The Maltese Geckobia Estherae N. Sp. Parasitic on Tarentola Mauritanica (Acari: Raphignathoidea: Pterygosomatidae) M

Total Page:16

File Type:pdf, Size:1020Kb

The Maltese Geckobia Estherae N. Sp. Parasitic on Tarentola Mauritanica (Acari: Raphignathoidea: Pterygosomatidae) M Does the African native host explain the African origin of the parasite? The Maltese Geckobia estherae n. sp. parasitic on Tarentola mauritanica (Acari: Raphignathoidea: Pterygosomatidae) M. Bertrand, W.P. Pfliegler, A. Sciberras To cite this version: M. Bertrand, W.P. Pfliegler, A. Sciberras. Does the African native host explain the African origin of the parasite? The Maltese Geckobia estherae n. sp. parasitic on Tarentola mauritanica (Acari: Raphignathoidea: Pterygosomatidae). Acarologia, Acarologia, 2012, 52 (4), pp.353-366. 10.1051/ac- arologia/20122073. hal-01567095 HAL Id: hal-01567095 https://hal.archives-ouvertes.fr/hal-01567095 Submitted on 21 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License ACAROLOGIA A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari. Subscriptions: Year 2017 (Volume 57): 380 € http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php Previous volumes (2010-2015): 250 € / year (4 issues) Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01) Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Acarologia 52(4): 353–366 (2012) DOI: 10.1051/acarologia/20122073 DOES THE AFRICAN NATIVE HOST EXPLAIN THE AFRICAN ORIGIN OF THE PARASITE? THE MALTESE GECKOBIA ESTHERAE N. SP. PARASITIC ON TARENTOLA MAURITANICA (ACARI: RAPHIGNATHOIDEA: PTERYGOSOMATIDAE) Michel BERTRAND1, Walter P. PFLIEGLER2 and Arnold SCIBERRAS3 (Received 04 May 2012; accepted 20 August 2012; published online 21 December 2012) 1 UMR5175 CEFE, Université Montpellier 3, Route de Mende, 34199 Montpellier cedex5, France. [email protected] (corresponding author) 2 Department of Genetics and Applied Microbiology, University of Debrecen, Egyetem tér 1., H-4010 Debrecen, Hungary. walterpfl[email protected] 3 Nature Trust (Malta) 133 ‘Arnest‘, Arcade Str, Paola, Malta. [email protected] ABSTRACT — As in other geographic situations, Maltese populations of the common Mediterranean wall gecko, Tarentola mauritanica, were found to be simultaneously infested by two species of geckobians, Geckobia loricata and Geckobia estherae n.sp.. The latter species exhibits modified scale-like setae. The geckobians, protected ventrally by such scale-like setae, are widely distributed: in and around the Mediterranean Basin, these species were described notably on Phyllodactylidae (Tarentola). Most of them belong to the group I defined by Jack (1964) considering the leg chaetotaxy. The distribution of geckobians allied to the new species is discussed and correlated to the most recent knowledge on the genus Tarentola. The host being primarily African, the possible African origin and the dispersion by wall geckoes of these geckobians is discussed. As far as we know, such scaly species are not present in South or North America. The acquisition of this adaptation should therefore date from the early Cenozoic. The authors conclude that new investigations are necessary to examine this hypothesis on the Mediterranean gekkotans. Three identification keys are provided, a general key for the genera, one improved key for the identification of the groups of species of the geckobians, and the third for the described species with scale like setae. KEYWORDS — Geckobia; Pteygosomatidae; Tarentola; Gekkonidae; parasites; host-parasite relationship; adaptation; bio- geography INTRODUCTION With few exceptions, the Pterygosomatidae (of- ten called as "scale mites") are specialist parasites of "Delineating species boundaries is crucial because it reptiles. These blood suckers spend more than 90% is the first step toward discussing broader questions of their lifetime fixed deeply by their chelicerae on on biogeography, ecology, conservation, or evolu- the host’s teguments. If the most primitive genera tion. The gap in communication between differ- are not greatly modified by the parasitic way of life ent disciplines currently related to species recogni- (Pimeliaphilus, Hirstiella and Geckobiella), the others tion is an important but often overlooked problem" have integrated the constraints of life on a type of (Carranza et al. 2002). host and are highly specialized: the diverse Geck- http://www1.montpellier.inra.fr/CBGP/acarologia/ 353 ISSN 0044-586-X (print). ISSN 2107-7207 (electronic) Bertand M. et al. oes are targeted by the genus Geckobia, the Agami- i) Why is it possible that, repeatedly, two so sim- dae by Pterygosoma spp. ilar parasites share the same host? May be In this article, the new Maltese species Gecko- because the parameters of infestation by two bia estherae n. sp. found on the common wall species respectively with normal and scale gecko is described. It was the opportunity to com- like ventral setae differ? This problem was al- plement (and to interrogate on) the larger ques- ready investigated by Girot (1969). tion of the links between the genus Tarentola L., ii) Can we reckon that the presence of highly 1758 and the geckobians in the Mediterranean Re- modified ventral setae reveals a possible com- gion. Recently, the phylogenetic classification of mon origin of the Geckobians exhibiting this Gekkotans integrated new analysis and discrimi- character, at least among the species parasitiz- nates now the Phyllodactylidae (i.e. genera Taren- ing the host Tarentola spp.? tola, Phyllodactylus) from the Gekkonidae (Gamble et al. 2008a, 2010). These two families diverged during the Mesozoic (Vidal and Hedges 2009). The genus MATERIAL AND METHODS Tarentola (around 20 species) belongs to the Phyllo- dactylids. All species are robust, without divided Mites were collected on one male and two females subdigital lamellae, and well-developed claws on (altogether 3 specimens) of the hosts, on the back of the third and fourth digits and, with a unique ex- their heads, with spraying a small amount of sur- ception, have a conservative morphology (Carranza gical spirit onto the geckos body and then remov- et al. 2002). The genus Tarentola sensu stricto is ing mites with a pincer. Some mites were cleared distributed in North Africa, southern Europe, and in lactic acid, and dissection of mouthparts and legs the eastern Canary Islands. The Linnaean species were done. Microscopic observation was helped by "Tarentola mauritanica" can be regarded now as a a microscope Wild Leitz 20 EB, measurements (in complex of species and subspecies with an African µm) were made on pictures taken with calibrated origin (Harris et al. 2004, Jirku et al. 2010); the Motic camera and drawings were made using a parasitic geckobians have been described several camera lucida. Nomenclature follows Jack (1964), decades ago, and by tradition, the two species col- and Bertrand et al. (1999). lected on it are identified as Geckobia latastei Mégnin, The Maltese herpetofauna: The only two Mal- 1878 and G. loricata Berlese, 1892 (Haitlinger 2004, tese geckoes (called "Wizgha" in Maltese language) Willmann 1955). However, new endemic gecko- are Hemidactylus turcicus and the Maltese wall gecko bians were described on neighbor and insular host T. mauritanica. The present herpetofauna list of the species, notably in Canary Islands (Zapatero-Ramos Maltese islands consists of only sixteen species, of et al. 1989). which five are marine turtles. Besides the men- The collect of the new species in Malta is an tioned geckoes, the terrestrial reptile species are original data. It permitted to verify: (i) that two four species of Colubridae, one Chamaeleontidae, geckobian species are hosted, by Tarentola mauri- one Scincidae and one endemic Lacertidae, with tanica in different part of its distribution, (ii) that several subspecies. Two Amphibian species occur, a the two species, as in other situations, differ greatly native frog from the Discoglossidae and one intro- each other, (notably by presence or absence of spe- duced species from the family of Ranidae (Sciber- cial shaped ventral hairs), and (iii) to interrogate on ras, 2007). The only possible hosts are the Phyllo- the correspondence of endemic hosts and the con- dactylidae Tarentola and the Geckonidae Hemidacty- sequences for parasites around the Mediterranean lus. Basin. The host belongs to the genus Tarentola, the Two new questions are expecting answers, con- Mediterranean geckos, widely
Recommended publications
  • Exploring the Host Specificity and Diversity of Haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A
    Tomé et al. Parasites & Vectors (2018) 11:190 https://doi.org/10.1186/s13071-018-2760-5 RESEARCH Open Access Along for the ride or missing it altogether: exploring the host specificity and diversity of haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A. Carretero1, D. James Harris1 and Ana Perera1 Abstract Background: Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. Methods: A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Results: Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges.
    [Show full text]
  • Original Papers Helminth Parasites of the White-Spotted Wall Gecko
    Annals of Parasitology 2019, 65(1), 71-75 Copyright© 2019 Polish Parasitological Society doi: 10.17420/ap6501.184 Original papers Helminth parasites of the white-spotted wall gecko, Tarentola annularis (Squamata: Gekkonidae), from Shendi area, Sudan Yassir Sulieman 1, Randa E. Eltayeb 1, Natchadaporn Srimek 2, Theerakamol Pengsakul 3 1Department of Zoology, Faculty of Science and Technology, University of Shendi, Shendi, Sudan 2Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand 3Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand Corresponding Author: Yassir Sulieman; e-mail: [email protected] ABSTRACT. This is the first report on helminths parasitize the white-spotted wall gecko, Tarentola annularis from Shendi area in Sudan. A total of 32 geckos were collected between January and May 2018, and examined for helminth infections. Three nematode species of the family Pharyngodonidae were identified: Pharyngodon mamillatus , Spauligodon brevibursata and Parapharyngodon sp. The most prevalent nematode found was P. mamillatus followed by S. brevibursata . The overall prevalence and intensity of infections was 81.3% and 6.8 nematodes per one infected gecko, respectively. The prevalence and intensity of infections were observed to be more in adult male geckos compared to adult females. On the other hand, the prevalence and intensity of infections were significantly higher in adult geckos compared to the juveniles. Key words: Tarentola annularis , helminth, prevalence, intensity, Sudan Introduction small vertebrates [6,8]. Previous reports reveal infection of T. annularis with different parasite Different genera of geckos are known as species [9 −13]. However, in general, gecko species common reptile of human dwellings around the are reported to be parasitized by various parasite world.
    [Show full text]
  • Stephen D. Busack
    BIOGRAPHICAL SKETCH AND BIBLIOGRAPHY OF STEPHEN D. BUSACK Stephen D. Busack Rochester, New York SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 154 2018 . SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The first number of the SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE series appeared in 1968. SHIS number 1 was a list of herpetological publications arising from within or through the Smithsonian Institution and its collections entity, the United States National Museum (USNM). The latter exists now as little more than the occasional title for the registration activities of the National Museum of Natural History. No. 1 was prepared and printed by J. A. Peters, then Curator-in-Charge of the Division of Amphibians & Reptiles. The availability of a NASA translation service and assorted indices encouraged him to continue the series and distribute these items on an irregular schedule. The series continues under that tradition. Specifically, the SHIS series distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, and unlikely to be published in the normal technical journals. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such an item, please contact George Zug [zugg @ si.edu] for its consideration for distribution through the SHIS series. Our increasingly digital world is changing the manner of our access to research literature and that is now true for SHIS publications. They are distributed now as pdf documents through two Smithsonian outlets: BIODIVERSITY HERITAGE LIBRARY. www.biodiversitylibrary.org/bibliography/15728 All numbers from 1 to 131 [1968-2001] available in BHL.
    [Show full text]
  • Classic Versus Metabarcoding Approaches for the Diet Study of a Remote Island Endemic Gecko
    Questioning the proverb `more haste, less speed': classic versus metabarcoding approaches for the diet study of a remote island endemic gecko Vanessa Gil1,*, Catarina J. Pinho2,3,*, Carlos A.S. Aguiar1, Carolina Jardim4, Rui Rebelo1 and Raquel Vasconcelos2 1 Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal 2 CIBIO, Centro de Investigacão¸ em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal 3 Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal 4 Instituto das Florestas e Conservacão¸ da Natureza IP-RAM, Funchal, Madeira, Portugal * These authors contributed equally to this work. ABSTRACT Dietary studies can reveal valuable information on how species exploit their habitats and are of particular importance for insular endemics conservation as these species present higher risk of extinction. Reptiles are often neglected in island systems, principally the ones inhabiting remote areas, therefore little is known on their ecological networks. The Selvagens gecko Tarentola (boettgeri) bischoffi, endemic to the remote and integral reserve of Selvagens Archipelago, is classified as Vulnerable by the Portuguese Red Data Book. Little is known about this gecko's ecology and dietary habits, but it is assumed to be exclusively insectivorous. The diet of the continental Tarentola species was already studied using classical methods. Only two studies have used next-generation sequencing (NGS) techniques for this genus thus far, and very few NGS studies have been employed for reptiles in general. Considering the lack of information on its diet Submitted 10 April 2019 and the conservation interest of the Selvagens gecko, we used morphological and Accepted 22 October 2019 Published 2 January 2020 DNA metabarcoding approaches to characterize its diet.
    [Show full text]
  • Studies on Tongue of Reptilian Species Psammophis Sibilans, Tarentola Annularis and Crocodylus Niloticus
    Int. J. Morphol., 29(4):1139-1147, 2011. Studies on Tongue of Reptilian Species Psammophis sibilans, Tarentola annularis and Crocodylus niloticus Estudios sobre la Lengua de las Especies de Reptiles Psammophis sibilans, Tarentola annularis y Crocodylus niloticus Hassan I.H. El-Sayyad; Dalia A. Sabry; Soad A. Khalifa; Amora M. Abou-El-Naga & Yosra A. Foda EL-SAYYAD, H. I. H.; SABRY, D. A.; KHALIFA, S. A.; ABOU-EL-NAGA, A. M. & FODA, Y. A. Studies on tongue of reptilian species Psammophis sibilans, Tarentola annularis and Crocodylus niloticus. Int. J. Morphol., 29(4):1139-1147, 2011. SUMMARY: Three different reptilian species Psammophis sibilans (Order Ophidia), Tarentola annularis (Order Squamata and Crocodylus niloticus (Order Crocodylia) are used in the present study. Their tongue is removed and examined morphologically. Their lingual mucosa examined under scanning electron microscopy (SEM) as well as processed for histological investigation. Gross morphological studies revealed variations of tongue gross structure being elongated with bifurcated end in P. sibilans or triangular flattened structure with broad base and conical free border in T. annularis or rough triangular fill almost the floor cavity in C. niloticus. At SEM, the lingual mucosa showed fine striated grooves radially arranged in oblique extension with missing of lingual papillae. Numerous microridges are detected above the cell surfaces in P. sibilans. T. annularis exhibited arrangement of conical flattened filiform papillae and abundant of microridges. However in C. niloticus, the lingual mucosa possessed different kinds of filiform papillae besides gustatory papillae and widespread arrangement of taste buds. Histologically, confirmed SEM of illustrating the lingual mucosa protrusion of stratified squamous epithelium in P.
    [Show full text]
  • Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
    Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019).
    [Show full text]
  • Sceloporus Jarrovii)
    Canadian Journal of Zoology The impact of ectoparasitism on thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) Journal: Canadian Journal of Zoology Manuscript ID cjz-2019-0017.R1 Manuscript Type: Article Date Submitted by the 11-Apr-2019 Author: Complete List of Authors: Johnson, Noah; University of Ottawa, Department of Biology Lymburner, Alannah; University of Ottawa, Biology Blouin-Demers, Gabriel; University of Ottawa, Department of Biology Is your manuscript invited for Draft consideration in a Special Not applicable (regular submission) Issue?: Behavioural fever, Hypothermia, Immune Response, Ectoparasites, Keyword: Ectotherm https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 42 Canadian Journal of Zoology 1 The impact of ectoparasitism on thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) N. Johnson1, A.H. Lymburner2, and G. Blouin-Demers3 1Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Canada Email: [email protected] 2Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Canada Email: [email protected] 3Department of Biology, University of Ottawa,Draft 30 Marie-Curie Private, Ottawa, Canada Email: [email protected] *Corresponding author: Noah Johnson 30 Marie-Curie Private, Ottawa, Canada Phone number: 613-804-2668 E-mail: [email protected] https://mc06.manuscriptcentral.com/cjz-pubs Canadian Journal of Zoology Page 2 of 42 2 N. Johnson, A.H. Lymburner, and G. Blouin-Demers The impact of ectoparasitism on thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) Abstract: Parasites are ubiquitous and can have large impacts on the fitness of their hosts. The effects of ectoparasites on physiology, behaviour, and immune function suggest that they could be part of the factors that impact thermoregulation.
    [Show full text]
  • Predation Behavior with Individuals Aggregation on Streetlights in Tarentola Mauritanica (Squamata: Gekkonidae) from Southern Spain
    BIHAREAN BIOLOGIST 8 (2): 120-121 ©Biharean Biologist, Oradea, Romania, 2014 Article No.: 141205 http://biozoojournals.ro/bihbiol/index.html Predation behavior with individuals aggregation on streetlights in Tarentola mauritanica (Squamata: Gekkonidae) from Southern Spain Ana Lozano-Del CAMPO1,2 and Roberto GARCÍA-ROA3,* 1. Fonoteca Zoológica (FonoZoo.com), National Museum of Natural Sciences (CSIC) of Madrid, Spain. 2. Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences – Spanish Research Council (MNCN-CSIC). José Gutiérrez Abascal, 2, 28006, Madrid, Spain. E-mail: [email protected] 3. Department of Evolutionary Ecology. National Museum of Natural Science – Spanish Research Council (MNCN-CSIC). José Gutiérrez Abascal, 2, 28006, Madrid, Spain. E-mail: [email protected] * Corresponding autor, R. Garcia-Roa, E-mail: [email protected] Received: 02 July 2014 / Accepted: 19. August 2014 / Available online: 30. September 2014 / Printed: December 2014 Abstract. Tarentola mauritanica is the most common gecko species in the Iberian Peninsula. It is widespread in most of the anthropogenic areas, where it shows predating behavior and male territoriality, especially during breeding season. In this note, we report an atypical aggregation of this species found in the streetlamps of the most frequented area of a campsite in Ronda, Malaga, Spain. There are previously reported T. mauritanica diurnal aggregations in retreat sites, but not much information can be found related to the interaction among reptiles in small places with high prey availability. This unusual tolerance to the presence of other males in such a reduced but suitable place for predating as a spotlight near humid facilities could be explained as an adaptive strategy to increase their success in hunting.
    [Show full text]
  • Tarentola Mauritanica
    Tarentola mauritanica Region: 3 Taxonomic Authority: (Linnaeus, 1758) Synonyms: Common Names: Moorish Gecko English Common Wall Gecko English Mauergecko German Salamanquesa Común Spanish geco comune Italian Osga Portuguese Order: Sauria Family: Gekkonidae Notes on taxonomy: Genetic analyses suggest that the subspecies Tarentola mauritanica fascicularis is probably a valid species (Harris et al. 2004), but no formal taxonomic proposal has yet been made (Crochet and Dubois 2004). Tarentola mauritanica appears to be a species complex, with animals in northwestern Libya and southern Tunisia possibly representing a separate species (S. Baha El Din pers. comm.). General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: This species ranges throughout much of the Mediterranean region. It is found in a variety of habitats, and it has been recorded from rocky Mainland European populations are distributed from Portugal (except areas, cliffs, stone walls, ruins, building walls and inside houses. It is the northwest), Spain (absent from most of the north), and southern generally not present in forested areas although animals can often be France, throughout mainly coastal areas of Italy, southern Slovenia, found climbing in trees. The females lay clutches of one to two eggs. northern coastal Croatia and southwestern parts of Greece. In northern These may be laid communally, typically under stones, in cracks and in Africa the species ranges from northern Egypt, through northern Libya, hollow trees. northern and central Tunisia, and northern Algeria to most of Morocco and northwestern Western Sahara. There is an isolated introduced population in southern Western Sahara. It is present on many Mediterranean islands including Corsica (France), Sardinia, Sicily, Pantellaria and Lampedusa (all in Italy), the Ionian Islands and Crete (all in Greece).
    [Show full text]
  • Scientific and Standard English Names of Amphibians and Reptiles of North America North of Mexico, with Comments Regarding Confidence in Our Understanding
    SCIENTIFIC AND STANDARD ENGLISH NAMES OF AMPHIBIANS AND REPTILES OF NORTH AMERICA NORTH OF MEXICO, WITH COMMENTS REGARDING CONFIDENCE IN OUR UNDERSTANDING Crotalus horridus Committee on Standard English and Scientific Names Brian I. Crother, Chair Officially Recognized and Adopted by: The Society for the Study of Amphibians and Reptiles American Society of Ichthyologists and Herpetologists The Herpetologists’ League SCIENTIFIC AND STANDARD ENGLISH NAMES OF AMPHIBIANS AND REPTILES OF NORTH AMERICA NORTH OF MEXICO, WITH COMMENTS REGARDING CONFI- DENCE IN OUR UNDERSTANDING BRIAN I. CROTHER (Committee Chair), Department of Biology, Southeastern Louisiana University, Hammond, LA 70402 USA JEFF BOUNDY, Fur and Refuge Division, Louisiana Department of Wildlife and Fisheries, P.O. Box 98,000, Baton Rouge, LA 70898 USA JONATHAN A. CAMPBELL, Department of Biology, UTA Box 19498, University of Texas, Arlington, TX 76019 USA KEVIN DE QUEIROZ, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 USA DARREL R. FROST, Division of Vertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA RICHARD HIGHTON, Department of Zoology, University of Maryland, College Park, MD 20742 USA JOHN B. IVERSON, Department of Biology, Earlham College, Richmond, IN 47374 USA PETER A. MEYLAN, Department of Natural Sciences, Eckerd College, P. O. Box, 12560, St. Petersburg, FL 33711 USA TOD W. REEDER, Department of Biology, San Diego State University, San Diego, CA 92182 USA MICHAEL E. SEIDEL, Department of Biological Sciences, Marshall University, Huntington, WV 25701 USA JACK W. SITES, JR., Department of Zoology, Brigham Young University, Provo, UT 84602 USA TRAVIS W.
    [Show full text]
  • Evolutionary History of the Genus Tarentola (Gekkota: Phyllodactylidae)
    Rato et al. BMC Evolutionary Biology 2012, 12:14 http://www.biomedcentral.com/1471-2148/12/14 RESEARCHARTICLE Open Access Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, estimated using multilocus sequence data Catarina Rato1,2,3*, Salvador Carranza3 and David J Harris1,2 Abstract Background: The pronounced morphological conservatism within Tarentola geckos contrasted with a high genetic variation in North Africa, has led to the hypothesis that this group could represent a cryptic species complex, a challenging system to study especially when trying to define distinct evolutionary entities and address biogeographic hypotheses. In the present work we have re-examined the phylogenetic and phylogeographic relationships between and within all Mediterranean species of Tarentola, placing the genealogies obtained into a temporal framework. In order to do this, we have investigated the sequence variation of two mitochondrial (12S rRNA and 16S rRNA), and four nuclear markers (ACM4, PDC, MC1R, and RAG2) for 384 individuals of all known Mediterranean Tarentola species, so that their evolutionary history could be assessed. Results: Of all three generated genealogies (combined mtDNA, combined nDNA, and mtDNA+nDNA) we prefer the phylogenetic relationships obtained when all genetic markers are combined. A total of 133 individuals, and 2,901 bp of sequence length, were used in this analysis. The phylogeny obtained for Tarentola presents deep branches, with T. annularis, T. ephippiata and T. chazaliae occupying a basal position and splitting from the remaining species around 15.38 Mya. Tarentola boehmei is sister to all other Mediterranean species, from which it split around 11.38 Mya.
    [Show full text]
  • Master by Mrs Catarina De Jesus Covas Silva Pinho Metabarcoding
    Metabarcoding analysis of endemic lizards’ diet for guiding reserve management in Macaronesia Islands Catarina de Jesus Covas Silva Pinho Masters in Biodiversity, Genetics and Evolution Department of Biology 2018 Supervisor Raquel Vasconcelos, Postdoctoral Researcher, CIBIO-InBIO Co-supervisor Ricardo Jorge Lopes, Postdoctoral Researcher, CIBIO-InBIO Todas as correcções determinadas pelo júri, e só essas, foram efectuadas. O Presidente do Júri, FCUP I Metabarcoding analysis of endemic lizards’ diet for conservation planning in Macaronesia Islands Acknowledgments Em primeiro lugar tenho de agradecer a quem tornou este trabalho possível, os meus orientadores Raquel Vasconcelos e Ricardo Lopes. Muito obrigada por me terem aceitado neste projeto e por todo o apoio que sempre me deram até aos últimos momentos deste trabalho. Raquel, apesar de este último ano ter sido de muitas mudanças isso nunca te impediu de estar sempre lá para me orientar da melhor maneira e de me incentivar sempre a dar o meu melhor. Muito obrigada por estares sempre disponível para me ajudar a resolver todos os imprevistos que nos apareceram pelo caminho. Por tudo o que me ensinaste e por todos os momentos que me proporcionaste que me fizeram crescer muito neste mundo da ciência. Ricardo, todos os conhecimentos que me transmitiste foram essenciais para conseguir realizar um este trabalho da melhor maneira. Muito obrigada por me dares sempre uma visão diferente e por toda a ajuda que me deste ao longo deste processo. Quero igualmente agradecer à Vanessa Mata, que apesar de não o ser oficialmente, foi como uma orientadora adicional ao longo deste trabalho. Admiro muito a tua maneira de ser tranquila e a paciência toda que tiveste.
    [Show full text]