ATSC Standard A/52:2018

Total Page:16

File Type:pdf, Size:1020Kb

ATSC Standard A/52:2018 ATSCA/52:2018 Digital Audio Compression (AC-3, E-AC-3) 25 January 2018 ATSC Standard: Digital Audio Compression (AC-3, E-AC-3) Doc. A/52:2018 25 January 2018 Advanced Television Systems Committee 1776 K Street, N.W. Washington, D.C. 20006 202-872-9160 i ATSCA/52:2018 Digital Audio Compression (AC-3, E-AC-3) 25 January 2018 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable & Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 140 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include digital high definition television (HDTV), standard definition television (SDTV), data broadcasting, multichannel surround-sound audio, and satellite direct-to-home broadcasting. NOTE: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. One or more patent holders have, however, filed a statement regarding the terms on which such patent holder(s) may be willing to grant a license under these rights to individuals or entities desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent holder. ii ATSCA/52:2018 Digital Audio Compression (AC-3, E-AC-3) 25 January 2018 A/52 Revision History Version Approval Date A/52 10 November 1994 Annex A, “AC-3 Elementary Streams in an MPEG-2 Multiplex” 12 April 1995 Annex B, “AC-3 Data Stream in IEC958 Interface” 20 December 1995 Annex C, “AC-3 Karaoke Mode” 20 December 1995 A/52A 20 August 2001 Revision A corrected some errata in the detailed specifications, revised Annex A to include additional information about the DVB standard, removed Annex B that described an interface specification, and added a new annex, “Alternate Bit Stream Syntax,” which contributes (in a compatible fashion) some new features to the AC-3 bit stream. A/52B 14 June 2005 Revision B corrected some errata in the detailed specifications, and added a new annex, then titled “Enhanced AC-3 Bit Stream Syntax” which specified a non-backwards compatible syntax that offers additional coding tools and features. Informative references were removed from the body of the document and placed in a new Annex B. This version added new definitions for terms such as “frame” and “synchronization frame” that extended their original meanings without clearly noting the extensions. A/52:2010 22 November 2010 The 2010 revision of this standard restored the document structure to place the Scope as Section 1, restored Informative References, and made significant adjustments to Annex A in response to a request from CEA to clarify the semantics for AC-3 Elementary Streams in the MPEG-2 TS. Minor textual adjustments were made in as well. A/52:2012 23 March 2012 The 2012 revision of this standard changed the title of Annex E from “Enhanced AC-3 (E-AC-3) Bit Stream Syntax” to “Enhanced AC-3.” In addition, it added two new Annexes, Annex F titled “AC-3 and Enhanced AC-3 bit streams in the ISO Base Media File Format” and Annex G titled “Enhanced AC-3 Elementary Streams in the MPEG-2 Multiplex “(intended to match Annex A in structure and scope). It also clarified the “overloaded” terms added in Revision B; e.g., older versions of this standard used the terms “frame,” “synchronization frame” and “syncframe” interchangeably and had the same meaning. Subsequently the term “audio frame” was added and has a different meaning thus addressing some issues left by Revision B. Note: An updated version of this document was published on 17 May 2012 that corrected prefix letters in the table of contents. Corrigendum No. 1 17 December 2012 This corrigendum addresses service_type term overload by renaming the field in A/52 Annex G to audio_service_type. A/52:2015 24 November 2015 This revision added documentation for all of the audio service types matching the signaling in the “bsmod” data field, as well as documenting the use of an optional new structure defined by ETSI. A/52:2018 25 January 2018 This revision was developed to address various errata, update the external references as needed, and perform editorial updates as needed. The revision also expands Annex H to add a citation to the new ETSI TS 103 420 (“Backwards-compatible object audio carriage using Enhanced AC-3”). iii ATSCA/52:2018 Digital Audio Compression (AC-3, E-AC-3) 25 January 2018 Table of Contents 1. SCOPE 1 2. INTRODUCTION 1 2.1 Motivation 1 2.2 Encoding 2 2.3 Decoding 4 3. REFERENCES 4 3.1 Normative References 4 3.2 Informative References 5 4. DEFINITION OF TERMS 5 4.1 Compliance Notation 5 4.2 Treatment of Syntactic Elements 6 4.2.1 Reserved Elements 6 4.3 Acronyms, Abbreviations, and Terms 6 4.3.1 Terms 6 4.3.2 Syntactical Abbreviations 7 4.3.3 Audio Service Terms 10 5. BIT STREAM SYNTAX 11 5.1 Synchronization Frame 11 5.2 Semantics of Syntax Specification 12 5.3 Syntax Specification 12 5.3.1 syncinfo: Synchronization Information 13 5.3.2 bsi: Bit Stream Information 14 5.3.3 audioblk: Audio Block 15 5.3.4 auxdata: Auxiliary Data 19 5.3.5 errorcheck: Error Detection Code 20 5.4 Description of Bit Stream Elements 20 5.4.1 syncinfo: Synchronization Information 20 5.4.1.1 syncword: Synchronization Word, 16 Bits 20 5.4.1.2 crc1: Cyclic Redundancy Check 1, 16 Bits 20 5.4.1.3 fscod: Sample Rate Code, 2 Bits 20 5.4.1.4 frmsizecod: Frame Size Code, 6 Bits 20 5.4.2 bsi: Bit Stream Information 21 5.4.2.1 bsid: Bit Stream Identification, 5 Bits 21 5.4.2.2 bsmod: Bit Stream Mode, 3 Bits 21 5.4.2.3 acmod: Audio Coding Mode, 3 Bits 21 5.4.2.4 cmixlev: Center Mix Level, 2 Bits 22 5.4.2.5 surmixlev: Surround Mix Level, 2 Bits 22 5.4.2.6 dsurmod: Dolby Surround Mode, 2 Bits 22 5.4.2.7 lfeon: Low Frequency Effects Channel on, 1 Bit 23 5.4.2.8 dialnorm: Dialogue Normalization, 5 Bits 23 5.4.2.9 compre: Compression Gain Word Exists, 1 Bit 23 5.4.2.10 compr: Compression Gain Word, 8 Bits 23 5.4.2.11 langcode: Language Code Exists, 1 Bit 23 5.4.2.12 langcod: Language Code, 8 Bits 23 5.4.2.13 audprodie: Audio Production Information Exists, 1 Bit 23 iv ATSCA/52:2018 Digital Audio Compression (AC-3, E-AC-3) 25 January 2018 5.4.2.14 mixlevel: Mixing Level, 5 Bits 23 5.4.2.15 roomtyp: Room Type, 2 Bits 24 5.4.2.16 dialnorm2: Dialogue Normalization, ch2, 5 Bits 24 5.4.2.17 compr2e: Compression Gain Word Exists, ch2, 1 Bit 24 5.4.2.18 compr2: Compression Gain Word, ch2, 8 Bits 24 5.4.2.19 langcod2e: Language Code Exists, ch2, 1 Bit 24 5.4.2.20 langcod2: Language Code, ch2, 8 Bits 24 5.4.2.21 audprodi2e: Audio Production Information Exists, ch2, 1 Bit 24 5.4.2.22 mixlevel2: Mixing Level, ch2, 5 Bits 24 5.4.2.23 roomtyp2: Room Type, ch2, 2 Bits 25 5.4.2.24 copyrightb: Copyright Bit, 1 Bit 25 5.4.2.25 origbs: Original Bit Stream, 1 Bit 25 5.4.2.26 timecod1e, timcode2e: Time Code (first and second) Halves Exist, 2 Bits 25 5.4.2.27 timecod1: Time Code First Half, 14 Bits 25 5.4.2.28 timecod2: Time Code Second Half, 14 Bits 25 5.4.2.29 addbsie: Additional Bit Stream Information Exists, 1 Bit 25 5.4.2.30 addbsil: Additional Bit Stream Information Length, 6 Bits 25 5.4.2.31 addbsi: Additional Bit Stream Information, [(addbsil+1) × 8] Bits 26 5.4.3 audblk: Audio Block 26 5.4.3.1 blksw[ch]: Block Switch Flag, 1 Bit 26 5.4.3.2 dithflag[ch]: Dither Flag, 1 Bit 26 5.4.3.3 dynrnge:-Dynamic Range Gain Word Exists, 1 Bit 26 5.4.3.4 dynrng: Dynamic Range Gain Word, 8 Bits 26 5.4.3.5 dynrng2e: Dynamic Range Gain Word Exists, ch2, 1 Bit 26 5.4.3.6 dynrng2: Dynamic Range Gain Word ch2, 8 Bits 26 5.4.3.7 cplstre: Coupling Strategy Exists, 1 Bit 26 5.4.3.8 cplinu: Coupling in Use, 1 Bit 26 5.4.3.9 chincpl[ch]: Channel in Coupling, 1 Bit 27 5.4.3.10 phsflginu: Phase Flags in Use, 1 Bit 27 5.4.3.11 cplbegf: Coupling Begin Frequency Code, 4 Bits 27 5.4.3.12 cplendf: Coupling end Frequency Code, 4 Bits 27 5.4.3.13 cplbndstrc[sbnd]: Coupling Band Structure, 1 Bit 27 5.4.3.14 cplcoe[ch]: Coupling Coordinates Exist, 1 Bit 27 5.4.3.15 mstrcplco[ch]: Master Coupling Coordinate, 2 Bits 28 5.4.3.16 cplcoexp[ch][bnd]: Coupling Coordinate Exponent, 4 Bits 28 5.4.3.17 cplcomant[ch][bnd]: Coupling Coordinate Mantissa, 4 Bits 28 5.4.3.18 phsflg[bnd]: Phase Flag, 1 Bit 28 5.4.3.19 rematstr: Rematrixing Strategy, 1 Bit 28 5.4.3.20 rematflg[rbnd]: Rematrix Flag, 1 Bit 28 5.4.3.21 cplexpstr: Coupling Exponent Strategy, 2 Bits 29 5.4.3.22 chexpstr[ch]: Channel Exponent Strategy, 2 Bits 29 5.4.3.23 lfeexpstr: Low Frequency Effects
Recommended publications
  • Digital Television Systems
    This page intentionally left blank Digital Television Systems Digital television is a multibillion-dollar industry with commercial systems now being deployed worldwide. In this concise yet detailed guide, you will learn about the standards that apply to fixed-line and mobile digital television, as well as the underlying principles involved, such as signal analysis, modulation techniques, and source and channel coding. The digital television standards, including the MPEG family, ATSC, DVB, ISDTV, DTMB, and ISDB, are presented toaid understanding ofnew systems in the market and reveal the variations between different systems used throughout the world. Discussions of source and channel coding then provide the essential knowledge needed for designing reliable new systems.Throughout the book the theory is supported by over 200 figures and tables, whilst an extensive glossary defines practical terminology.Additional background features, including Fourier analysis, probability and stochastic processes, tables of Fourier and Hilbert transforms, and radiofrequency tables, are presented in the book’s useful appendices. This is an ideal reference for practitioners in the field of digital television. It will alsoappeal tograduate students and researchers in electrical engineering and computer science, and can be used as a textbook for graduate courses on digital television systems. Marcelo S. Alencar is Chair Professor in the Department of Electrical Engineering, Federal University of Campina Grande, Brazil. With over 29 years of teaching and research experience, he has published eight technical books and more than 200 scientific papers. He is Founder and President of the Institute for Advanced Studies in Communications (Iecom) and has consulted for several companies and R&D agencies.
    [Show full text]
  • LG Electronics U.S.A., Inc., Englewood Cliffs, New Jersey, and Zenith
    Before the U.S. DEPARTMENT OF COMMERCE NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION Washington, D.C. 20230 In the Matter of ) ) Implementation and Administration of a ) Docket Number Coupon Program for Digital-to-Analog ) 060512129-6129-01 Converter Boxes ) COMMENTS OF LG ELECTRONICS U.S.A., INC. LG Electronics U.S.A., Inc. (“LG Electronics”) hereby submits these comments in response to the Notice of Proposed Rulemaking (“Notice”) released by the National Telecommunications and Information Administration (“NTIA”) on July 25, 2006,1 concerning the agency’s implementation and administration of the digital-to-analog converter box coupon program mandated by the Digital Television Transition and Public Safety Act of 2005 (the “DTV Act”).2 With a firm deadline now in place for full-power television stations to cease analog broadcasting, it is imperative that the coupon program be conducted in a manner that not only minimizes the burden on those consumers requiring converter boxes but also maximizes the number of Americans able to enjoy the benefits of digital technology. In this regard, LG Electronics applauds NTIA for the comprehensive Notice, which obviously recognizes the critical importance of this final component to the nation’s 1 71 Fed. Reg. 42,067 (July 25, 2006) (“Notice”). 2 Deficit Reduction Act of 2005, Pub. L. No. 109-171, § 3005, 120 Stat. 4, 23-24 (2006) (“DTV Act”). transition to digital television (“DTV”) broadcasting. As a long-time leader in DTV technology and public policy matters, LG Electronics is pleased to respond. I. LG Electronics’ Role in the DTV Transition LG Electronics is the world’s leading manufacturer of television sets and the world’s largest manufacturer of flat-panel displays.
    [Show full text]
  • Ensuring PMCP/PSIP Interoperability
    June 30, 2008 Ensuring PMCP/PSIP Interoperability Recognizing the need for improved industry-wide PMCP interoperability, and thus more accurate PSIP, the ATSC has formed a new Working Group on PSIP Workflow Interoperability, PC-7. This group, reports to the ATSC’s Planning Committee and is chaired by Chris Lennon of Harris Corporation, who provided this contribution to TV TechCheck. For those not familiar with it, PMCP (ATSC Standard A/76B) is the Programming Metadata Communication Protocol. It provides a standardized means of communicating PSIP-related data among the systems that manage it. PMCP has been around for some time, and has recently enjoyed a significant uptake in the industry as interest in and awareness of the need for dynamic, accurate PSIP increases. Part of the scope of the ATSC Planning Committee is to “support the use of ATSC standards and recommended practices through activities such as education, training, demonstrations and fostering interoperability.” The goal of the PC-7 Working Group is to assemble a group of broadcasters and vendors who are implementing (or plan to implement) dynamic PSIP by way of PMCP interfaces between systems such as listing services, program management, traffic, automation, and PSIP generator systems. The group will work to improve interoperability of these systems by way of information exchange regarding PMCP and implementation issues, both on regular conference calls, and at one or more in-person interoperability sessions in Toronto in late Fall 2008. The PC-7 Working Group hopes to provide members a forum in which vendors and broadcasters can work out interoperability details in an open, cooperative environment, benefiting not only the vendors, but the broadcasters who will be implementing these interfaces.
    [Show full text]
  • Download ATSC 3.0 Implementation Guide
    ATSC 3.0 Transition and Implementation Guide INTRODUCTION This document was developed to provide broadcasters with ATSC 3.0 information that can inform investment and technical decisions required to move from ATSC 1.0 to ATSC 3.0. It also guides broadcasters who are planning for its adoption while also planning for channel changes during the FCC Spectrum Repack Program. This document, finalized September 9, 2016, will be updated periodically as insight and additional information is made available from industry testing and implementation of the new standard. This document was developed by the companies and organizations listed in the Appendix. Updates to the Guide are open to input from all companies and individuals that wish to contribute. Those interested in suggesting changes or updates to this document can do so at [email protected]. 2 ATSC 3.0 Transition and Implementation Guide EXECUTIVE SUMMARY Television service continues to evolve as content distributors – from traditional cable operators to internet-delivered services – utilize the latest technologies to reach viewers and offer a wide variety of program choices. New receiving devices are easily connected to the internet, which relies on the language of Internet Protocol (IP) to transport content. Now terrestrial broadcasters are preparing both for the adoption of an IP-ready next-generation digital TV (DTV) standard and a realignment of the U.S. TV spectrum. Viewers are already buying high-quality displays that respond to 4K Ultra HDTV signals and High Dynamic Range (HDR) capabilities. Immersive and personalized audio is also emerging, with the ability to enhance the quality and variety of audio.
    [Show full text]
  • NEWS Release
    NEWS Release SINCLAIR BROADCAST GROUP CONGRATULATES TSDSI AND ATSC FOR SIGNING STANDARDS ADOPTION AGREEMENT ATSC 3.0 Comes to India Hunt Valley, MD (March 29, 2021) – Sinclair Broadcast Group, Inc. (“Sinclair”) (Nasdaq: SBGI) and ONE Media 3.0, LLC (“ONE Media”) applaud the Telecom Standards Development Society, India (TSDSI) and the Advanced Television Systems Committee (ATSC) for signing an agreement to enable adoption of ATSC standards for broadcast services on mobile devices in India. As members of both standards organizations, Sinclair and ONE Media have actively supported co- operative efforts between TSDSI and ATSC on this agreement as well as detailed standards contributions and joint U.S. and Indian activities. Of particular significance, ATSC 3.0, the world’s first Internet-Protocol-based television broadcast standard, has many elements of convergence and compatibility with international telecom standards that have been recognized by this agreement as a strong candidate for Direct-to-Mobile broadcast for the billion strong mobile user base in India. Developed by the Advanced Television Systems Committee, the ATSC 3.0 standard has been adopted in both the United States and the Republic of Korea. Unlike other digital terrestrial broadcast standards including the European DVB-T, Japanese/Brazilian ISDB-T, and Chinese DTMB platforms, it is purpose-built for the modern 5G telecom era of convergence with the ability to introduce new waveforms and features for rapidly evolving use cases. “We’re delighted that leaders in broadcast and telecom standards are charting a way forward to break traditional walls between these verticals in the interest of creating the most cost-effective broadcast solution for massive cellularized deployment.
    [Show full text]
  • ATSC Forum Overview
    ATSC Digital Television Update Seminario ATSC CONATEL, Caracas, Venezuela Robert Graves October 10, 2005 About the ATSC Advanced Television Systems Committee Technical Standards for Digital Television (DTV) and Implementation Activities – Open, due-process organization – Standards are available (no charge) at www.atsc.org Membership Organization – Approximately 150 Members – Broad, cross-industry participation • Broadcasters, cable, satellite, computer, motion picture, consumer electronics, computer and professional equipment manufacturers • Other standards and trade organizations – SMPTE, CEA, IEEE, SCTE, NAB, NCTA, MSTV About the ATSC Forum ATSC Forum is an affiliate of ATSC, established in late 2001 to promote DTV and ATSC standards, especially throughout Latin America Our mission: – Educate broadcasters, manufacturers, government policy makers and others in various countries around the world regarding the benefits of digital television services – Advocate adoption of the ATSC family of digital television standards in order to achieve those benefits www.atscforum.org – In Spanish, Portuguese and English ATSC Forum Members ATSC Micronas Semiconductors Aircode (Korea) Microsoft ARTEAR (Argentina) MIT Assoc. of Public TV Stations NAB ATI Technologies Sencore Canadian Digital Television STMicroelectronics CAPER (Argentina) TELEFE (Argentina) Capitol Broadcasting/WRAL Televisa (Mexico) CBS Texas Instruments Dolby Laboratories Triveni Digital ETRI (Korea) Tri-Vision Electronics (Canada) Harmonic TV Azteca (Mexico)
    [Show full text]
  • Report ITU-R BT.2295-3 (02/2020)
    Report ITU-R BT.2295-3 (02/2020) Digital terrestrial broadcasting systems BT Series Broadcasting service (television) ii Rep. ITU-R BT.2295-3 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation 2021 Edition
    ITUPublications International Telecommunication Union Radiocommunication Sector Handbook on digital terrestrial television broadcasting networks and systems implementation 2021 edition Handbook on digital terrestrial television broadcasting networks and systems implementation 2021 edition ITU-R ¤ ITU 2021 (Revised version) All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Handbook on digital terrestrial television broadcasting networks and systems implementation iii Editors’ Foreword In 2002 ITU published its first Handbook on digital terrestrial television under the title Digital terrestrial television broadcasting in the VHF/UHF bands1 as guidance to engineers responsible for the implementation of digital terrestrial television broadcasting (DTTB). In the Handbook, new digital broadcasting technologies were explained in detail, for example a splendid description of the Discrete Cosine Transform (DCT) coding that is the basis of all past and present TV compression systems, as well as a very instructive chapter on signal power summation. Most of that content are not repeated in this new Handbook on digital terrestrial television broadcasting networks and systems implementation. Therefore, the version 1.01, which was published by ITU in the year 2002, has not lost value and should still be consulted. Since 2002, DTTB has tremendously evolved, not only in technical but also in regulatory aspects. For example, at the turn of the century, MPEG had just started to develop the compression scheme MPEG-4, and HEVC was not known at all. In two sessions, in 2004 and 2006, the important ITU Regional Radiocommunication Conference RRC-06 was held in Geneva and agreed a new frequency plan for digital broadcasting in Region 1 (except Mongolia) and in Iran.
    [Show full text]
  • Video Software-Defined Toolkits ACCELERATE YOUR RF DIGITAL VIDEO BROADCAST RECEIVER TESTING
    Video Software-Defined Toolkits ACCELERATE YOUR RF DIGITAL VIDEO BROADCAST RECEIVER TESTING DVB-T, DVB-T2, ISDB-T, DMB, DTMB, CMMB, ATSC The AST-1000 is an extensible, future-proofed platform that can handle all of today’s infotainment RF and non-RF (e.g., CAN) test needs while also easily accommodating changing standards, new protocols and additional applications for wide-ranging product test and validation needs. Featuring Averna’s leading RF and test expertise, the software-defined AST-1000 is powered by the NI VST and LabVIEW, and can generate all common radio, digital video, as well as simulate GNSS signals. FULL SUITE OF VIDEO SIGNAL GENERATORS To solve all your video signal test needs, Averna’s software-defined video toolkits generate perfect analog and digital video broadcast signals for the most common worldwide standards like ATSC, CMMB, DTMB, DVB-T, DVB-T2, and ISDB-T. Without expanding your hardware footprint or having to juggle different instruments, you can generate any signal you need via the handy console, accelerating your RF product testing. With our signal generator toolkits at your fingertips, you can quickly access signal and test libraries, set up and take measurements, save user-defined configurations, use the APIs to accelerate test-plan development and to automate validation and manufacturing tests— including from within NI TestStand. Video Software-Defined Toolkits DVB-T The DVB-T Software toolkit offers a standards-based test solution for designing, evaluating and manufacturing Digital Video Broadcasting-Terrestrial (DVB-T) receivers and transmitters. DVB-T is the Europe-based consortium standard for broadcast transmission of digital terrestrial television.
    [Show full text]
  • Carriage of Legacy TV Data Services
    ATSC Standard: Carriage of Legacy TV Data Services Document A/99, 23 July 2008 Advanced Television Systems Committee, Inc. 1750 K Street, N.W., Suite 1200 Washington, D.C. 20006 Advanced Television Systems Committee Document A/99 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 140 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include digital high definition television (HDTV), standard definition television (SDTV), data broadcasting, multichannel surround-sound audio, and satellite direct-to-home broadcasting. Contact information is given below. Mailing address Advanced Television Systems Commmittee, Inc. 1750 K Street, N.W., Suite 1200 Washington, D.C. 20006 Telephone 202-872-9160 (voice) 202-872-9161 (fax) Web site http://www.atsc.org E-mail [email protected] Note: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0154220 A1 Dieterich (43) Pub
    US 2002O154220A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0154220 A1 Dieterich (43) Pub. Date: Oct. 24, 2002 (54) VIDEO STREAMS FOR CLOSED CAPTION Publication Classification TESTING AND THE LIKE (51) Int. Cl." ..................................................... H04N 17/02 (76) Inventor: Charles B. Dieterich, Kingston, NJ (52) U.S. Cl. ............................................ 348/184; 348/180 (US) Correspondence Address: (57) ABSTRACT STEVE MENDELSOHN MENDELSOHN & ASSOCIATES, P.C. 1515 MARKET STREET, SUITE 715 PHILADELPHIA, PA 19102 (US) A data structure, Such as a digital television Signal, includes (a) a video stream representing a picture and (b) auxiliary (21) Appl. No.: 10/124,337 information, Such as a closed caption Stream. In one embodi ment, the picture has an inset window representative of a (22) Filed: Apr. 17, 2002 reduced version of the picture properly overlaid by the Related U.S. Application Data auxiliary information. In another embodiment, the data Structure has two or more auxiliary information Streams, and (60) Provisional application No. 60/284,600, filed on Apr. the picture is used to independently test the auxiliary infor 18, 2001. Provisional application No. 60/284,601, mation processing of each of the auxiliary information filed on Apr. 18, 2001. StreamS. SARNOFF CCTEST CORPORATION VEOEIA-608TABLE Wif CAP CC TEST CHARACTER UPPERCASE VIDEO W/1 CAPT SE(c) 2002 EIA-608TABLE 1 CHARACTER SET UPPERCASE (c) 2002 SARNOFF CORP 302 Patent Application Publication Oct. 24, 2002 Sheet 1 of 25 US 2002/0154220 A1 108 BITSTREAM SOURCE CEA/WHD-TV DTWCCTEST PROGRAM ITERATION 1 EIA-608 TABLE 1 CHARACTER SET-UPPERCASE: ABCDEFGHIJKLMNOPQRSTUVWXYZ (CCI) EA-608TABLE CHARACTERSETUPPERCASE ABCDEFGHIJKLMNOPQRSTUVWXMZ FIG.
    [Show full text]
  • ATSC Digital Television Standard: Part 4 – MPEG-2 Video System Characteristics
    ATSC Digital Television Standard: Part 4 – MPEG-2 Video System Characteristics Document A/53 Part 4:2009, 7 August 2009 Advanced Television Systems Committee, Inc. 1776 K Street, N.W., Suite 200 Washington, D.C. 20006 Advanced Television Systems Committee Document A/53 Part 4:2009 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 140 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include digital high definition
    [Show full text]