First Record of Tarentola Mauritanica (LINNAEUS, 1758) on Porto Santo

Total Page:16

File Type:pdf, Size:1020Kb

First Record of Tarentola Mauritanica (LINNAEUS, 1758) on Porto Santo SHORT NOTE HERPETOZOA 20 (3/4) Wien, 30. Jänner 2008 SHORT NOTE 175 First record of Tarentola Canaries and Cape Verde), Cuba and the Ba- mauritanica (LINNAEUS, 1758) hamas (HARRIS et al. 2004b). The Moorish Gecko Tarentola mauri- on Porto Santo Island tanica is widespread in North Africa from Mediterranean to Sahara, Iberian Peninsula, Madeira is a relatively large volcanic the Mediterranean coast of France and Italy island (circa 770 km2) lying about 700 km and isolated populations in Greece, Israel, from the western coast of Africa and about and many Mediterranean islands (ARNOLD 900 km from the southwestern coast of et al. 1978; ANDRADA 1985; ESCRIVA 1987; Europe (Portugal) (from 32º37’52’’N to 32º MARTÍNEZ-RICA 1997a, 1997b; MATEO 1997). 52’08’’N, and from 16º39’19’’W to 17º15’ Due to its anthropophilic behavior and adap- 54’’W; PEREIRA 1989). The subaerial part tive capacity, the species spread in Europe of the island is about 4.6 – 5.2 million years and was introduced to some distant places old (GELDMACHER et al. 2000; PRADA & such as North and South America and some SERRALHEIRO 2000). Porto Santo is a small places in Africa (MARTINEZ-RICA 1997b), as island (circa 41 km2) located 38 km north- well as some islands like the Canaries (MAR- east from Madeira (from 33º07’35’’N to 33º TINEZ-RICA 1997b). 59’40’’N, and from 16º24’35’’W to 16º16’ According to HARRIS et al. (2004b), a 35’’W; PEREIRA 1989) and the oldest island single mitochondrial (mtDNA) haplotype of the Archipelago, aged about 14 million was found among the individuals from years (GELDMACHER et al. 2000). The sea Portugal, Spain, Italy, Tunisia, Menorca, depth between the two islands is greater Crete and Madeira, suggesting that T. mau- than 2000 m, indicating that they have never ritanica may be introduced across Europe. been joined. The native herpetofauna is very However, HARRIS et al. (2004a), with addi- depauperate, probably due to the great geo- tional sampling found that at least some graphical isolation of these islands from any Iberian populations appeared to be different, continental source populations. and thus, possibly native. Lacerta dugesii MILNE-EDWARDS, 1829 One individual was captured in Fun- is the sole extant flightless vertebrate ende- chal (Rua Imperatriz Dona Amélia), two in mic to Madeira. Introduced Hemidactylus Garajau, one in Porto Santo and one in the mabouia (MOREAU DE JONNÉS, 1818) was Algarve (mainland Portugal). All, except first reported in Funchal (Madeira island) the Porto Santo individual, are vouchers almost five years ago (JESUS et al. 2002). housed in the collection at the University of Since then several observations were made Madeira (collection codes: 361 for the indi- in the Funchal area. vidual from Algarve, 363 and 367 for the Tarentola mauritanica (LINNAEUS, two individuals from Garajau, and 400 for 1758) is also a recent introduction and was the Funchal specimen). The individual from first reported to Madeira almost 15 years ago Porto Santo was observed and photographed (BÁEZ & BISCOITO 1993). The first data of its in the field, and the tip of the tail was occurrence referred only to a small locality, clipped and subject to DNA analysis, and Garajau, 7 km east of Funchal. Since this re- then the gecko was released. Morphologic- port, the species has been observed in sever- al analysis indicates that these five geckos al places as far as 20 km from its initial loca- captured in these islands were T. mauritani- tion. This species was unknown to Porto ca mauritanica (Figs. 1-2). Santo Island until now. We captured one indi- Genomic DNA was extracted follow- vidual and further surveying revealed many ing standard phenol-chloroform protocols. more individuals on this island. This leads us For each individual 12S rRNA fragments to believe that a larger population exists. were amplified by PCR using the primers The genus Tarentola (Reptilia, Gekko- according to KOCHER et al. (1989) and con- nidae) contains about 22 species that are ditions described in HARRIS et al. (1998). very similar in their external morphology. For one individual from Porto Santo and These species occur in North Africa, coastal one from Funchal 16S rRNA fragments regions of Mediterranean Sea, Macaro- were amplified by PCR using primers ac- nesian archipelagos (Madeira, Selvagens, cording to SIMON et al. (1990). 176 SHORT NOTE HERPETOZOA 20 (3/4) Wien, 30. Jänner 2008 SHORT NOTE Figs. 1-2: Tarentola mauritanica (LINNAEUS, 1758) from Porto Santo Island, Madeira Archipelago. Photos: Miguel SEQUEIRA. Amplified products were sequenced AY828457) from Morocco. All these ani- on an automated sequencer (ABI® 310) in mals belong to a clade that includes individ- both directions. This resulted in unambigu- uals of Portugal, Spain, Italy, Tunisia, Men- ous sequences of 360 base pairs for the 12S orca, Crete, Madeira and Morocco (see HAR- rRNA and 485 base pairs for the 16S rRNA. RIS et al. 2004a), and could be considered as New sequences were deposited on Gen- an introduced lineage in Europe. Bank, accession numbers EU148479 to The absence of variability among EU148485. Madeiran samples and between theses The alignment by eye of sequences samples and one of the European lineages showed them all to be identical. Compari- seems to indicate that the geckos found in son of these sequences to sequences from Madeira and Porto Santo were introduced GenBank, shows they are also identical for individuals probably originating from the both regions to four sequences of T. mauri- same lineage that occurs in most of Europe. tanica mauritanica obtained by HARRIS et Although it is not possible to define the al. (2004a). These sequences belong to the place of origin with these markers, they following individuals (according to HARRIS were likely to come from the Iberian Pen- et al. 2004a): Tm30 (16S - AY828485, 12S - insula. This interpretation is most proba- AY828459), Tm29 (AY828484, AY828459) ble, because it is between the Iberian Tm27 (AY828483, AY828458) from the Peninsula and Madeira that the main mar- Iberian Peninsula and Tm58 (AY828482, itime traffic occurs. SHORT NOTE HERPETOZOA 20 (3/4) Wien, 30. Jänner 2008 SHORT NOTE 177 However, in the study of NOGALES et SCHMICKE, H. (2000): The 40Ar/39Ar age dating of the al. (1998), two individuals from Madeira Madeira Archipelago and hotspot track (eastern North Atlantic).- Geochemistry Geophysics Geosystems were sequenced for 12S and they were not [electronic Journal http://www.g-cubed.org/], Washing- identical, differing in 9 sites in Cytochrome ton D.C.; 1: 1999GC000018. HARRIS, D. J. & ARNOLD, b. If this is the case, there is still the possi- E. N. & THOMAS, R. H. (1998): Rapid speciation, mor- bility that not all geckos from Madeira may phological evolution and adaptation to extreme envi- ronments in Sand Lizards (Meroles) as revealed by mito- be introduced, or they were introduced chondrial gene sequences.- Molecular Phylogenetics from different origins. Our data does not and Evolution; San Diego; 10: 37-48. HARRIS, D. J. & support this hypothesis but further sam- BATISTA, V. & CARRETERO, M. A. & FERRAND, N. pling is needed. (2004a): Genetic variation in Tarentola mauritanica (Reptilia: Gekkonidae) across the Strait of Gibraltar With these results it is not possible to derived from mitochondrial and nuclear DNA sequen- elucidate the origin of the geckos found in ces.- Amphibia-Reptilia, Leiden; 25: 451-459. HARRIS, Porto Santo Island. Two possibilities arise; D. J. & BATISTA, V. & LYMBERAKIS, P. & CARRETERO, one that the origin was continental and the M. A. (2004b): Complex estimates of evolutionary re- lationships in Tarentola mauritanica (Reptilia: Gekko- other that the origin was from Madeira. It is nidae) derived from mitochondrial DNA sequences.- also impossible to say if it was one, two or Molecular Phylogenetics and Evolution, San Diego; more introduction events in Madeira and 30: 855-859. JESUS, J. & FREITAS, A. & BREHM, A. & Porto Santo. HARRIS, D. J. (2002): An introduced population of He- midactylus mabouia (MOREAU DE JONNÉS, 1818) on Originally referred only to Garajau, Madeira Island.- Herpetozoa, Wien; 15 (3/4): 179-180. the species has since been found in other MARTÍNEZ-RICA, J-P. (1997a): Tarentola mauritanica. areas such as Funchal, São Martinho, Caniço, pp. 214-215. In: GASC, J. P. & CABELA, A. & CRNO- etc., places 10 km or more from the original BRNJA-ISAILOVIC, J. & DÓLMEN, D. & GROSSENBACHER, K. & HAFFNER, P. & LESCURE, J. & MARTENS, H. & locality, suggesting a quick spread of the MARTINEZ-RICA, J. P. & MAURIN, H. & OLIVEIRA, M. E. species. & SOFIANIDOU, T. S. & VEITH, M. & ZUIDERWIJK,A. Only one individual from Porto Santo (eds.): Atlas of amphibians and reptiles in Europe. was analyzed but others were frequently Paris (Societas Europaea Herpetologica and Muséum National d’Histoire Naturelle). MARTÍNEZ-RICA, J. P. seen in the last months in the island. (1997b): Tarentola mauritanica LINNAEUS 1758; pp. In just 15 years the species increased 202-204. In: PLEGUEZUELOS, J. M. (ed.): Distribución y their geographic distribution, including the biogeografía de los anfibios y reptiles en España y Por- spreading to another island, and this in- tugal. Granada (Universidad de Granada y asociación Herpetológica Española). MATEO, J. A. (1997): Las crease seems gradual, as in intermediate re- islas e islotes del litoral ibérico; pp. 343-350. In: ports the area of distribution was smaller PLEGUEZUELOS, J. M. (ed.): Distribución y biogeografía (see JESUS et al. 2002). de los anfibios y reptiles en España y Portugal. Grana- The spread of the species is worrisome da (Universidad de Granada y asociación Herpeto- lógica Española). NOGALES, M. & LÓPEZ, M. & from a conservation point of view, because JIMÉNEZ-ASENSIO, J. & LARRUGA, J. M. & HERNÁNDEZ, Porto Santo is a very small and dry island M. & GONZÁLEZ, P. (1998): Evolution and biogeogra- with just one extant native lizard.
Recommended publications
  • Departamento De Física Tesis Doctoral
    Departamento de Física Tesis Doctoral ANALYSIS OF THE RAINFALL VARIABILITY IN THE SUBTROPICAL NORTH ATLANTIC REGION: BERMUDA, CANARY ISLANDS, MADEIRA AND AZORES Irene Peñate de la Rosa Las Palmas de Gran Canaria Noviembre de 2015 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA Programa de doctorado Física Fundamental y Aplicada Departamento de Física ANALYSIS OF THE RAINFALL VARIABILITY IN THE SUBTROPICAL NORTH ATLANTIC REGION: BERMUDA, CANARY ISLANDS, MADEIRA AND THE AZORES Tesis Doctoral presentada por D" Irene Peñate de la Rosa Dirigida por el Dr. D. Juan Manuel Martin González y Codirigida por el Dr. D. Germán Rodríguez Rodríguez El Director, El Codirector, La Doctoranda, (firma) (firma) (firma) \ Las Palmas de Gran Canaria, a 17 de noviembre de 2015 DEPARTAMENTO DE FÍSICA PROGRAMA DE DOCTORADO: FÍSICA FUNDAMENTAL Y APLICADA TESIS DOCTORAL ANALYSIS OF THE RAINFALL VARIABILITY IN THE SUBTROPICAL NORTH ATLANTIC REGION: BERMUDA, CANARY ISLANDS, MADEIRA AND AZORES PRESENTADA POR: IRENE PEÑATE DE LA ROSA DIRIGA POR EL DR. D. JUAN MANUEL MARTÍN GONZÁLEZ CODIRIGIDA POR EL DR. D. GERMÁN RODRÍGUEZ RODRÍGUEZ LAS PALMAS DE GRAN CANARIA, 2015 Para Pedro y Ángela (mis padres), Andrés, Alejandra y Jorge Irene ACKNOWLEDGEMENTS This thesis has been carried out within the framework of a research collaboration between the Spanish Agency of Meteorology (AEMET) and the Bermuda Weather Service (BWS), such cooperative efforts have been very successful in accomplishing my meteorological training and research objectives. I would like to acknowledge the support to both institutions, especially to Mark Guishard (BWS) for his passionate discussions and by way of his outstanding knowledge about contemporary scientific theories relevant to tropical cyclone forecasting, including case studies of local events.
    [Show full text]
  • Renewable Energy in Small Islands
    Renewable Energy on Small Islands Second edition august 2000 Sponsored by: Renewable Energy on Small Islands Second Edition Author: Thomas Lynge Jensen, Forum for Energy and Development (FED) Layout: GrafiCO/Ole Jensen, +45 35 36 29 43 Cover photos: Upper left: A 55 kW wind turbine of the Danish island of Aeroe. Photo provided by Aeroe Energy and Environmental Office. Middle left: Solar water heaters on the Danish island of Aeroe. Photo provided by Aeroe Energy and Environmental Office. Upper right: Photovoltaic installation on Marie Galante Island, Guadeloupe, French West Indies. Photo provided by ADEME Guadeloupe. Middle right: Waiah hydropower plant on Hawaii-island. Photo provided by Energy, Resource & Technology Division, State of Hawaii, USA Lower right: Four 60 kW VERGNET wind turbines on Marie Galante Island, Guadeloupe, French West Indies. Photo provided by ADEME Guadeloupe. Printing: Vesterkopi Printing cover; Green Graphic No. printed: 200 ISBN: 87-90502-03-5 Copyright (c) 2000 by Forum for Energy and Development (FED) Feel free to use the information in the report, but please state the source. Renewable Energy on Small Islands – Second Edition August 2000 Table of Contents Table of Contents Foreword and Acknowledgements by the Author i Introduction iii Executive Summary v 1. The North Atlantic Ocean Azores (Portugal) 1 Canary Island (Spain) 5 Cape Verde 9 Faeroe Islands (Denmark) 11 Madeira (Portugal) 13 Pellworm (Germany) 17 St. Pierre and Miquelon (France) 19 2. The South Atlantic Ocean Ascension Island (UK) 21 St. Helena Island (UK) 23 3. The Baltic Sea Aeroe (Denmark) 25 Gotland (Sweden) 31 Samsoe (Denmark) 35 4.
    [Show full text]
  • Stephen D. Busack
    BIOGRAPHICAL SKETCH AND BIBLIOGRAPHY OF STEPHEN D. BUSACK Stephen D. Busack Rochester, New York SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 154 2018 . SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The first number of the SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE series appeared in 1968. SHIS number 1 was a list of herpetological publications arising from within or through the Smithsonian Institution and its collections entity, the United States National Museum (USNM). The latter exists now as little more than the occasional title for the registration activities of the National Museum of Natural History. No. 1 was prepared and printed by J. A. Peters, then Curator-in-Charge of the Division of Amphibians & Reptiles. The availability of a NASA translation service and assorted indices encouraged him to continue the series and distribute these items on an irregular schedule. The series continues under that tradition. Specifically, the SHIS series distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, and unlikely to be published in the normal technical journals. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such an item, please contact George Zug [zugg @ si.edu] for its consideration for distribution through the SHIS series. Our increasingly digital world is changing the manner of our access to research literature and that is now true for SHIS publications. They are distributed now as pdf documents through two Smithsonian outlets: BIODIVERSITY HERITAGE LIBRARY. www.biodiversitylibrary.org/bibliography/15728 All numbers from 1 to 131 [1968-2001] available in BHL.
    [Show full text]
  • Analysis of Y-Chromosome and Mtdna Variability in the Madeira Archipelago Population
    International Congress Series 1288 (2006) 94–96 www.ics-elsevier.com Analysis of Y-chromosome and mtDNA variability in the Madeira Archipelago population Ana T. Fernandes *, Rita Gonc¸alves, Alexandra Rosa, Anto´nio Brehm Human Genetics Laboratory, University of Madeira, Campus of Penteada, Funchal, Portugal Abstract. The Atlantic archipelago of Madeira is made up of two islands (Madeira and Porto Santo) with 250,000 inhabitants. These islands were discovered and settled by the Portuguese in the 15th century and played an important role in the complex Atlantic trade network in the following centuries. The genetic composition of the Madeira Islands’ population was investigated by analyzing Y-chromosomal bi-allelic and STR markers in three different regions of the main island plus Porto Santo. We compared the results with mtDNA data and used the Y-chromosome STRs to determine the variability within each haplogroup. A sample of 142 unrelated males divided into four groups (Funchal City, West Madeira, North and East Madeira and Porto Santo) were analyzed. Significant genetic differences between these regions and the population of Funchal were found. The population of Funchal had lower gene diversity than expected. D 2006 Elsevier B.V. All rights reserved. Keywords: Madeira Island; Y-chromosome; mtDNA 1. Introduction The Madeira archipelago is made up of two inhabited islands, Madeira and Porto Santo, and has a population of about 250,000 inhabitants, with more than half living in Funchal. The Portuguese colonized the Madeira Archipelago in the 15th century and, in the beginning of the colonization, the archipelago was divided into three parts (Southwest and Northeast in the Madeira Island, and Porto Santo) and given to three administrators [1].
    [Show full text]
  • COVID-19 | Support Measures for Companies and Employees Combating COVID-19 with Resilience June 2020 Index
    - Updated version as of 18th June - COVID-19 | Support measures for companies and employees Combating COVID-19 with resilience June 2020 Index Index Editorial Respond Respond Recover Thrive Recover Thrive Interactive Document © 2020. For information, contact Deloitte & Associados, SROC, S.A. 2 Editorial Index Given the international public health emergency declared by Following a gradual removal of the confinement measures and Editorial the World Health Organization on January 30th, 2020 and the a mandatory definition of contingency plans, we are now classification of the novel Coronavirus disease (COVID-19) witnessing a progressive transition towards the Recover stage outbreak as a pandemic on March 11th, 2020, measures were of the Economy. Respond adopted to mitigate the global spread of the virus and its underlying impacts at different levels. The new measures have been focusing on revitalizing the economic fabric in order to promote a gradual return to Recover Firstly, the Portuguese Government has foremost adopted a normality. set of measures designed mainly to Respond to COVID-19, aiming to mitigate the effects of the State of emergency at In terms of VAT, for example, some measures were approved Thrive several levels, namely, protect the labor situation of employees to purchase protection material at a reduced rate. who are faced with the temporary impossibility to work due to the danger of infection, support to Families and safeguarding In addition, it is already possible to envision some financial the companies' treasury operations. incentives geared towards the Recover stage. In that stage, such measures were primarily designed to In this new edition of the Newsletter, we present the tax and support the maintenance of employment contracts and to economic measures that enabled, in a first stage, to respond to avoid business crisis situations.
    [Show full text]
  • Geonomenclature Applicable to European Statistics on International Trade in Goods 2017 Edition Geonomenclature Applicable to European Stat
    Geonomenclature applicable to European statistics on international trade in goods 2017 edition Geonomenclature applicable to European stat. on international trade in goods in trade international on stat. European to applicable Geonomenclature 2 017 edition 017 MANUALS AND GUIDELINES Geonomenclature applicable to European statistics on international trade in goods 2017 edition Manuscript completed in October 2017. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of the following information. Luxembourg: Publications Office of the European Union, 2017 © European Union, 2017 Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). Copyright for photographs: © Shutterstock/Hurst Photo For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders. For more information, please consult: http://ec.europa.eu/eurostat/about/policies/copyright The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Print ISBN 978-92-79-73479-3 ISSN 2363-197X doi:10.2785/588839 KS-GQ-17-011-EN-C PDF ISBN 978-92-79-73478-6 ISSN 2315-0815 doi:10.2785/02445 KS-GQ-17-011-EN-N Contents Contents Contents ...........................................................................................................................................................
    [Show full text]
  • Arcgis 10.1 Geographic and Vertical Transformation Tables
    ArcGIS 10.1 Geographic and Vertical Transformation Tables Note: Some numbers have been rounded for display. Area of use values are in degrees based upon WGS 1984. Table 1: Geographic (datum) transformations: well-known IDs, accuracies and areas of use ........................................................................................... 1 Table 2: Geographic (datum) transformations: Longitude rotation and unit change methods ......................................................................................... 43 Table 3: Geographic (datum) transformations: Geographic 2D offset method ................................................................................................................ 44 Table 4: Geographic (datum) transformations: Geocentric translation method ............................................................................................................... 44 Table 5: Geographic (datum) transformations: Coordinate frame (CF) and position vector (PV) methods .................................................................... 60 Table 6: Geographic (datum) transformations: Molodensky-Badekas method ................................................................................................................ 70 Table 7: Geographic (datum) transformations: HARN, NADCON, and NTv2 methods ................................................................................................. 71 Table 8: Geographic transformation methods: well-known IDs ......................................................................................................................................
    [Show full text]
  • Predation Behavior with Individuals Aggregation on Streetlights in Tarentola Mauritanica (Squamata: Gekkonidae) from Southern Spain
    BIHAREAN BIOLOGIST 8 (2): 120-121 ©Biharean Biologist, Oradea, Romania, 2014 Article No.: 141205 http://biozoojournals.ro/bihbiol/index.html Predation behavior with individuals aggregation on streetlights in Tarentola mauritanica (Squamata: Gekkonidae) from Southern Spain Ana Lozano-Del CAMPO1,2 and Roberto GARCÍA-ROA3,* 1. Fonoteca Zoológica (FonoZoo.com), National Museum of Natural Sciences (CSIC) of Madrid, Spain. 2. Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences – Spanish Research Council (MNCN-CSIC). José Gutiérrez Abascal, 2, 28006, Madrid, Spain. E-mail: [email protected] 3. Department of Evolutionary Ecology. National Museum of Natural Science – Spanish Research Council (MNCN-CSIC). José Gutiérrez Abascal, 2, 28006, Madrid, Spain. E-mail: [email protected] * Corresponding autor, R. Garcia-Roa, E-mail: [email protected] Received: 02 July 2014 / Accepted: 19. August 2014 / Available online: 30. September 2014 / Printed: December 2014 Abstract. Tarentola mauritanica is the most common gecko species in the Iberian Peninsula. It is widespread in most of the anthropogenic areas, where it shows predating behavior and male territoriality, especially during breeding season. In this note, we report an atypical aggregation of this species found in the streetlamps of the most frequented area of a campsite in Ronda, Malaga, Spain. There are previously reported T. mauritanica diurnal aggregations in retreat sites, but not much information can be found related to the interaction among reptiles in small places with high prey availability. This unusual tolerance to the presence of other males in such a reduced but suitable place for predating as a spotlight near humid facilities could be explained as an adaptive strategy to increase their success in hunting.
    [Show full text]
  • Tarentola Mauritanica
    Tarentola mauritanica Region: 3 Taxonomic Authority: (Linnaeus, 1758) Synonyms: Common Names: Moorish Gecko English Common Wall Gecko English Mauergecko German Salamanquesa Común Spanish geco comune Italian Osga Portuguese Order: Sauria Family: Gekkonidae Notes on taxonomy: Genetic analyses suggest that the subspecies Tarentola mauritanica fascicularis is probably a valid species (Harris et al. 2004), but no formal taxonomic proposal has yet been made (Crochet and Dubois 2004). Tarentola mauritanica appears to be a species complex, with animals in northwestern Libya and southern Tunisia possibly representing a separate species (S. Baha El Din pers. comm.). General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: This species ranges throughout much of the Mediterranean region. It is found in a variety of habitats, and it has been recorded from rocky Mainland European populations are distributed from Portugal (except areas, cliffs, stone walls, ruins, building walls and inside houses. It is the northwest), Spain (absent from most of the north), and southern generally not present in forested areas although animals can often be France, throughout mainly coastal areas of Italy, southern Slovenia, found climbing in trees. The females lay clutches of one to two eggs. northern coastal Croatia and southwestern parts of Greece. In northern These may be laid communally, typically under stones, in cracks and in Africa the species ranges from northern Egypt, through northern Libya, hollow trees. northern and central Tunisia, and northern Algeria to most of Morocco and northwestern Western Sahara. There is an isolated introduced population in southern Western Sahara. It is present on many Mediterranean islands including Corsica (France), Sardinia, Sicily, Pantellaria and Lampedusa (all in Italy), the Ionian Islands and Crete (all in Greece).
    [Show full text]
  • Scientific and Standard English Names of Amphibians and Reptiles of North America North of Mexico, with Comments Regarding Confidence in Our Understanding
    SCIENTIFIC AND STANDARD ENGLISH NAMES OF AMPHIBIANS AND REPTILES OF NORTH AMERICA NORTH OF MEXICO, WITH COMMENTS REGARDING CONFIDENCE IN OUR UNDERSTANDING Crotalus horridus Committee on Standard English and Scientific Names Brian I. Crother, Chair Officially Recognized and Adopted by: The Society for the Study of Amphibians and Reptiles American Society of Ichthyologists and Herpetologists The Herpetologists’ League SCIENTIFIC AND STANDARD ENGLISH NAMES OF AMPHIBIANS AND REPTILES OF NORTH AMERICA NORTH OF MEXICO, WITH COMMENTS REGARDING CONFI- DENCE IN OUR UNDERSTANDING BRIAN I. CROTHER (Committee Chair), Department of Biology, Southeastern Louisiana University, Hammond, LA 70402 USA JEFF BOUNDY, Fur and Refuge Division, Louisiana Department of Wildlife and Fisheries, P.O. Box 98,000, Baton Rouge, LA 70898 USA JONATHAN A. CAMPBELL, Department of Biology, UTA Box 19498, University of Texas, Arlington, TX 76019 USA KEVIN DE QUEIROZ, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 USA DARREL R. FROST, Division of Vertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA RICHARD HIGHTON, Department of Zoology, University of Maryland, College Park, MD 20742 USA JOHN B. IVERSON, Department of Biology, Earlham College, Richmond, IN 47374 USA PETER A. MEYLAN, Department of Natural Sciences, Eckerd College, P. O. Box, 12560, St. Petersburg, FL 33711 USA TOD W. REEDER, Department of Biology, San Diego State University, San Diego, CA 92182 USA MICHAEL E. SEIDEL, Department of Biological Sciences, Marshall University, Huntington, WV 25701 USA JACK W. SITES, JR., Department of Zoology, Brigham Young University, Provo, UT 84602 USA TRAVIS W.
    [Show full text]
  • Aquatic and Wet Marchantiophyta, Class Jungermanniopsida, Orders Porellales: Jubulineae, Part 2
    Glime, J. M. 2021. Aquatic and Wet Marchantiophyta, Class Jungermanniopsida, Orders Porellales: Jubulineae, Part 2. Chapt. 1-8. In: 1-8-1 Glime, J. M. (ed.). Bryophyte Ecology. Volume 4. Habitat and Role. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 11 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1-8 AQUATIC AND WET MARCHANTIOPHYTA, CLASS JUNGERMANNIOPSIDA, ORDER PORELLALES: JUBULINEAE, PART 2 TABLE OF CONTENTS Porellales – Suborder Jubulineae ........................................................................................................................................... 1-8-2 Lejeuneaceae, cont. ........................................................................................................................................................ 1-8-2 Drepanolejeunea hamatifolia ................................................................................................................................. 1-8-2 Harpalejeunea molleri ........................................................................................................................................... 1-8-7 Lejeunea ............................................................................................................................................................... 1-8-12 Lejeunea aloba ....................................................................................................................................................
    [Show full text]
  • The Outermost Regions: European Regions of Assets and Opportunities
    THE OUTERMOST REGIONS: EUROPEAN REGIONS OF ASSETS AND OPPORTUNITIES Azores Madeira Saint Martin Canary Islands Guadeloupe Martinique French Guiana Réunion Regional Policy Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. European Commission, Directorate-General for Regional Policy Communication, Information and Relations with Third Countries Raphaël Goulet Avenue de Tervueren 41, B – 1040 Brussels Email: [email protected] Internet: http://ec.europa.eu/regional_policy/index_en.htm This publication is printed in English, French, Spanish and Portuguese and is available at: http://ec.europa.eu/regional_policy/activity/outermost/index_en.cfm The views expressed in this publication are those of the authors and do not necessarily reflect those of the European Commission. © Copyrights: Cover: iStockphoto – Shutterstock, page 7: iStockphoto – EC, page 8: EC, page 9: EC, page 10: EC, page 11: iStockphoto, EC, page 12: EC, page 13: EC, page 14: iStockphoto , page 15: iStockphoto, page 16: EC, page 17: EC, page 19: iStockphoto – Shutterstock, page 20: EC, page 21: CNES, page 25: iStockphoto, page 26: EC, page 27: EC, page 29: iStockphoto, page 30: EC, page 31: EC, page 33: iStockphoto, page 34: M. David Chane, page 35: EC, page 37: iStockphoto, page 38: EC, page 39: EC. Source of statistics: Eurostat 2011 (Saint Martin: INSEE) More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication.
    [Show full text]