Guide to the ATSC Mobile DTV Standard

Total Page:16

File Type:pdf, Size:1020Kb

Guide to the ATSC Mobile DTV Standard ATSC A/154:2013 ATSC Mobile DTV Recommended Practice 30 January 2013 ATSC Recommended Practice: Guide to the ATSC Mobile DTV Standard Doc. A/154:2013 30 January 2013 Advanced Television Systems Committee 1776 K Street, N.W., Suite 200 Washington, D.C. 20006 202-872-9160 1 ATSC A/154:2013 ATSC Mobile DTV Recommended Practice 30 January 2013 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 160 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include digital high definition television (HDTV), standard definition television (SDTV), data broadcasting, multichannel surround-sound audio, and satellite direct-to-home broadcasting. Note: The user's attention is called to the possibility that compliance with this Recommended Practice may require use of an invention covered by patent rights. By publication of this document, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. One or more patent holders have, however, filed a statement regarding the terms on which such patent holder(s) may be willing to grant a license under these rights to individuals or entities desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent holder. Revision History Version Date Initial version of A/154 approved (A/154:2011) 15 April 2011 Revision 1 approved (A/154:2013) 30 January 2013 2 ATSC A/154:2013 ATSC Mobile DTV Recommended Practice 30 January 2013 Table of Contents TABLE OF CONTENTS .................................................................................................................................. 3 1. SCOPE ..................................................................................................................................................... 7 1.1 Introduction and Background 7 1.2 Organization 8 2. REFERENCES ......................................................................................................................................... 8 2.1 Informative References 8 3. DEFINITION OF TERMS ........................................................................................................................ 10 3.1 Treatment of Syntactic Elements 10 3.2 Acronyms and Abbreviation 10 3.3 Terms 12 4. ATSC MOBILE DTV SYSTEM OVERVIEW ...........................................................................................13 4.1 Structure of the Standard 16 4.2 Physical Layer Overview 18 4.3 Management Layer Overview 20 4.4 Presentation Layer Overview 22 4.5 Systems Level Overview – Evolving the ATSC Mobile DTV System 24 5. RF/TRANSMISSION SYSTEM CHARACTERISTICS ............................................................................25 6. DATA TRANSPORT ............................................................................................................................... 25 6.1 Parades, Ensembles, and RS Frames 25 6.2 Insertion of Data into the RS Frames 27 6.3 Extraction of Data from RS Frames 27 6.4 Services 28 7. SIGNALING DATA DELIVERY AND USAGE ........................................................................................28 7.1 Signaling Data Structures 28 7.1.1 Overview of Hierarchical Signaling Structure 28 7.1.2 TPC Structure 29 7.1.3 FIC Structure 29 7.1.4 Service Signaling Channel (SSC) 31 7.1.5 Service Map Table (SMT) 32 7.1.6 Service Labeling Table 37 7.1.7 Guide Access Table 38 7.1.8 Cell Information Table 39 7.1.9 Rating Region Table 40 7.2 Timing of Signaling Data 40 7.3 Updates to Signaling Data 41 7.3.1 Update Propagation Mechanisms 41 7.3.2 Use Case A: Small Expansion of Ensemble and Services 43 7.3.3 Use Case B: Large Expansion of Ensembles and Services 48 7.3.4 Use Case C: Deleting Parades (and their Ensembles) 48 7.4 Multiple Protocol Versions of Signaling Data 48 7.5 Service Scans by Receivers 50 7.5.1 Fast Service Scan only through FIC 50 7.5.2 Intermediate Service Scan through FIC and SLT-MH 51 3 ATSC A/154:2013 ATSC Mobile DTV Recommended Practice 30 January 2013 7.6 Service Acquisition by Receivers 52 7.7 Receiver Handling of Updates to Signaling Data 53 7.8 Time of Day 53 8. ANNOUNCEMENT DATA DELIVERY AND USAGE .............................................................................54 8.1 Language Treatment in M/H Announcements and Signaling 55 8.1.1 Language Treatment in A/153 Part 4 (SG data) 55 8.1.2 Language Treatment in A/153 Part 3 (SMT Component Descriptors) 56 8.1.3 Mapping Language Tracks Between SMT and SG 56 8.2 ATSC-M/H-Specific Scoping of OMA BCAST SG 57 8.3 SG Delivery 57 8.3.1 Delivery Protocol Overview 57 8.3.2 SG Data Grouping and Filtering 58 8.3.3 M/H-Specific Aspects of SG Delivery 59 8.3.4 Announcement of Services in Other Broadcasts 60 8.4 SG Delivery Recommendations 60 8.4.1 In-Band SG Data Delivery 60 8.5 Receiver SG Acquisition Model 62 8.5.1 Bootstrapping and Guide Set 63 8.5.2 SG Acquisition 63 8.5.3 Data Merging and Conflict Resolution 63 8.5.4 Caching Strategies 64 8.6 Updates to Announcement Data 64 8.6.1 Broadcast SG 65 8.6.2 SG Delivered Over Interaction Channel 65 9. STREAMING DATA DELIVERY .............................................................................................................65 9.1 Streaming Data Delivery Mechanisms 65 9.1.1 Timing 65 9.1.2 Buffer Model 68 10. FILE DELIVERY ..................................................................................................................................... 68 10.1 File Delivery Mechanisms 68 10.2 FLUTE File Delivery Mechanism 68 10.3 Organizing Files into FLUTE Sessions 69 10.4 Extracting Files from FLUTE Sessions 70 11. APPLICATION FRAMEWORK ...............................................................................................................70 12. SERVICE PROTECTION DATA DELIVERY AND USAGE....................................................................70 12.1 Service Protection Mode of Operation and Data Structures 71 12.1.1 Broadcast Streams Protection 71 12.1.2 Four Layer Key Hierarchy 71 12.1.3 Trust Authority 72 12.1.4 Broadcast groups 72 12.1.5 Interactive vs. Broadcast-Only Mode 73 12.1.6 Broadcast Mode and Bandwidth Usage 73 12.1.7 Parental Control 74 12.1.8 ROAP Trigger Delivery 74 12.1.9 Signaling 74 12.2 Timing on Access Key Delivery 75 4 ATSC A/154:2013 ATSC Mobile DTV Recommended Practice 30 January 2013 12.2.1 Key Lifetimes 75 12.2.2 BCRO and Broadcast Message Delivery Scheduling 75 12.3 Extraction of Access Keys by Receivers 75 13. VIDEO SYSTEM CHARACTERISTICS .................................................................................................. 76 14. AUDIO SYSTEM CHARACTERISTICS .................................................................................................76 14.1 Loudness and Dynamic Range Control 76 14.1.1 Loudness Control 77 14.1.2 Dynamic Range Control 77 14.1.3 Applicability of Loudness and Dynamic Range Control Techniques Described in A/85 77 ANNEX A: MAPPING OF SERVICE MAP TABLE TO SERVICE GUIDE ................................... 79 A.1 Introduction 79 5 ATSC A/154:2013 ATSC Mobile DTV Recommended Practice 30 January 2013 Index of Figures and Tables Table 7.1 M/H Hierarchical Signaling Structures 29 Table 7.2 Example ATSC-M/H Broadcast Configuration 50 Table 7.3 Resulting Service Map Through FIC only Service Scan 50 Table 7.4 Resulting Service Map through FIC+SLT-MH only Service Scan 51 Table 7.5 Resulting Service Map through FIC+SMT-MH only Service Scan 51 Figure 4.1 The ATSC Mobile DTV system. 14 Figure 4.2 ATSC Mobile DTV broadcast system block diagram. 15 Figure 4.3 ATSC-M/H broadcast protocol stack. 16 Figure 4.4 The overall A/153 documentation structure. 17 Figure 4.5 Functional overview of the ATSC Mobile DTV system organized by sub-group. 18 Figure 4.6 Block diagram of an ATSC Mobile DTV transmission system. 19 Figure 4.7 ATSC Mobile DTV physical transport system. 20 Figure 4.8 OMA BCAST 4-layer key hierarchy. 22 Figure 4.9 Profiles in the AVC coding standard. 23 Figure 4.10 Toolkit of the HE AAC v2 system. 24 Figure 6.1. RS Frame payload byte array with augmentation. 26 Figure 7.1 SMT hierarchical structure. 32 Figure 7.2 Signaling hierarchy and the factors triggering updates in the signaling data. 42 Figure 7.3 Signaling configuration in M/H Frame (x). 44 Figure 7.4 Signaling configuration in M/H Frame (x + 1). 45 Figure 7.5 Signaling configuration in M/H Frame (x + 2). 47 Figure 12.1 The relationships between messages and keys. 72 6 ATSC A/154:2013
Recommended publications
  • Digital Television Systems
    This page intentionally left blank Digital Television Systems Digital television is a multibillion-dollar industry with commercial systems now being deployed worldwide. In this concise yet detailed guide, you will learn about the standards that apply to fixed-line and mobile digital television, as well as the underlying principles involved, such as signal analysis, modulation techniques, and source and channel coding. The digital television standards, including the MPEG family, ATSC, DVB, ISDTV, DTMB, and ISDB, are presented toaid understanding ofnew systems in the market and reveal the variations between different systems used throughout the world. Discussions of source and channel coding then provide the essential knowledge needed for designing reliable new systems.Throughout the book the theory is supported by over 200 figures and tables, whilst an extensive glossary defines practical terminology.Additional background features, including Fourier analysis, probability and stochastic processes, tables of Fourier and Hilbert transforms, and radiofrequency tables, are presented in the book’s useful appendices. This is an ideal reference for practitioners in the field of digital television. It will alsoappeal tograduate students and researchers in electrical engineering and computer science, and can be used as a textbook for graduate courses on digital television systems. Marcelo S. Alencar is Chair Professor in the Department of Electrical Engineering, Federal University of Campina Grande, Brazil. With over 29 years of teaching and research experience, he has published eight technical books and more than 200 scientific papers. He is Founder and President of the Institute for Advanced Studies in Communications (Iecom) and has consulted for several companies and R&D agencies.
    [Show full text]
  • LG Electronics U.S.A., Inc., Englewood Cliffs, New Jersey, and Zenith
    Before the U.S. DEPARTMENT OF COMMERCE NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION Washington, D.C. 20230 In the Matter of ) ) Implementation and Administration of a ) Docket Number Coupon Program for Digital-to-Analog ) 060512129-6129-01 Converter Boxes ) COMMENTS OF LG ELECTRONICS U.S.A., INC. LG Electronics U.S.A., Inc. (“LG Electronics”) hereby submits these comments in response to the Notice of Proposed Rulemaking (“Notice”) released by the National Telecommunications and Information Administration (“NTIA”) on July 25, 2006,1 concerning the agency’s implementation and administration of the digital-to-analog converter box coupon program mandated by the Digital Television Transition and Public Safety Act of 2005 (the “DTV Act”).2 With a firm deadline now in place for full-power television stations to cease analog broadcasting, it is imperative that the coupon program be conducted in a manner that not only minimizes the burden on those consumers requiring converter boxes but also maximizes the number of Americans able to enjoy the benefits of digital technology. In this regard, LG Electronics applauds NTIA for the comprehensive Notice, which obviously recognizes the critical importance of this final component to the nation’s 1 71 Fed. Reg. 42,067 (July 25, 2006) (“Notice”). 2 Deficit Reduction Act of 2005, Pub. L. No. 109-171, § 3005, 120 Stat. 4, 23-24 (2006) (“DTV Act”). transition to digital television (“DTV”) broadcasting. As a long-time leader in DTV technology and public policy matters, LG Electronics is pleased to respond. I. LG Electronics’ Role in the DTV Transition LG Electronics is the world’s leading manufacturer of television sets and the world’s largest manufacturer of flat-panel displays.
    [Show full text]
  • Ensuring PMCP/PSIP Interoperability
    June 30, 2008 Ensuring PMCP/PSIP Interoperability Recognizing the need for improved industry-wide PMCP interoperability, and thus more accurate PSIP, the ATSC has formed a new Working Group on PSIP Workflow Interoperability, PC-7. This group, reports to the ATSC’s Planning Committee and is chaired by Chris Lennon of Harris Corporation, who provided this contribution to TV TechCheck. For those not familiar with it, PMCP (ATSC Standard A/76B) is the Programming Metadata Communication Protocol. It provides a standardized means of communicating PSIP-related data among the systems that manage it. PMCP has been around for some time, and has recently enjoyed a significant uptake in the industry as interest in and awareness of the need for dynamic, accurate PSIP increases. Part of the scope of the ATSC Planning Committee is to “support the use of ATSC standards and recommended practices through activities such as education, training, demonstrations and fostering interoperability.” The goal of the PC-7 Working Group is to assemble a group of broadcasters and vendors who are implementing (or plan to implement) dynamic PSIP by way of PMCP interfaces between systems such as listing services, program management, traffic, automation, and PSIP generator systems. The group will work to improve interoperability of these systems by way of information exchange regarding PMCP and implementation issues, both on regular conference calls, and at one or more in-person interoperability sessions in Toronto in late Fall 2008. The PC-7 Working Group hopes to provide members a forum in which vendors and broadcasters can work out interoperability details in an open, cooperative environment, benefiting not only the vendors, but the broadcasters who will be implementing these interfaces.
    [Show full text]
  • Download ATSC 3.0 Implementation Guide
    ATSC 3.0 Transition and Implementation Guide INTRODUCTION This document was developed to provide broadcasters with ATSC 3.0 information that can inform investment and technical decisions required to move from ATSC 1.0 to ATSC 3.0. It also guides broadcasters who are planning for its adoption while also planning for channel changes during the FCC Spectrum Repack Program. This document, finalized September 9, 2016, will be updated periodically as insight and additional information is made available from industry testing and implementation of the new standard. This document was developed by the companies and organizations listed in the Appendix. Updates to the Guide are open to input from all companies and individuals that wish to contribute. Those interested in suggesting changes or updates to this document can do so at [email protected]. 2 ATSC 3.0 Transition and Implementation Guide EXECUTIVE SUMMARY Television service continues to evolve as content distributors – from traditional cable operators to internet-delivered services – utilize the latest technologies to reach viewers and offer a wide variety of program choices. New receiving devices are easily connected to the internet, which relies on the language of Internet Protocol (IP) to transport content. Now terrestrial broadcasters are preparing both for the adoption of an IP-ready next-generation digital TV (DTV) standard and a realignment of the U.S. TV spectrum. Viewers are already buying high-quality displays that respond to 4K Ultra HDTV signals and High Dynamic Range (HDR) capabilities. Immersive and personalized audio is also emerging, with the ability to enhance the quality and variety of audio.
    [Show full text]
  • NEWS Release
    NEWS Release SINCLAIR BROADCAST GROUP CONGRATULATES TSDSI AND ATSC FOR SIGNING STANDARDS ADOPTION AGREEMENT ATSC 3.0 Comes to India Hunt Valley, MD (March 29, 2021) – Sinclair Broadcast Group, Inc. (“Sinclair”) (Nasdaq: SBGI) and ONE Media 3.0, LLC (“ONE Media”) applaud the Telecom Standards Development Society, India (TSDSI) and the Advanced Television Systems Committee (ATSC) for signing an agreement to enable adoption of ATSC standards for broadcast services on mobile devices in India. As members of both standards organizations, Sinclair and ONE Media have actively supported co- operative efforts between TSDSI and ATSC on this agreement as well as detailed standards contributions and joint U.S. and Indian activities. Of particular significance, ATSC 3.0, the world’s first Internet-Protocol-based television broadcast standard, has many elements of convergence and compatibility with international telecom standards that have been recognized by this agreement as a strong candidate for Direct-to-Mobile broadcast for the billion strong mobile user base in India. Developed by the Advanced Television Systems Committee, the ATSC 3.0 standard has been adopted in both the United States and the Republic of Korea. Unlike other digital terrestrial broadcast standards including the European DVB-T, Japanese/Brazilian ISDB-T, and Chinese DTMB platforms, it is purpose-built for the modern 5G telecom era of convergence with the ability to introduce new waveforms and features for rapidly evolving use cases. “We’re delighted that leaders in broadcast and telecom standards are charting a way forward to break traditional walls between these verticals in the interest of creating the most cost-effective broadcast solution for massive cellularized deployment.
    [Show full text]
  • ATSC Forum Overview
    ATSC Digital Television Update Seminario ATSC CONATEL, Caracas, Venezuela Robert Graves October 10, 2005 About the ATSC Advanced Television Systems Committee Technical Standards for Digital Television (DTV) and Implementation Activities – Open, due-process organization – Standards are available (no charge) at www.atsc.org Membership Organization – Approximately 150 Members – Broad, cross-industry participation • Broadcasters, cable, satellite, computer, motion picture, consumer electronics, computer and professional equipment manufacturers • Other standards and trade organizations – SMPTE, CEA, IEEE, SCTE, NAB, NCTA, MSTV About the ATSC Forum ATSC Forum is an affiliate of ATSC, established in late 2001 to promote DTV and ATSC standards, especially throughout Latin America Our mission: – Educate broadcasters, manufacturers, government policy makers and others in various countries around the world regarding the benefits of digital television services – Advocate adoption of the ATSC family of digital television standards in order to achieve those benefits www.atscforum.org – In Spanish, Portuguese and English ATSC Forum Members ATSC Micronas Semiconductors Aircode (Korea) Microsoft ARTEAR (Argentina) MIT Assoc. of Public TV Stations NAB ATI Technologies Sencore Canadian Digital Television STMicroelectronics CAPER (Argentina) TELEFE (Argentina) Capitol Broadcasting/WRAL Televisa (Mexico) CBS Texas Instruments Dolby Laboratories Triveni Digital ETRI (Korea) Tri-Vision Electronics (Canada) Harmonic TV Azteca (Mexico)
    [Show full text]
  • Report ITU-R BT.2295-3 (02/2020)
    Report ITU-R BT.2295-3 (02/2020) Digital terrestrial broadcasting systems BT Series Broadcasting service (television) ii Rep. ITU-R BT.2295-3 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation 2021 Edition
    ITUPublications International Telecommunication Union Radiocommunication Sector Handbook on digital terrestrial television broadcasting networks and systems implementation 2021 edition Handbook on digital terrestrial television broadcasting networks and systems implementation 2021 edition ITU-R ¤ ITU 2021 (Revised version) All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Handbook on digital terrestrial television broadcasting networks and systems implementation iii Editors’ Foreword In 2002 ITU published its first Handbook on digital terrestrial television under the title Digital terrestrial television broadcasting in the VHF/UHF bands1 as guidance to engineers responsible for the implementation of digital terrestrial television broadcasting (DTTB). In the Handbook, new digital broadcasting technologies were explained in detail, for example a splendid description of the Discrete Cosine Transform (DCT) coding that is the basis of all past and present TV compression systems, as well as a very instructive chapter on signal power summation. Most of that content are not repeated in this new Handbook on digital terrestrial television broadcasting networks and systems implementation. Therefore, the version 1.01, which was published by ITU in the year 2002, has not lost value and should still be consulted. Since 2002, DTTB has tremendously evolved, not only in technical but also in regulatory aspects. For example, at the turn of the century, MPEG had just started to develop the compression scheme MPEG-4, and HEVC was not known at all. In two sessions, in 2004 and 2006, the important ITU Regional Radiocommunication Conference RRC-06 was held in Geneva and agreed a new frequency plan for digital broadcasting in Region 1 (except Mongolia) and in Iran.
    [Show full text]
  • Video Software-Defined Toolkits ACCELERATE YOUR RF DIGITAL VIDEO BROADCAST RECEIVER TESTING
    Video Software-Defined Toolkits ACCELERATE YOUR RF DIGITAL VIDEO BROADCAST RECEIVER TESTING DVB-T, DVB-T2, ISDB-T, DMB, DTMB, CMMB, ATSC The AST-1000 is an extensible, future-proofed platform that can handle all of today’s infotainment RF and non-RF (e.g., CAN) test needs while also easily accommodating changing standards, new protocols and additional applications for wide-ranging product test and validation needs. Featuring Averna’s leading RF and test expertise, the software-defined AST-1000 is powered by the NI VST and LabVIEW, and can generate all common radio, digital video, as well as simulate GNSS signals. FULL SUITE OF VIDEO SIGNAL GENERATORS To solve all your video signal test needs, Averna’s software-defined video toolkits generate perfect analog and digital video broadcast signals for the most common worldwide standards like ATSC, CMMB, DTMB, DVB-T, DVB-T2, and ISDB-T. Without expanding your hardware footprint or having to juggle different instruments, you can generate any signal you need via the handy console, accelerating your RF product testing. With our signal generator toolkits at your fingertips, you can quickly access signal and test libraries, set up and take measurements, save user-defined configurations, use the APIs to accelerate test-plan development and to automate validation and manufacturing tests— including from within NI TestStand. Video Software-Defined Toolkits DVB-T The DVB-T Software toolkit offers a standards-based test solution for designing, evaluating and manufacturing Digital Video Broadcasting-Terrestrial (DVB-T) receivers and transmitters. DVB-T is the Europe-based consortium standard for broadcast transmission of digital terrestrial television.
    [Show full text]
  • Carriage of Legacy TV Data Services
    ATSC Standard: Carriage of Legacy TV Data Services Document A/99, 23 July 2008 Advanced Television Systems Committee, Inc. 1750 K Street, N.W., Suite 1200 Washington, D.C. 20006 Advanced Television Systems Committee Document A/99 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 140 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include digital high definition television (HDTV), standard definition television (SDTV), data broadcasting, multichannel surround-sound audio, and satellite direct-to-home broadcasting. Contact information is given below. Mailing address Advanced Television Systems Commmittee, Inc. 1750 K Street, N.W., Suite 1200 Washington, D.C. 20006 Telephone 202-872-9160 (voice) 202-872-9161 (fax) Web site http://www.atsc.org E-mail [email protected] Note: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0154220 A1 Dieterich (43) Pub
    US 2002O154220A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0154220 A1 Dieterich (43) Pub. Date: Oct. 24, 2002 (54) VIDEO STREAMS FOR CLOSED CAPTION Publication Classification TESTING AND THE LIKE (51) Int. Cl." ..................................................... H04N 17/02 (76) Inventor: Charles B. Dieterich, Kingston, NJ (52) U.S. Cl. ............................................ 348/184; 348/180 (US) Correspondence Address: (57) ABSTRACT STEVE MENDELSOHN MENDELSOHN & ASSOCIATES, P.C. 1515 MARKET STREET, SUITE 715 PHILADELPHIA, PA 19102 (US) A data structure, Such as a digital television Signal, includes (a) a video stream representing a picture and (b) auxiliary (21) Appl. No.: 10/124,337 information, Such as a closed caption Stream. In one embodi ment, the picture has an inset window representative of a (22) Filed: Apr. 17, 2002 reduced version of the picture properly overlaid by the Related U.S. Application Data auxiliary information. In another embodiment, the data Structure has two or more auxiliary information Streams, and (60) Provisional application No. 60/284,600, filed on Apr. the picture is used to independently test the auxiliary infor 18, 2001. Provisional application No. 60/284,601, mation processing of each of the auxiliary information filed on Apr. 18, 2001. StreamS. SARNOFF CCTEST CORPORATION VEOEIA-608TABLE Wif CAP CC TEST CHARACTER UPPERCASE VIDEO W/1 CAPT SE(c) 2002 EIA-608TABLE 1 CHARACTER SET UPPERCASE (c) 2002 SARNOFF CORP 302 Patent Application Publication Oct. 24, 2002 Sheet 1 of 25 US 2002/0154220 A1 108 BITSTREAM SOURCE CEA/WHD-TV DTWCCTEST PROGRAM ITERATION 1 EIA-608 TABLE 1 CHARACTER SET-UPPERCASE: ABCDEFGHIJKLMNOPQRSTUVWXYZ (CCI) EA-608TABLE CHARACTERSETUPPERCASE ABCDEFGHIJKLMNOPQRSTUVWXMZ FIG.
    [Show full text]
  • ATSC Digital Television Standard: Part 4 – MPEG-2 Video System Characteristics
    ATSC Digital Television Standard: Part 4 – MPEG-2 Video System Characteristics Document A/53 Part 4:2009, 7 August 2009 Advanced Television Systems Committee, Inc. 1776 K Street, N.W., Suite 200 Washington, D.C. 20006 Advanced Television Systems Committee Document A/53 Part 4:2009 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 140 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include digital high definition
    [Show full text]