris et al. 2004, Jirku et al. 2010); the Motic camera and drawings were made using a parasitic geckobians have been described several camera lucida. Nomenclature follows Jack (1964), decades ago, and by tradition, the two species col- and Bertrand et al. (1999). lected on it are identified as Geckobia latastei Mégnin, The Maltese herpetofauna: The only two Mal- 1878 and G. loricata Berlese, 1892 (Haitlinger 2004, tese geckoes (called "Wizgha" in Maltese language) Willmann 1955). However, new endemic gecko- are Hemidactylus turcicus and the Maltese wall gecko bians were described on neighbor and insular host T. mauritanica. The present herpetofauna list of the species, notably in Canary Islands (Zapatero-Ramos Maltese islands consists of only sixteen species, of et al. 1989). which five are marine turtles. Besides the men- The collect of the new species in Malta is an tioned geckoes, the terrestrial reptile species are original data. It permitted to verify: (i) that two four species of Colubridae, one Chamaeleontidae, geckobian species are hosted, by Tarentola mauri- one Scincidae and one endemic Lacertidae, with tanica in different part of its distribution, (ii) that several subspecies. Two Amphibian species occur, a the two species, as in other situations, differ greatly native frog from the Discoglossidae and one intro- each other, (notably by presence or absence of spe- duced species from the family of Ranidae (Sciber- cial shaped ventral hairs), and (iii) to interrogate on ras, 2007). The only possible hosts are the Phyllo- the correspondence of endemic hosts and the con- dactylidae Tarentola and the Geckonidae Hemidacty- sequences for parasites around the Mediterranean lus. Basin. The host belongs to the genus Tarentola, the Two new questions are expecting answers, con- Mediterranean geckos, widely distributed. It is an secutively to the new data on host’s origin and di- African native genus: "Tarentola is generally very versity: uniform and may have been so for over 10 million 354 Acarologia 52(4): 353–366 (2012) years; this is not due to any overwhelming phylo- the scutum. Three paired lateral scutal setae, placed genetic constraint" (Carranza et al. 2002). Around in rows all along the lateral limit of the scutum, four the Mediterranean Sea, Tarentola is represented by pairs of mediolateral setae and four pairs of setae several species and some subspecies have also been along the concavity of the posterior limit of the scu- described: to date, the nominative subgenus com- tum are present. prises several endemic species: Tarentola mauritanica Dorsal setae, (more than 60 excluding peripheral (Linnaeus, 1758); T. deserti Boulenger, 1891; T. angus- and scutal setae) fairly elongated, are arranged in timentalis Steindachner, 1891; T. boehmei Joger, 1984 files symmetrically on each side of the body with and T. fascicularis Daudin, 1802. a four setae file (each 60 – 75 µm long) in the me- dian part of the dorsum. Medially the anogenital DESCRIPTION fields are visible with three short anal setae (30 – 45 µm) and three longer perigenital setae (75 µm in Geckobia estherae n. sp. length)(Fig. 1d). Parasitic on Maltese wall geckos Tarentola mauritan- Ventral view (Fig. 1b) — Epimeral plates: Coxae ica (Linnaeus, 1758). are developed, gathered in two groups with seta- tion from I to IV: 4(=2-2)-5(=3-2). Anterior epimeral Holotype female. Locus typicus: Wied Encita, plate (coxae I & II): one thin and long setae (coxa near Attard, Malta. The habitat was mostly aban- I) (>40 µm), the external seta shorter, two robust doned farmland surrounded with rubble walls and paraxial stout setae (29 – 32). Posterior epimeral with species among others, Ceratonia siliqua, Opun- plate (coxae III & IV) with five long and large tia ficus-indica, Hedysarum coronarium, Ricinus com- epimeral brush-like setae (>30 µm), subequal in munis, Nicotiana glauca, Arundo donax and Olea euro- length. The anterior and posterior epimeral plates pea. are well separated by striated cuticle bearing two or Deposit: in the Muséum National d’Histoire Na- three robust setae (22 µm). turelle de Paris (MNHN) Collection of Arthropoda. Ventral surface is covered by several differently Holotype: female from sample Sciberras 20.X.2010, shaped types of setae (Figs. 2c, 3): Malta. Paratypes. 4 females in MNHN Paris. No male was found. i) in anterior position, at the same level than the Female — Twelve specimens. Body roughly tri- first pair of coxae and between the right and angular in shape, red colored, wider than long, left coxae and near the posterior end of the in- rather small in size, length and width of animals fracapitulum a row of four robust brush-like preserved in ethanol: 260 – 290 long, 480 – 490 wide. setae, Soft cuticle, covered by long and scarcely dense se- ii) a row of 14 – 18 setae, shorter (20 µm) and tae on the dorsum ranging from 25 µm to 75 – 80 µm briefly ended, and at least some longer setae in length.
Recommended publications
  • Exploring the Host Specificity and Diversity of Haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A
    Tomé et al. Parasites & Vectors (2018) 11:190 https://doi.org/10.1186/s13071-018-2760-5 RESEARCH Open Access Along for the ride or missing it altogether: exploring the host specificity and diversity of haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A. Carretero1, D. James Harris1 and Ana Perera1 Abstract Background: Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. Methods: A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Results: Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges.
    [Show full text]
  • Sceloporus Jarrovii)
    Canadian Journal of Zoology The impact of ectoparasitism on thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) Journal: Canadian Journal of Zoology Manuscript ID cjz-2019-0017.R1 Manuscript Type: Article Date Submitted by the 11-Apr-2019 Author: Complete List of Authors: Johnson, Noah; University of Ottawa, Department of Biology Lymburner, Alannah; University of Ottawa, Biology Blouin-Demers, Gabriel; University of Ottawa, Department of Biology Is your manuscript invited for Draft consideration in a Special Not applicable (regular submission) Issue?: Behavioural fever, Hypothermia, Immune Response, Ectoparasites, Keyword: Ectotherm https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 42 Canadian Journal of Zoology 1 The impact of ectoparasitism on thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) N. Johnson1, A.H. Lymburner2, and G. Blouin-Demers3 1Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Canada Email: [email protected] 2Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Canada Email: [email protected] 3Department of Biology, University of Ottawa,Draft 30 Marie-Curie Private, Ottawa, Canada Email: [email protected] *Corresponding author: Noah Johnson 30 Marie-Curie Private, Ottawa, Canada Phone number: 613-804-2668 E-mail: [email protected] https://mc06.manuscriptcentral.com/cjz-pubs Canadian Journal of Zoology Page 2 of 42 2 N. Johnson, A.H. Lymburner, and G. Blouin-Demers The impact of ectoparasitism on thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) Abstract: Parasites are ubiquitous and can have large impacts on the fitness of their hosts. The effects of ectoparasites on physiology, behaviour, and immune function suggest that they could be part of the factors that impact thermoregulation.
    [Show full text]
  • 21 March 2017 CURRICULUM VITAE Barry M. Oconnor Personal Born
    21 March 2017 CURRICULUM VITAE Barry M. OConnor Personal Born November 9, 1949, Des Moines, Iowa, USA Citizenship: USA. Education Michigan State University, 1967-69. Major: Biology. Iowa State University, 1969-71. B.S. Degree, June, 1971, awarded with Distinction. Major: Zoology; Minors: Botany, Education. Cornell University, 1973-79. Ph.D. Degree, August, 1981. Major Subject: Acarology; Minor Subjects: Insect Taxonomy, Vertebrate Ecology. Professional Employment Research Zoologist, Department of Zoology, University of California, Berkeley, California; October, 1979 - September, 1980. Assistant Professor of Biology/Assistant Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; October, 1980 - December, 1986. Associate Professor of Biology/Associate Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; January, 1987 - April 1999. Professor of Biology/Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; September 1999 - June 2001. Professor of Ecology and Evolutionary Biology/Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; July 2001-present Visiting Professor, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico; January-February, 1985. Visiting Professor, The Acarology Summer Program, Ohio State University, Columbus, Ohio; June-July 1980 - present. Honors, Awards and Fellowships National Merit Scholar, 1967-71. B.S. Degree awarded with Distinction, 1971. National Science Foundation Graduate Fellowship, 1973-76. Cornell University Graduate Fellowship, 1976-77. 2 Tawfik Hawfney Memorial Fellowship, Ohio State University, 1977. Outstanding Teaching Assistant, Cornell University Department of Entomology, 1978. President, Acarological Society of America, 1985. Fellow, The Willi Hennig Society, 1984. Excellence in Education Award, College of Literature, Science and the Arts, University of Michigan, 1995 Keynote Speaker, Acarological Society of Japan, 1999.
    [Show full text]
  • And Harvestmen (Opiliones) from Malta with a Preliminary Checklist of Maltese Arachnida
    89 (2) · August 2017 pp. 85–110 New records of mites (Acari) and harvestmen (Opiliones) from Malta with a preliminary checklist of Maltese Arachnida Walter P. Pfliegler1,*, Axel Schönhofer2, Wojciech Niedbała3, Patrick Vella†, Arnold Sciberras4 and Antoine Vella5 1 Department of Biotechnology and Microbiology, University of Debrecen, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary 2 Johannes Gutenberg Universität Mainz, Institut für Zoologie, Abteilung Evolutionsbiologie, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany 3 Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland 4 Nature Trust Malta, PO Box9, VLT 1000, Valetta Malta 5 74, Buontempo Estate, BZN1135 Balzan, Malta * Corresponding author, e-mail: [email protected] Received 16 March 2017 | Accepted 17 May 2017 Published online at www.soil-organisms.de 1 August 2017 | Printed version 15 August 2017 Abstract We present new faunistic records of mites and harvestmen from the Maltese Archipelago and reviewed available data on the faunistics of the class Arachnida of the Archipelago. Literature records of Arachnids are rather scarce and uncomprehensive and up to date, checklists dealing with them have not been published except for spiders and gall mites. Along with newly recorded families, genera and species, we compiled a preliminary checklist and review of Maltese Arachnida to facilitate faunistic research on these groups. In regard to mites, Geckobia sarahae Bertrand, Pfliegler & Sciberras, 2012 is established as a lapsus calami that refers to G. estherae Bertrand, Pfliegler & Sciberras, 2012. Keywords Mediterranean | endemic | soil fauna | faunistics | distribution | anthropogenic habitat 1. Introduction Selmunett Island, Manoel Island, Ta’ Fra Ben Islet and Cominotto.
    [Show full text]
  • Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites
    A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie 1 A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Christian Bartel, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2016. A summary list of fossil spiders and their relatives. In World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, version 17.5, accessed on {date of access}. Last updated: 09.08.2016 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current World Spider Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the fossil record of spiders – and other arachnids – and numerous new taxa have been described. For an overview see Dunlop & Penney (2012). Spiders remain the single largest fossil group, but our aim here is to offer a summary list of all fossil Chelicerata in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list for Araneae follows the names and sequence of families adopted in the previous Platnick Catalog.
    [Show full text]
  • A New Species of Pit Mite (Trombidiformes: Harpirhynchidae
    & Herpeto gy lo lo gy o : h C Mendoza-Roldan et al., Entomol Ornithol Herpetol it u n r r r e O 2017, 6:3 n , t y Entomology, Ornithology & R g e o l s DOI: 10.4172/2161-0983.1000201 o e a m r o c t h n E Herpetology: Current Research ISSN: 2161-0983 Research Open Access A New Species of Pit Mite (Trombidiformes: Harpirhynchidae) from the South American Rattlesnake (Viperidae): Morphological and Molecular Analysis Mendoza-Roldan JA2,3, Barros-Battesti DM1,2*, Bassini-Silva R2,3, Jacinavicius FC2,3, Nieri-Bastos FA2, Franco FL3 and Marcili A4 1Departamento de Patologia Veterinária, Unesp-Jaboticabal, Jaboticabal-SP, Brazil 2Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Brazil 3Laboratório Especial de Coleções Zoológicas, Instituto Butantan, São Paulo-SP, Brazil 4Departamento de Medicina e Bem-Estar Animal, Universidade de Santo Amaro, UNISA, São Paulo-SP, Brazil *Corresponding author: Barros-Battesti DM, Departamento de Patologia Veterinária, Unesp-Jaboticabal, Jaboticabal-SP, Paulo Donato Castellane s/n, Zona rural, CEP 14884-900, Brazil, Tel: +55 16 997301801; E-mail: [email protected] Received date: August 10, 2017; Accepted date: September 07, 2017; Publish date: September 14, 2017 Copyright: © 2017 Mendoza-Roldan JA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: Mites of the genus Ophioptes, parasitize a wide range of snakes’ species worldwide.
    [Show full text]
  • (Acari: Prostigmata: Pterygosomatidae), a Little Known Ectoparasitic Mite of S
    Systematic & Applied Acarology 22(11): 1970–1988 (2017) ISSN 1362-1971 (print) http://doi.org/10.11158/saa.22.11.14 ISSN 2056-6069 (online) Article http://zoobank.org/urn:lsid:zoobank.org:pub:2D234CF0-C794-456D-BB30-20CE5CE9D797 A redescription of Pterygosoma aegyptiaca Mostafa (Acari: Prostigmata: Pterygosomatidae), a little known ectoparasitic mite of spiny-tailed lizards (Squamata: Agamidae), with new morphological data for the Pterygosomatidae ANNE S. BAKER Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Email: [email protected] Abstract The female of Pterygosoma aegyptiaca Mostafa, 1974 (Acariformes: Prostigmata: Pterygosomatidae) is redescribed. This species, previously known only from its type locality (Egypt) and type host (Uromastyx sp.), is newly recorded from Sudan and from the ocellated spinytail, Uromastyx ocellata Lichtenstein. An unstriated area of idiosomal cuticle is proposed as a prodorsal shield, a character not previously attributed to the genus. Two pairs of idiosomal lyrifissures, ip and ih, are identified in Pterygosoma Peters, 1849, for the first time, as is a distal microseta (κ) on leg genu I. A dorsal structure observed near the base of the leg tarsi is considered to be a lyrifissure (= proprioceptor) and is newly recorded in the Pterygosomatidae. In the light of these new morphological observations and of character states described recently by other authors, amendments to the diagnosis and definition of adult Pterygosoma are proposed. Questions are raised about the conspecificity of presumed syntypes of P. persicum Hirst, 1917, and of specimens of P. tuberculata Jack, 1962a, identified by its author. The number of idiosomal lyrifissures present in Geckobiella diolii (Baker, 1998) (new combination for Hirstiella diolii by Paredes-León et al.
    [Show full text]
  • House Dust Mites and Their Genetic Systems
    House dust mites and their genetic systems Thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Kirsten M. Farncombe July 2018 Declaration Declaration: I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged Kirsten M. Farncombe 1 Table of Contents Declaration................................................................................................................................ 1 Abstract ..................................................................................................................................... 8 Acknowledgements .................................................................................................................. 9 Chapter 1: Knowledge and Applications of House Dust Mites ......................................... 11 1.1 Ecology of House Dust Mites .................................................................................. 12 1.1.1 Mites in the home: ............................................................................................. 12 1.1.2 Life cycle: .......................................................................................................... 12 1.1.3 Humans in the home: ......................................................................................... 13 1.1.4 Pets in the home: ................................................................................................ 13 1.1.5 Colonisation of mites: .......................................................................................
    [Show full text]
  • Hotspots of Mite New Species Discovery: Trombidiformes (2013–2015)
    Zootaxa 4208 (1): 001–045 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:1BEEF6D5-B509-435A-B783-85CFDFEFCB87 Hotspots of mite new species discovery: Trombidiformes (2013–2015) JIAN-FENG LIU1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author: email: [email protected] Abstract This paper reveals the hotspots of new mite discovery through of a survey of type localities of new Trombidiformes spe- cies described in two journals (Systematic & Applied Acarology and Zootaxa) during the last three years (2013–2015). Taxonomically, the 491 new species of the Trombidiformes are highly unevenly distributed among 55 families with top 10 families accounting for over 66% of the total. The Eriophyidae is the top-ranked family. Geographically, these 491 new species are from 55 countries around the world and their distribution among the countries is highly uneven. The majority of these new species (69%) are from the top 10 countries and six of the top ten countries are also megadiversity countries. The top three countries are all from Asia (Iran, China and Malaysia) and they together accounted for over one third of all new species of the Trombidiformes described in the two journals during 2013–2015. Key words: Mites, Trombidiformes, new species, hotspots, type locality, type depository Introduction Discoveries of new species around the world are unevenly distributed; some countries are hotspots for the discovery of new species because they are hotspots of biodiversity (Mittermeier 1988; Gaston 2000) with more undescribed species or a higher concentration of taxonomists (both local and overseas) interested in working on the biodiversity of these regions (or a combination of both).
    [Show full text]
  • Blattaria: Ectobiidae: Anaplecta Vega Sp.N.)
    Living cockroach genus Anaplecta discovered in Chiapas amber (Blattaria: Ectobiidae: Anaplecta vega sp.n.) Peter Barna1, Lucia Šmídová2 and Marco Antonio Coutiño José3 1 Slovak Academy of Sciences, Earth Science Institute, Bratislava, Slovakia 2 Institute of Geology and Paleontology, Charles University, Prague, Czech Republic 3 Secretaria de Medio Ambiente e Historia Natural, Museo de Paleontología Eliseo Palacios Aguilera, Tuxtla Gutiérrez Chiapas, México ABSTRACT Cenozoic cockroaches are recent and with two indigenous exceptions, based on their fragmentary preservation state, they cannot be discriminated formally from representatives of living genera. Anaplecta vega sp.n. –the second described cockroach from Miocene (23 Ma) Simojovel amber (Mexico: Chiapas: Los Pocitos) is characterized by a slender, under 5 mm long body, prolonged mouthparts bearing long maxillary palps with a distinct flattened triangular terminal palpomere, large eyes and long slender legs with distinctly long tibial spines. Some leg and palpal segments differ in dimensions on the left and right sides of the body, indicating (sum of length of left maxillary palpomeres 65% longer than right; right cercus 13% longer than left cercus) dextro-sinistral asymmetry. The asymmetrically monstrous left palp is unique and has no equivalent. In concordance with most Cenozoic species, the present cockroach does not show any significantly primitive characters such as a transverse pronotum characteristic for stem Ectobiidae. The genus is cosmopolitan and 10 species live also in Mexico, including Chiapas, today. Except for indigenous taxa and those characteristic for America, this is the first Cenozoic American cockroach taxon representing a living cosmopolitan genus, in contrast with representaties of Supella Shelford, 1911 from the same amber source that are now extinct in the Americas.
    [Show full text]
  • Trombidiformes De Répteis E Anfíbios Understudied Mite Groups of Brazil : Trombidiformes of Reptiles and Amphibians
    GRUPOS DE ÁCAROS POUCO ESTUDADOS NO BRASIL: TROMBIDIFORMES DE RÉPTEIS E ANFÍBIOS UNDERSTUDIED MITE GROUPS OF BRAZIL : TROMBIDIFORMES OF REPTILES AND AMPHIBIANS J. A. Mendoza-Roldan1, 2 & D.M. Barros-Battesti1 1Instituto Butantan, São Paulo, SP, Brasil; 2Universidade de São Paulo, São Paulo, SP, Brasil. No Brasil ocorrem ao redor de 650 espécies de répteis e 750 espécies de anfíbios. (Rodriguez 2005). Estes dois táxons são conhecidos por serem reservatórios de vários patógenos como Rickettsia, Plasmodium e Trypanosoma (Stenos et al. 2003). Existe a teoria de que os ácaros que parasitam a herpetofauna podem ser vetores desses patógenos tanto para animais como ao homem (Fajfer 2012). Tendo em conta isto, os estudos sobre morfologia, taxonomia, biologia, relação parasita hospedeiro, e importância médica e médica veterinária, de ácaros trombidiformes que parasitam répteis e anfíbios são escassos. Também a atenção dada a esses ácaros é limitada quando se compara o parasitismo em diferentes hospedeiros, sendo maior em mamíferos ou aves, do que em répteis, não sendo os da herpetofauna menos importantes. Nos anfíbios, o número de espécies de ácaros que parasitam esses animais é restrito, enquanto nos répteis, os ácaros associados são numerosos com mais de 400 espécies descritas, e algumas famílias e gêneros têm uma alta especificidade pelo hospedeiro (Krantz et al. 2009). Até os anos 80 foram realizados vários estudos taxonômicos e morfológicos descrevendo muitas espécies de ácaros trombidiformes endêmicas para o Brasil. Apesar disso, ainda é pouco o que se conhece sobre as espécies que ocorrem no Brasil. Tampouco se conhece sobre a biologia desses ácaros, sua ação espoliadora no hospedeiro e seu papel como vetor na transmissão de bioagentes (Lizaso 1981, 1982).
    [Show full text]
  • Phylogenetic Studies of Trombidioid Mites
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “ target” for pages apparently lacking from the document photographed is “ Missing Page(s)” . I f it was possible to obtain the missing page(s) or section, they arc spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of cither blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent' frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin film ing at the upper left hand corner o f a large sheet and to continue from left to right in equal sections with small overlaps. I f necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
    [Show full text]