Thermo Scientific Pipetting Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oristm Cell Migration Assay – Tricoated
TM Oris Cell Migration Assay – TriCoated Product No.: CMATR1 & CMATR5 96-well, 2-D Assay for Investigating Cell Migration of Adherent Cell Lines on Three Coated Surfaces PROTOCOL & INSTRUCTIONS Table of Contents I. INTRODUCTION .................................................................................................. 2 II. ORISTM PLATE DIMENSIONS .............................................................................. 3 III. MATERIALS PROVIDED ...................................................................................... 3 IV. MATERIALS REQUIRED ...................................................................................... 3 V. CELL MIGRATION ASSAY – TRICOATED PROTOCOL .................................... 4 VI. DATA ACQUISITION ............................................................................................ 6 VII. ORDERING INFORMATION ................................................................................ 7 VIII. TERMS & CONDITIONS ...................................................................................... 7 Appendix I: Determining Optimal Cell Seeding Concentration ............................. 8 Appendix II: Determining Optimal Fluorescence Microplate Reader Settings ...... 8 Platypus Technologies, LLC 5520 Nobel Drive, Suite 100, Madison, WI 53711 Toll Free: 866.3296.4455 Phone: 608.237.1270 Fax: 608.237.1271 www.platypustech.com SP0034.06 Oris™ CELL MIGRATION ASSAY – TRICOATED I. INTRODUCTION The Oris™ Cell Migration Assay – TriCoated is a reproducible, sensitive, and flexible -
Increasing the Reproducibility of Serial Dilutions
Increasing the Reproducibility of Serial Dilutions Michael Beier* Abstract Pipetting serial dilutions reproducibly can be difficult because it is a time consuming and consequently error prone methodology, especially in 384 well plates. Based upon the assumption that your pipettes are properly maintained and calibrated, the human influence has the largest impact on pipetting results. Observing good pipetting practice helps immensely to improve reproducibility and accuracy. In this article we focus on a selection of good pipetting techniques, which if maintained offer the best chance of increasing and maintaining the reproducibility of your serial dilutions. Mixing is a key component of dilution protocols and in this article we additionally discuss different mixing parameters to help you achieve a homogenous sample. To maximize consistency of dilution assays, automating the process offers many benefits. For ensuring highly reproducible serial dilutions we outline what features an automated pipetting system should have and introduce the VIAFLO ASSIST – a product purpose designed for this task. Introduction to good pipetting practice Good pipetting practice describes guidelines covering the basic techniques to ensure that the pipettes are used in an optimal and reproducible manner. Before preparing your assay, you should perform a pre-wet of your pipette tips. Do this by aspirating and dispensing the full volume 2-3 times. This procedure not only equilibrates temperature differences between liquid and tip but also humidifies the dead air space inside the pipette and tip. Neglecting to perform a pre-wet can result in a smaller delivery volume in the first few dispenses, thereby introducing errors into your subsequent dilution steps. -
Autoclave Quick Guide
Office of Biological Safety Autoclave Operation Quick Reference Guide Training: ALL users MUST undergo documented training for operation of the autoclave. Record each use of the autoclave in a log: Date, User ID, cycle type and nature of material in load Personal Protective Equipment (PPE) needed: ¾ Wear eye protection, lab coat, gloves along with heat resistant gloves. Rubberized apron, sleeve guards and face shield are recommended when autoclave is hot or splash risk is present. Hints and Precautions ¾ Become familiar with the manufacturer’s operations manual of your autoclave model(s). ¾ Plastics used for autoclaving MUST be labeled as autoclavable – otherwise the plastic will melt. ¾ Waste bags to be autoclaved must be loosely packed and not more than 2/3 filled. Steam must be able to penetrate to all contents of the bag. ¾ Sharps or pointed hard objects should not be placed directly into an autoclave bag; a thicker or rigid container must be used (such as a sharps container). ¾ Avoid overfilling an autoclave with loads or allowing a load to contact the chamber walls. ¾ Transferring waste contents from an overfilled bag to another bag should be avoided! This practice can lead to injury and/or exposure to contaminants. ¾ Do not leave an autoclave operating unattended for long periods of time; operation should be monitored periodically during a cycle in case of failure. ¾ Never autoclave solvents, combustible, volatile, flammable, radioactive or corrosive materials (e.g. ethanol, methanol, acids, bases, phenol) ¾ Remove extraneous items and combustible materials from around the autoclave exterior. Loading ¾ Follow manufacturer’s loading instructions for your autoclave model ¾ Transport loads on a cart and in secondary containers to reduce spills ¾ Clean item/container sterilization Loosen caps or lids to avoid dangerous pressure build-up during cycle Place containers in a tray and load the tray into the autoclave – this is easier to load and unload and will catch spills. -
Evos Cell Imaging Analysis Systems
Imaging, labeling, and detection solutions Microscopy | High-content analysis | Cell counting | Plate reading Minimizing the complexities of cellular analysis Our cellular analysis product portfolio combines the strengths of Invitrogen™ fluorescent reagents and a complete line of versatile analysis instrumentation. Select from a line of heavily peer-referenced platforms to make the discoveries that catalyze advances toward your research goals of tomorrow. Invitrogen™ EVOS™ imaging systems Our comprehensive imaging portfolio includes: • Cell imaging systems • Automated cell counting systems • High-content analysis systems Invitrogen™ Countess™ cell counters • Cell imaging reagents • Microplate readers All of our analysis systems are designed to work together— Thermo Scientific™ CellInsight™ from the initial cell culture check to more complex analyses. high-content analysis systems Discover more about your samples with automated cell counting, long-term live-cell imaging, automated multiwell plate scanning, and phenotypic screening. Thermo Scientific™ Varioskan™ LUX multimode plate reader Contents Microscopy Compact and portable imaging systems 4 EVOS imaging systems at a glance 5 EVOS M7000 Imaging System 6 Live-cell imaging with the Onstage Incubator 8 Image analysis with Celleste software 10 EVOS M5000 Imaging System 12 EVOS FLoid Imaging Station 14 EVOS XL Core Imaging System 15 EVOS vessel holders and stage plates 16 The power of LED illumination 17 EVOS objectives 18 Fluorophore selection guide 20 High-content analysis CellInsight high-content analysis platforms 22 CellInsight CX7 LZR High-Content Analysis Platform 24 CellInsight CX5 High-Content Screening Platform 25 HCS Studio Cell Analysis Software 26 Store Image and Database Management Software 27 Cell counting Countess II Automated Cell Counters 28 Plate reading Microplate readers 30 Microscopy Compact and portable imaging systems Now you can have an easy-to-use cell imaging platform From intimate hands-on demonstrations to presentations of where you want it and when you want it. -
Pouring Plates from Prepared Bottled Media
Pouring Plates from Prepared Bottled Media Primary Hazard Warning Never purchase living specimens without having a disposition strategy in place. When pouring bottles, agar is HOT! Burning can occur. Always handle hot agar bottles with heat-protective gloves. For added protection wear latex or nitrile gloves when working with bacteria, and always wash hands before and after with hot water and soap. Availability Agar is available for purchase year round. Information • Storage: Bottled agar can be stored at room temperature for about six months unless otherwise specified. Never put agar in the freezer. It will cause the agar to breakdown and become unusable. To prevent contamination keep all bottles and Petri dishes sealed until ready to use. • Pouring Plates • Materials Needed: • Draft-free enclosure or Laminar flow hood • 70% isopropyl alcohol • Petri dishes • Microwave or hot water bath or autoclave 1. Melt the agar using one of the following methods: a) Autoclave: Loosen the cap on the agar bottle and autoclave the bottle at 15 psi for five minutes. While wearing heat-protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. This takes approximately 15 minutes. b)Water Bath: Loosen the cap on the agar bottle and place it into a water bath. Water temperature should remain at around 100°C. Leave it in the water bath until the agar is completely melted. While wearing heat- protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. c) Microwave: Loosen the cap on the agar bottle before microwaving. -
Biohazardous Waste Handling for Eastern Kentucky University May 2018
Biohazardous Waste Handling For Eastern Kentucky University May 2018 Approved by The University Laboratory Safety Biohazard Subcommittee 1 Table of Contents Page Introduction 3-4 Definitions 5-6 Responsibilities and roles 7-9 Main body of document 10-17 Appendix 1 18-22 Autoclave procedures in SB 18-20 Autoclave procedures in Disney 218 21-22 Appendix 2 copy of IACUC form H: Use of hazardous agents 23 2 3 Introduction This document has been prepared to provide guidance to Eastern Kentucky University employees and students in the use and disposal of biohazardous materials in compliance with regulatory requirements. For this document “biohazardous waste” is defined as any discarded material which might include infectious laboratory materials or agents regulated by federal, state, and local authorities. At a minimum, the following categories should be considered as biohazardous waste materials: 1. Cultures and stocks of infectious biological agents, including laboratory waste, discarded live or attenuated viruses or related agents, culture dishes and other laboratory supplies used in the production or use of these agents, and any other related devices. 2. Human blood is a biohazardous waste. Human blood should treated in accordance with the “Eastern Kentucky University Bloodborne Pathogens Exposure Control Plan”. This plan can be found at the Risk Management Insurance/ Environmental Health and Safety website https://ehsrmi.eku.edu/occupational-safety. 3. Sharps: These are defined as needles, syringes, scalpels, etc., as well as any object sharp enough to puncture the skin (i.e. microscope slides, cover slips) that is used in the laboratories that could possibly come in contact with material that may be considered biohazardous waste. -
ELISA Plate Reader
applications guide to microplate systems applications guide to microplate systems GETTING THE MOST FROM YOUR MOLECULAR DEVICES MICROPLATE SYSTEMS SALES OFFICES United States Molecular Devices Corp. Tel. 800-635-5577 Fax 408-747-3601 United Kingdom Molecular Devices Ltd. Tel. +44-118-944-8000 Fax +44-118-944-8001 Germany Molecular Devices GMBH Tel. +49-89-9620-2340 Fax +49-89-9620-2345 Japan Nihon Molecular Devices Tel. +06-6399-8211 Fax +06-6399-8212 www.moleculardevices.com ©2002 Molecular Devices Corporation. Printed in U.S.A. #0120-1293A SpectraMax, SoftMax Pro, Vmax and Emax are registered trademarks and VersaMax, Lmax, CatchPoint and Stoplight Red are trademarks of Molecular Devices Corporation. All other trademarks are proprty of their respective companies. complete solutions for signal transduction assays AN EXAMPLE USING THE CATCHPOINT CYCLIC-AMP FLUORESCENT ASSAY KIT AND THE GEMINI XS MICROPLATE READER The Molecular Devices family of products typical applications for Molecular Devices microplate readers offers complete solutions for your signal transduction assays. Our integrated systems γ α β s include readers, washers, software and reagents. GDP αs AC absorbance fluorescence luminescence GTP PRINCIPLE OF CATCHPOINT CYCLIC-AMP ASSAY readers readers readers > Cell lysate is incubated with anti-cAMP assay type SpectraMax® SpectraMax® SpectraMax® VersaMax™ VMax® EMax® Gemini XS LMax™ ATP Plus384 190 340PC384 antibody and cAMP-HRP conjugate ELISA/IMMUNOASSAYS > nucleus Single addition step PROTEIN QUANTITATION cAMP > λEX 530 nm/λEM 590 nm, λCO 570 nm UV (280) Bradford, BCA, Lowry For more information on CatchPoint™ assay NanoOrange™, CBQCA kits, including the complete procedure for this NUCLEIC ACID QUANTITATION assay (MaxLine Application Note #46), visit UV (260) our web site at www.moleculardevices.com. -
The Eppendorf Mechanical Pipettes Research® Plus and Reference 2 – Fully Autoclavable, Easy Adjustment, Quick and Simple Maintenance
APPLICATION NOTE No. 198 The Eppendorf Mechanical Pipettes Research® plus and Reference 2 – Fully Autoclavable, Easy Adjustment, Quick and Simple Maintenance Kornelia Ewald, Ulrike Gast, Eppendorf AG, Hamburg, Germany Abstract Research plus and Reference 2 pipettes are easy to clean safe to perform. This Application Note demonstrates the and maintain. Hence, routine maintenance can be easily special features of maintaining and cleaning Research performed by the user, saving valuable time. Readjust- plus pipettes and provides detailed information on ment of the pipette for liquids whose physical properties changing the pipette‘s adjustment. diff er signifi cantly from those of water is also easy and Introduction Research plus and Reference 2 are manual pipettes with Adjustment for specifi c liquids or altitude diff erent features and functional principles (e.g. one-button / During production, piston stroke pipettes are adjusted two-button operation). Fulfi lling the highest requirements, to distilled water under certifi ed measuring conditions. both pipettes have equal functionalities in terms of decon- To indicate the adjustment, all Research plus pipettes carry tamination, maintenance and adjustment. In order to meet an adjustment seal (Fig. 1). If necessary, adjustment for the high requirements of a modern laboratory, high quality specifi c liquids or for altitude can be carried out easily by piston stroke pipettes should be partly or fully autoclavable the user. The red adjustment seal, which is applied to the as well as UV resistant. adjustment opening following an adjustment, serves to The Eppendorf Research plus and Reference 2 pipettes can visualize a change of adjustment settings (Fig. 1). be decontaminated either by UV light or by autoclaving the entire instrument. -
Elara11 Autoclave Quick Installation Guide
OVER YEARS S ince 1925 Elara11 Autoclave Quick Installation Guide 1. Examine the outer carton and autoclave for any signs of damage. Immediately notify your dealer or Tuttnauer USA of any signs of damage. 2. To avoid injuries, lifting and carrying should be done by two people. • Lifting straps have been installed for your convenience. Lifting straps are for one time use only and should be removed and discarded after initial set up. 3. Place the sterilizer on a rigid level surface. The counter top or stand must be able to support 275lbs lbs Minimum 24”depth 4. The minimum depth of the counter top needs to be 24 inches. counter top required 5. It is mandatory to leave a minimum of 2” clearance between the back of the Elara11 and the wall. If located in a cabinet, the rear panel of the cabinet must be removed for proper air circulation. Failure to provide the needed clearance will result in failed cycles. 6. Side clearances should be a minimum of 2”. 7. Make sure all the feet are on the autoclave and none of them have been lost. 8. Connect the power cord to the socket on the rear of the autoclave; then plug it into the supply outlet. Power switch a. This unit requires a 230 volt 1 or 2 phase 15A supply. b. The acceptable operating voltage range is 220 to 235 volts. c. The installation of a Buck/Boost transformer (0.5KVA) may be required to meet the acceptable operating voltage. d. The supply outlet must be a properly grounded outlet. -
Wellwash and Wellwash Versa Washers for Expanded Functionality Ease of Use, Convenience, and Versatility for Washing Microplates in ELISA Assays
Wellwash and Wellwash Versa washers for expanded functionality Ease of use, convenience, and versatility for washing microplates in ELISA assays Reliable and easy-to-use Thermo Scientifi ™c Wellwash™ microplate strip washers provide secure washing performance for routine and research ELISA applications. Wellwash washers feature a large color display with graphical user interface, local language versions, and non-pressurized bottles for optimal ease of use, convenience, and safety. The Thermo Scientifi ™c Wellwash™ Microplate Washer is the In addition, the Wellwash Versa washer off ers: basic model for washing 96-well plates. It is intended for • Very fast and simple instrument setup and use with use when only a few similar assays are run routinely. The color-coded tube fi ttings and liquid-level sensor cables Thermo Scientifi ™c Wellwash™ Versa Microplate Washer is the advanced model for 96-well plates that can also wash • Wide selection of wash heads for 96-well plates and cells and 384-well plates, off ering the enhanced fl exibility 1 x 16 wash head for 384-well plates needed for research use. • Specially designed 2 x 8-cell wash head for gentle washing of cells in a 96-well plate Wellwash and Wellwash Versa washers off er: • Easy setup of wash protocols through a large color • Two wash bottles and one rinse bottle for screen and a visual user interface increased fl exibility • A sweep mode to ensure an extremely low residual • Easy connection to automation systems volume in the well, resulting in excellent washing performance and reliable ELISA results Convenient and simple to use • Adjustable wash parameters, such as dispense and The large color screen makes Wellwash and Wellwash aspiration height and aspiration speed, for optimal Versa washers very easy and convenient to use. -
The Stoichiometry of a Reaction Introduction This Experiment Provides a Method to Determine the Mole Ratio in Which Two Substances Combine Chemically
The Stoichiometry of a Reaction Introduction This experiment provides a method to determine the mole ratio in which two substances combine chemically. Such information is helpful in determining the stoichiometry of a reaction, i.e. the balanced chemical equation and the information that can be derived from it. The principle underlying this experiment is based on keeping the quantity of one reactant constant while varying the quantity of a second reactant. The mass of the precipitate produced is then used as an indicator of the effect of varying the quantity of the second reactant. When enough of the second reactant has been added to completely react with the first reactant, there will be no further increase in the amount of the precipitate produced, regardless of how much of the second one is added. Equipment/Materials 0.1M Pb(NO3)2 Stirring rod 0.1M KI Funnel 5 % HNO3 Side-armed Erlenmeyer flask Filter paper Hot plate 10mL automatic pipets Analytical balance 50 mL beakers Wash bottle of DI water Safety • Goggles must be worn at all times in the laboratory. • Pour any leftover solution in the designated containers. • Follow your instructor’s directions for the disposal of the precipitates. Guiding Questions Which trial(s) will give the most precipitate? Why? 9A-1 Procedure 1. In this experiment the stoichiometry of the lead nitrate – potassium iodide system will be investigated. The volume of the potassium iodide will be held constant while the volume of the lead nitrate is varied. The concentration of both solutions will be 0.1000 M. Each lab group will be asked to prepare two combinations in the following table. -
2017 Automated Liquid Handling Resource Guide
The Lab Manager AUTOMATED LIQUID HANDLING RESOURCE GUIDE What You Need to Know When Buying an Automated Liquid Handling System BY RYAN ACKERMAN Upgrading Stand-Alone Automated Liquid Handling Systems to Workstations BY ANGELO DEPALMA, PhD Small-Volume Liquid Handling Requires Advanced Technology BY MIKE MAY, PhD 20 10 Common Liquid Handling Errors & How to Avoid Them 17 BY LAB MANAGER The Latest in Pipette Tip Design BY ANGELO DEPALMA, PhD Automated Liquid Handling Product Finder BY LAB MANAGER Automatic Liquid Handling Resource Guide 2017 What You Need to Know When Buying an Automated Liquid Handling System Automated liquid handlers come in a seemingly endless variety of configurations, with many different specifications. By Ryan Ackerman MAINTENANCE TIP: AUTOMATED LIQUID HANDLING The signs that you should get your automated liquid handler serviced are fairly obvious. If the system is constantly experiencing glitches or producing inconsistent, unreliable results, it’s probably time to do some maintenance. Mechanical problems are another hint that you may want to call your service technician—these issues can include pipette tips being out of calibration, the deck not being “framed” correctly, belts being worn out, or the pipette stages being out of alignment. Why is it important to know the typical sample How does the sensitivity to contamination affect the type volume being used? of automated liquid handler required? Automated liquid handlers come in a seemingly endless variety of As the instrumentation used to analyze samples becomes more configurations, with many different specifications. An important one sensitive, the methods used to transport and prepare the samples to consider is what minimum, or maximum dispensing volume is must become resistant to contamination to ensure no carryover correct for your processes.