Process Automation for Analytical Measurements Providing High Precise Sample Preparation

Total Page:16

File Type:pdf, Size:1020Kb

Process Automation for Analytical Measurements Providing High Precise Sample Preparation Process Automation for Analytical Measurements Providing High Precise Sample Preparation in Life Science Applications Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) der Fakultät für Informatik und Elektrotechnik der Universität Rostock Ellen Vorberg eingereicht am 25.02.2015 in Rostock verteidigt am 08.09.2015 in Rostock Supervisors 1. Prof. Dr.-Ing. habil. Kerstin Thurow, University of Rostock, Center for Life Science Automation 2. Prof. Dr.-Ing. Norbert Stoll, University of Rostock, Institute of Automation 3. Prof. Robin A. Felder, Ph.D., University of Virginia, School of Medicine, Department of Pathology, Charlottesville, VA Acknowledgment First of all, I would like to thank Prof. Dr. Kerstin Thurow for her continuous support throughout my PhD studies and dissertation work. I am truly grateful for her advices and suggestions and, moreover, for the excellent laboratory equipment. Furthermore, I would like to extend my thanks to all the staff members of celisca and the Institute of Automation. Especially, I would like to thank Sybille Horn, Dr. Heidi Fleischer, Dr. Thomas Roddelkopf, Lars Woinar, Heiko Engelhardt, Dr. Hui Liu, Dr. Sebastian Neubert, and Dr. Steffen Junginger for technical support. Most importantly, I thank my beloved husband, Mike Vorberg, for his love, support, and encouragement. Table of Contents Table of Contents List of Figures ............................................................................................................................................ i Sources of Figures ................................................................................................................................... iii List of Tables ............................................................................................................................................ iv List of Abbreviations ................................................................................................................................. v 1. Introduction ......................................................................................................................................... 1 2. State of the Art: Laboratory Automation ............................................................................................ 6 2.1 Automated Biological Sample Pretreatment Depending on Measurement Processes ................ 6 2.1.1 Automated Biological Processes Using Assay Detection Readers .......................................... 6 2.1.2 Automated Biological Processes Using Mass Spectrometers ................................................ 7 2.2 Approaches for Automated Analytical Sample Pretreatment and Measurement Processes ....... 9 2.3 Comparison and Conclusion of Automated Sample Pretreatment ............................................. 10 2.4 Automation Systems and Compounds ........................................................................................ 10 2.4.1 Workstations ........................................................................................................................ 10 2.4.2 Workstations with Embedded Autosamplers ...................................................................... 15 2.4.3 Comparison of Fully Integrated Systems and Traditional Workstations .............................. 20 2.5 Analytical Techniques of Measurement ...................................................................................... 24 2.5.1 Element-Specific Measurements .......................................................................................... 24 2.5.2 Structure-Specific Measurements ........................................................................................ 27 3. Scope of Work ................................................................................................................................... 29 3.1 Common Biological Processes ..................................................................................................... 29 3.2 Common Analytical Processes ‒ Comparison and Conclusion .................................................... 31 4. System Concept and Design .............................................................................................................. 34 Table of Contents 4.1 General Conspectus ..................................................................................................................... 34 4.2 Concept of Standardized Labware Design ................................................................................... 36 4.3 System Integrator ........................................................................................................................ 38 4.4 Liquid Handling ............................................................................................................................ 40 4.5 Sample Handling .......................................................................................................................... 42 4.5.1 Barcode Reading and Sample Storage.................................................................................. 42 4.5.2 (De-) Capping and MTP-Handling ......................................................................................... 42 4.5.3 Crimping and Individual Sample Handling............................................................................ 45 4.5.4 Housing ................................................................................................................................. 47 4.5.5 Weighing Station and Ionizer ............................................................................................... 48 4.6 Sample Treatment and Analytical Devices .................................................................................. 49 4.7 Software Integration ................................................................................................................... 54 4.8 Integration with External Stations (Mobile Robot Transport) .................................................... 58 5. Statistical Methods and Definitions .................................................................................................. 63 5.1 Validation Parameters ................................................................................................................. 63 5.1.1 Bias Error of the Measuring Instrument ............................................................................... 63 5.1.2 Repeatability Standard Deviation ......................................................................................... 63 5.1.3 Reproducibility Standard Deviation ..................................................................................... 63 5.1.4 Discrimination Threshold ..................................................................................................... 63 5.2 Further Definitions Considering the Acceptability of the Results ............................................... 64 5.2.1 Horwitz Definition ................................................................................................................ 64 5.2.2 Confidence Interval Using Student´s t-Distribution ............................................................. 64 5.2.3 David-Test ............................................................................................................................. 64 6. Application I: Element-Specific Analytical Measurements ................................................................ 65 6.1 Process Description Including Motivation and Process Steps ..................................................... 65 6.2 Automation Concept: Automation Requirements and Process Adaption .................................. 67 6.3 Results: Manual Validation Sequence – Element-Specific Measurement .................................. 73 6.3.1 Bias Error of the Measuring Instrument ............................................................................... 73 6.3.2 Repeatability Standard Deviation ......................................................................................... 73 6.3.3 Reproducibility Standard Deviation ..................................................................................... 73 6.3.4 Discrimination Threshold ..................................................................................................... 73 Table of Contents 6.4 Results: Automated Validation Sequence – Element-Specific Measurement ............................ 74 6.4.1 Bias Error of the Measuring Instrument ............................................................................... 74 6.4.2 Repeatability Standard Deviation ......................................................................................... 74 6.4.3 Reproducibility Standard Deviation ..................................................................................... 74 6.4.4 Discrimination Threshold ..................................................................................................... 74 6.5 Comparison and Conclusion of the Validation Sequences – Element-Specific Measurement ... 74 6.6 Further Element-Specific Measurements.................................................................................... 77 7. Application II: Structure-Specific Analytical Measurements ............................................................. 81 7.1 Process Description Including Motivation and Process Steps ..................................................... 81 7.2 Automation Concept: Automation Requirements and Process Adaption .................................
Recommended publications
  • The Stoichiometry of a Reaction Introduction This Experiment Provides a Method to Determine the Mole Ratio in Which Two Substances Combine Chemically
    The Stoichiometry of a Reaction Introduction This experiment provides a method to determine the mole ratio in which two substances combine chemically. Such information is helpful in determining the stoichiometry of a reaction, i.e. the balanced chemical equation and the information that can be derived from it. The principle underlying this experiment is based on keeping the quantity of one reactant constant while varying the quantity of a second reactant. The mass of the precipitate produced is then used as an indicator of the effect of varying the quantity of the second reactant. When enough of the second reactant has been added to completely react with the first reactant, there will be no further increase in the amount of the precipitate produced, regardless of how much of the second one is added. Equipment/Materials 0.1M Pb(NO3)2 Stirring rod 0.1M KI Funnel 5 % HNO3 Side-armed Erlenmeyer flask Filter paper Hot plate 10mL automatic pipets Analytical balance 50 mL beakers Wash bottle of DI water Safety • Goggles must be worn at all times in the laboratory. • Pour any leftover solution in the designated containers. • Follow your instructor’s directions for the disposal of the precipitates. Guiding Questions Which trial(s) will give the most precipitate? Why? 9A-1 Procedure 1. In this experiment the stoichiometry of the lead nitrate – potassium iodide system will be investigated. The volume of the potassium iodide will be held constant while the volume of the lead nitrate is varied. The concentration of both solutions will be 0.1000 M. Each lab group will be asked to prepare two combinations in the following table.
    [Show full text]
  • Microplate Selection and Recommended Practices in High-Throughput Screening and Quantitative Biology
    NLM Citation: Auld DSPh.D., Coassin PAB.S., Coussens NPPh.D., et al. Microplate Selection and Recommended Practices in High-throughput Screening and Quantitative Biology. 2020 Jun 1. In: Sittampalam GS, Grossman A, Brimacombe K, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004-. Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/ Microplate Selection and Recommended Practices in High-throughput Screening and Quantitative Biology Douglas S. Auld, Ph.D.,1 Peter A. Coassin, B.S.,2 Nathan P. Coussens, Ph.D.,3 Paul Hensley,4 Carleen Klumpp-Thomas,5 Sam Michael,5 G. Sitta Sittampalam, Ph.D.,5 O. Joseph Trask, B.S.,6 Bridget K. Wagner, Ph.D.,7 Jeffrey R. Weidner, Ph.D.,8 Mary Jo Wildey, Ph.D.,9 and Jayme L. Dahlin, M.D., Ph.D. 7,10 Created: June 1, 2020. Abstract High-throughput screening (HTS) can efficiently assay multiple discrete biological reactions using multi-well microplates. The choice of microplate is a crucial yet often overlooked technical decision in HTS and quantitative biology. This chapter reviews key criteria for microplate selection, including: well number, well volume and shape, microplate color, surface treatments/coatings, and considerations for specialized applications such as high-content screening. This chapter then provides important technical advice for microplate handling including mixing, dispensing, incubation, and centrifugation. Special topics are discussed, including microplate surface properties, plate washing, well-to-well contamination, microplate positional effects, well-to-well and inter-lot variability, and troubleshooting. This information and best practices derived from academic, government, and industry screening centers, as well as microplate vendors, should accelerate assay development and enhance assay quality.
    [Show full text]
  • 30B459cf080bf4bc9f35f9422b81
    Analysis of the light intensity dependence of the growth of Synechocystis and of the light distribution in a photobioreactor energized by 635 nm light Alessandro Cordara1,2, Angela Re2, Cristina Pagliano1, Pascal Van Alphen3, Raffaele Pirone4, Guido Saracco2,5, Filipe Branco dos Santos3, Klaas Hellingwerf3 and Nicolò Vasile2 1 Applied Science and Technology Department—Biosolar Lab, Politecnico di Torino, Turin, Italy 2 Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy 3 Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands 4 Applied Science and Technology Department, Politecnico di Torino, Turin, Italy 5 Current affiliation: Applied Science and Technology Department, Politecnico di Torino, Turin, Italy ABSTRACT Synechocystis gathered momentum in modelling studies and biotechnological applications owing to multiple factors like fast growth, ability to fix carbon dioxide into valuable products, and the relative ease of genetic manipulation. Synechocystis physiology and metabolism, and consequently, the productivity of Synechocystis- based photobioreactors (PBRs), are heavily light modulated. Here, we set up a turbidostat-controlled lab-scale cultivation system in order to study the influence of varying orange–red light intensities on Synechocystis growth characteristics and photosynthetic activity. Synechocystis growth and photosynthetic activity were found - - to raise as supplied light intensity increased up to 500 mmol photons m 2 s 1 and to - - enter the photoinhibition state only at 800 mmol photons m 2 s 1. Interestingly, reverting the light to a non-photo-inhibiting intensity unveiled Synechocystis to be able to promptly recover. Furthermore, our characterization displayed a clear correlation between variations in growth rate and cell size, extending a phenomenon previously observed in other cyanobacteria.
    [Show full text]
  • Chem 321 Lecture 3 - Analysis, Measurements and Tools 9/3/13
    Chem 321 Lecture 3 - Analysis, Measurements and Tools 9/3/13 Student Learning Objectives Mass Measurements Two of the most important types of measurements you will make in the laboratory involve mass and volume. Masses of small objects (#200 g) can be very precisely determined using an analytical balance. Such a device is capable of weighing samples to the nearest 0.1 mg. A top-loading balance is used to weigh larger objects or to obtain approximate masses. Both types of balances are easy to use and operate on principles associated with the design shown in the figure below. © 2003 W. H. Freeman and Company Figure 1.1 Basic circuit design of an electronic balance The balance pan is associated with a detector arm and a coil of wire through which a current can flow. Initially the balance is zeroed with no sample on the pan. This fixes the location of the balance arm with respect to the detector. Then a calibrated internal mass (200 g in our analytical balances) is placed on the balance pan. This causes the pan to move downward. This movement is sensed by the detector and a signal is sent to the control circuit to send current through the coil of wire attached to the pan. Current flowing through this coil creates a magnetic field that interacts with the magnet surrounding the coil to cause the pan to move upward (more current results in more movement of the pan). The current is increased until the pan is raised to its original position with no sample on the pan.
    [Show full text]
  • Reference Paper on Howtoavoidmakingyourbalancedirtyinthefirstplace
    8 Steps to a Clean Balance and 5 Solutions to Keep It Clean Reference Paper Reference Cleaning a balance is important to ensure accurate results and promote long equipment life. A clean balance is a first step towards safe and accurate weighing and is the most important action to prolong instrument life. Furthermore – and even more important – cleaning increases user safety and reduces the risk of cross-contamination. This paper imparts knowledge about cleaning methods and agents, and gives you an instruc- tion on how to clean a balance in 8 easy steps. In addition, five solutions will be discussed on how to avoid making your balance dirty in the first place. 1. Cleaning is Essential If you work in a laboratory, then you know that ensuring its cleanliness has a significant impact on Definitions both operator safety and cross-contamination risk. Cleaning: Physical removal of foreign Keeping a balance clean is important. It can: material, e.g. dust, soil, organic material such as: secretions, excretions and micro- • Minimize cross-contamination risk organisms. Cleaning generally removes • Enhance user safety rather than kills microorganisms. It is Reference Paper Reference • Increase operating reliability, and accomplished with water, detergents and • Reduce equipment failure rates. mechanical action. Each of these points can represent a significant Decontamination: Removal of microor- source of expense for your lab, whether in rework, ganisms, radioactive substances or haz- health costs, or equipment service and replacement ardous material to leave an item safe for costs. Keeping balances clean is a great first step further handling. towards reducing these costs. Disinfection: Inactivation of disease-pro- This paper will cover all aspects of balance clea- ducing microorganisms.
    [Show full text]
  • Thermo Scientific Pipetting Guide
    Thermo Scientific Pipetting Guide Tips for Good Laboratory Pipetting Part of Thermo Fisher Scientific Thermo Scientific Thermo Scientific Contents Introduction 3 Pipetting Pipetting Guide Pipetting terms 3 Types of pipettes 4 General pipetting guidelines 6 Pipetting techniques 6 Tip information 7 Recommendations for pipetting different compounds 8 Ensuring optimum performance 8 Usage of Finpipette Novus 9 Factors affecting the accuracy of air displacement pipettes 10 Preventing cross-contamination 11 Maintenance of your Finnpipettes 1 Autoclaving 1 UV resistance 1 Calibrating your pipettes (incl. conversion table) 13 On-line pipette calibration 15 General guidelines for decontaminating pipettes 16 Chemical compatibility of plastics 18 Customer support 19 Trouble shooting 19 Thermo Scientific Over 35 Years of Innovation A leader in pipetting For over 35 years we have led the way in liquid handling products and microplate instrumentation. We have always ensured that innovation, ergonomics, accuracy, precision and safety are key aspects of our products’ designs. In 1971 we introduced Thermo Scientific Finnpipettes, the world’s first continuously variable micropi- pettes. In 1976 we introduced the world’s first multichannel pipette. Since then we have continuously improved our pipettes, always leading the way with ergonomic design. Over the last 35 years, innovations such as the improved finger rest, soft-touch tip ejection and super blow-out have made Finnpipettes increasingly user-friendly. Our intensive research program and commitment to our customers forms the foundation for future innovations. The new demands in pipette applications are the key drivers of our product development. To date, over 3 mil- lion Finnpipettes have been sold in 150 countries.
    [Show full text]
  • Module 5 Hvac Fundamentals of Modern Laboratory Design
    5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN MODULE 5 HVAC FUNDAMENTALS OF MODERN LABORATORY DESIGN Module 5 PG1 5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN MODULE 5 GOAL Provide a fundamental understanding of Laboratory Heating, Ventilating and Air Conditioning Concepts and Systems Module 5 PG2 5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN Module 6 Outline • Issues • Drivers • Concepts • Systems Module 5 PG3 5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN Module 5 Issues • “It’s too hot and humid in my lab!” Some of the most common concerns of • “It’s too cold and dry in laboratory facility users are relative to the my lab!” HVAC system, including: • “It’s like a tornado in my lab!” Module 5 PG4 5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN Module 5 Drivers • Laboratory Equipment Heat Generation • Air Change Rates • Containment Equipment • Occupant Gowning Requirements • Type of Laboratory and Science Module 5 PG5 5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN Module 5 Drivers – Laboratory Equipment Heat Generation Heat Generation Information • Heat is expressed in BTU/Hour • 1 Watt = 3.414 BTU/Hour • Sensible Heat: Energy Required to Change Temperature • Latent Heat: Energy Required to Remove Moisture • One Ton of Air Conditioning: 12,000 BTU/Hour or 3,515 Watts • 135 cfm of outside air equals 1 ton of cooling (Kansas City weather) Module 5 PG6 5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN Module 5 Drivers – Laboratory Equipment Heat Generation Loads for Bench Mounted Equipment (low density) Item Bench L.F. Btuh Optical Microscope 2 222 Analytical balance 2 24 Computer & Monitor 4 461 Rotary Evaporator 3 253 Total 11 960 Btuh Per Linear Foot 87 Watts per linear foot 26 Sources: ASHRAE 2001 Fundamentals Handbook Labconco Catalog Revco Freezer Data Sheets NOTE: This is heat release, not equipment nameplate electrical data Module 5 PG7 5 HVAC FUNDAMENTALS OF MODERN LAB DESIGN Module 5 Drivers – Laboratory Equipment Heat Generation Loads for Bench Mounted Equipment (high density) Item Bench L.F.
    [Show full text]
  • Towards Robotic Laboratory Automation Plug & Play: The" LAPP
    Towards Robotic Laboratory Automation Plug & Play: The \LAPP" Framework Ad´amWolf´ ,∗,y,z David Wolton,{ Josef Trapl,{ Julien Janda,{ Stefan Romeder-Finger,x Thomas Gatternig ,x Jean-Baptiste Farcet ,x P´eter Galambos ,k and K´arolySz´ell k,? yBaxter AG, a Takeda company zDoctoral School of Applied Informatics and Applied Mathematics, Obuda´ University {Takeda Pharmaceuticals International AG, a Takeda company xBaxalta Innovations GmbH, a Takeda company kAntal Bejczy Center for Intelligent Robotics, Obuda´ University ?Alba Regia Technical Faculty, Obuda´ University, H-8000 Sz´ekesfeh´erv´ar,Hungary E-mail: [email protected] arXiv:2106.10129v2 [cs.RO] 26 Aug 2021 1 Abstract Increasing the level of automation in pharmaceutical laboratories and production facilities plays a crucial role in delivering medicine to patients. However, the particular requirements of this field make it challenging to adapt cutting-edge technologies present in other industries. This article provides an overview of relevant approaches and how they can be utilized in the pharmaceutical industry, especially in development labo- ratories. Recent advancements include the application of flexible mobile manipulators capable of handling complex tasks. However, integrating devices from many different vendors into an end-to-end automation system is complicated due to the diversity of interfaces. Therefore, various approaches for standardization are considered in this article, and a concept is proposed for taking them a step further. This concept enables a mobile manipulator with a vision system to \learn" the pose of each device and - utilizing a barcode - fetch interface information from a universal cloud database. This information includes control and communication protocol definitions and a representa- tion of robot actions needed to operate the device.
    [Show full text]
  • Analytical Balance
    Analytical Balance Watch the movie on using an analytical balance.1 Analytical balances are used for very accurate, quantitative measurements of mass to the nearest 0.001 g. (Some read to 0.0001 g.) These are delicate instruments, subject to errors caused by vibration and drafts. These problems can be minimized with care and a certain amount of common sense. Figure 1 For optimum accuracy, the balance should be level. If it is not, inform the laboratory instructor, who will make the necessary adjustments. Do not lean on the bench while operating the balance. This may cause vibrations that are transmitted to the balance. To begin any measurement on the analytical balance, close the draft shield doors and press the button or control bar that turns on the balance. The display should indicate zero (0.000) g. If it does not, inform your laboratory instructor. To Weigh a Solid Object That is Not a Reagent Open the draft shield door and gently place the object on the center of the pan. Close the door; the mass will be displayed. Record the mass. Never weigh solid or liquid reagents directly on the 1../../documents/videos/balance.html c 2012 Advanced Instructional Systems, Inc. and Joi Phelps Walker. Portions c 2011 North Carolina State University 1 pan. Weighing paper or a container such as a beaker should be used for this purpose as described below. To Tare a Container and Weigh a Reagent 1 Open the draft shield door and gently place the container (or weighing paper) on the center of the pan.
    [Show full text]
  • Automation and Robotics Are Increasingly Prominent Features in the Laboratory
    Automation and robotics are increasingly prominent features in the laboratory. Freeing up scientists to be creative and transforming the working day for many individuals. a brief history 1875 1945 1961 1981 1993 2004 The earliest mention of Little progress was The world’s first Dr Masahide Sasaki Dr Rod Markin at the The NIH and 300 laboratory automation made until the dust industrial robotic arm opened the first fully University of Nebraska leaders in research in the chemical had settled after WW2 for factory automation automated laboratory Medical Center created and government literature is from 18751, when commercially was released by at the Kochi Medical one of the world’s first identified automation that’s 52 years before available automated Unimation, paving the school to make rapid automated clinical lab technology as crucial the first TV was equipment started to way for all automated and accurate blood management systems, in accelerating medical demonstrated!2 become much more robotics to follow. sampling a reality. tying together discovery and complex. Spotting a Others quickly followed computer processing improving health.5 demand, Washington and, within 10 years, with physical robotics. University was the first 72% of Japanese The original to teach students how national university LAB-InterLink system to operate automated hospitals had adopted consisted of multiple equipment. 3 lab automation.1 testing stages along 112 feet of conveyor belts and was capable of full sample prep, testing and archiving.4 state of the market now $ 3.92
    [Show full text]
  • Lab and Shop Orientation
    Lab and Shop Orientation The lab is located at SNARL, 1016 Mount Morrison Road. The main lab area consists of 4 individual lab spaces (1002a-d). Smaller, individual labs (1101-1103) are available as well as one environmental chamber (cold room in lab 1101). The Layout can be seen on the following floor plan. In addition, we have one animal quarter, nine stream channels and the fish house. Assignment and billing is per laboratory space or per channel. The emergency eye wash and shower are located in lab 2002 between 2002a and 2002d (Figure 1). An additional eye wash is located in room 1101 (Figure 2). The common area lab (1005) contains most of the shared equipment including the water system, fume hood and waste storage. Figure 1: Emergency eye wash and shower located in lab 2002. Figure 2: Emergency eye wash station in Lab 1101. Some labs are assigned long-term to our resident research staff. These are currently labs 1003 and 1010. Others are held back for our short-term users. Users are permitted to request a particular lab space but in order to maximize lab use final assignment is at the discretion of the Director. The equipment listed below has been designated for general use. We will need to know in advance of your visit what equipment you will require. If you require use of any equipment located in one of the permanent staff labs (1003 and 1010), please contact the researcher or one of their technicians to arrange scheduling. In addition, any equipment requiring long-term storage of samples (i.e.
    [Show full text]
  • MEASUREMENT and DENSITY PROCEDURE INTRODUCTION: This Experiment Involves the Measurement of Mass and Volume Values Followed by Calculations of Density
    MEASUREMENT AND DENSITY PROCEDURE INTRODUCTION: This experiment involves the measurement of mass and volume values followed by calculations of density. THE PROPER NUMBER IF SIGNIFICANT FIGURES WILL BE USED FOR ALL MEASUREMENT RECORDINGS AND ALL CALCULATION ANSWERS. The five parts to the experiment are: 1. Compare the measurements and recordings from three different laboratory equipment. 2. Determine the relative densities of solids and liquids via visual inspection of sample mixtures. 3. Calculate the density of an unknown metal solid via geometric measurements and calculation of the solid's volume. 4. Calculate the density of an unknown metal solid via water displacement measurement and calculation of the solid's volume. 5. Calculate and compare the densities of a golf ball and salt water. SUPPLY CHECKLIST: Before starting the laboratory exercise: 1. Obtain or locate the following equipment. Most can be found in the drawers and cabinet at your lab station or on center bench top in the laboratory: 100 mL and 500 mL graduated cylinders, stirring rod, 250 mL beaker, centimeter rulers, metal cylinder, golf ball, benchtop water bottle (with distilled water) 2. Locate the following substance. Most can be found on the center bench top or in the side fume hood in the laboratory: four density demo samples, and sodium chloride (salt) solution Use the white tap faucet for distilled water: EXAMPLE MEASUREMENT: Before you start to do any measurement: Look at the following example for length: Look at the graduated digits on the centimeter ruler. Identify the smallest digit (usually a decimal place value) that you would record a measurement (This is referred to as the proper digit based upon the precision of the instrument).
    [Show full text]