Asteraceae) Family

Total Page:16

File Type:pdf, Size:1020Kb

Asteraceae) Family University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-05-06 Biochemical and evolutionary studies of sesquiterpene lactone metabolism in the sunflower (Asteraceae) family Nguyen, Trinh Don Nguyen, T. D. (2013). Biochemical and evolutionary studies of sesquiterpene lactone metabolism in the sunflower (Asteraceae) family (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25121 http://hdl.handle.net/11023/702 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Biochemical and evolutionary studies of sesquiterpene lactone metabolism in the sunflower (Asteraceae) family by Trinh Don Nguyen A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA APRIL, 2013 © Trinh Don Nguyen 2013 Abstract Plants have evolved the capacity to synthesize a myriad of specialized metabolites which enhance their fitness in specific living conditions. These compounds are also widely utilized for human purposes. Elucidating the enzymes in plant specialized metabolism has been one of the main forces driving plant biochemistry. The more intriguing question, however, is how these enzymes evolved to acquire their existent functions. The Asteraceae, the largest flowering plant family, is well-known for its enormously diverse and lineage-characteristic contents of sesquiterpene lactones (STLs). Thousands of compounds in this subclass of specialized metabolites have been studied extensively for their structures and valuable bioactivities. However, the details of their metabolism are poorly understood. Studying STLs in the Asteraceae thus improves our knowledge of the biosynthesis of these compounds. Furthermore, the tight links between STLs and the Asteraceae family provide an excellent model to explore enzyme adaptive evolution. My thesis aims to advance our understanding of STL metabolism by focusing on elucidating the enzyme that is responsible for the oxidation of sesquiterpene to sesquiterpene carboxylic acid in the general STL biosynthetic route of the Asteraceae. In lettuce, two cytochrome P450- dependent monooxygenase (P450) isoforms responsible for oxidizing the three consecutive oxidations of germacrene A to germacrene A carboxylic acid in the biosynthesis of costunolide were characterized. This was achieved using a combination of genomic and biochemical approaches, and the aid of a metabolically-engineered yeast system. Furthermore, this germacrene A oxidase (GAO) activity was demonstrated to be highly conserved throughout the Asteraceae, even in the phylogenetically basal subfamily Barnadesioideae, which split from the rest of the family at least 50 million years go. Previous studies have characterized an Artemisia annua-specific sesquiterpene oxidase, amorphadiene oxidase (AMO), which is considered to have diverged from an ancestral GAO. The substrate specificity/promiscuity of AMO and GAOs towards each other’s natural substrates and seven other non-natural substrates was investigated to test the general hypothesis of enzyme evolution from ancestral promiscuity. The results from these combinatorial biochemistry studies and phylogenetic relations of AMO and GAOs provided deep insights into the evolution of these P450s in the context of the chemical diversity of the Asteraceae. ii Acknowledgements This work would never be possible without the kind supports of many people. First of all, I would like to express my gratitude to my supervisor, Dr. Dae-Kyun Ro, for introducing me to the exciting world of the sunflower family and terpenoids, and for mentoring and inspiring me throughout the years. I would like to thank Dr. Chendanda C. Chinnappa and Mrs. Janaki Chinnappa for encouraging me to get my education at the University of Calgary and making me feel like home in Canada. I want to thank my two Supervisory Committee members, Dr. Sui- Lam Wong and Dr. Gregory Moorhead, and Dr. Edward C. Yeung for continuously giving me helpful advice during my study. I would like to thank all current and former members of the Ro Lab, including Gillian MacNevin, Dr. Nobuhiro Ikezawa, Dr. Jens Göpfert, Vince Yang Qu, Dr. Hue T. Tran, Dr. Romit Chakrabarty, Dr. Benjamin Pickel, Kiva Ferraro, Tegan Haslam, Dr. Jorge Bariuso, Rod Mitchell, Mohamed Attia, Bryan Pyle, Merisa Tran, and Elysabeth Reavell- Roy for their help and friendliness. My research would have been very difficult without the kind help of many colleagues, particularly Dr. David Dietrich (University of Alberta), Chi Nguyen (University of California, Irvine), the late Dr. Dean McIntyre (University of Calgary), and Dr. Ping Zhang (University of Calgary). I also want to acknowledge Dr. John Vederas (University of Alberta), Dr. Sheryl S.C. Tsai (University of California, Irvine, USA), Dr. Isabelle Barrette-Ng (University of Calgary), and my colleagues from the University of Calgary’s Department of Biological Sciences, particularly the Facchini Laboratory and the Zaremberg Laboratory, for their supports. My study was financially supported in part by the University of Calgary’s Department of Biological Sciences, and the Bettina Bahlsen Memorial Graduate Scholarship. I want to thank all my friends in Calgary, especially anh Hoàng – Huyền, cô Kim – chú Dzũng, anh Thắng – chị Trang, and many Canadians who did not even let me know their names for their helps in times of need. I appreciate Dr. Dương Tấn Nhựt (Tây Nguyên Institute for Scientific Research, Viet Nam) and the Biotechnology Center of Hô Chi Minh City (Viet Nam) for supporting my intention to study in Canada. I am truly grateful to my grandparents, my parents and parents-in-law, my brothers and sister, cô Hiền – chú Tý, cô Kiều Anh – chú Chí, and chị Tuyết Phương for all their love, support, and encouragement. And to my wife, Thuỷ, I am forever indebted for your love, sacrifice, and friendship. iii Dedication , for always believing in me. iv Table of Contents Abstract .......................................................................................................................................... ii Acknowledgements ........................................................................................................................ iii Dedication ...................................................................................................................................... iv Table of Contents .............................................................................................................................v List of Tables ................................................................................................................................. ix List of Figures ..................................................................................................................................x List of Abbreviations .................................................................................................................... xii Published Materials ...................................................................................................................... xiv Chapter 1: General introduction ..................................................................................................1 1.1. Secondary or specialized metabolism in plants ......................................................................1 1.2. Terpenoid biosynthesis ...........................................................................................................5 1.2.1. Structures and functions of terpenoids ..............................................................................5 1.2.2. Biogenesis and cellular compartmentalization of the central precursors ..........................9 1.2.3. Biogenesis of terpenoid structural diversity by TPSs and modifying enzymes ..............12 1.2.4. Cytochrome P450-dependent monooxygenases .............................................................15 1.3. STLs in the Asteraceae family..............................................................................................17 1.3.1. Structures and functions of STLs ....................................................................................17 1.3.2. Occurrence of STLs in the Asteraceae family ................................................................19 1.3.3. Biosynthesis of STLs ......................................................................................................21 1.4. Approaches to understanding the biochemistry of plant specialized metabolism ................23 1.4.1. Traditional biochemical approaches ...............................................................................23 1.4.2. Genomics-based approaches ...........................................................................................24 1.4.3. Metabolic engineering and synthetic biology in studying specialized metabolism ........25 1.5. Adaptive enzyme evolution ..................................................................................................27 1.5.1. Enzyme evolution in the context
Recommended publications
  • Sesquiterpenoids and Phenolics from Crepis Conyzifolia
    Sesquiterpenoids and Phenolics from Crepis conyzifolia Wanda Kisiel* and Klaudia Michalska Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Pl-31-343 Krakow, Poland. Fax: +48 126374500. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56c, 961-964 (2001); received July 30/August 28, 2001 Crepis conyzifolia, Sesquiterpenoids, Phenolics From the roots of Crepis conyzifolia, two new and two known guaianolides were isolated together with three known phenylpropanoids. Structures of the new compounds were estab­ lished as 8ß-hydroxy-4ß, 15-dihydrozaluzanin C and 4ß, 15, llß, 13-tetrahydrozaluzanin C-3- O-ß-glucopyranoside by spectral methods. The identity of 8 -epiisolippidiol and dentalactone was also discussed. Introduction previously isolated from Crepis and Lactuca spe­ cies in our laboratory (Kisiel, 1983; Kisiel and Screening tests for potential anticancer agents Barszcz, 1995; Kisiel and Barszcz, 1997; Kisiel et from natural sources showed that crude alcoholic al., 2000). The identity of cichoriin (7) was estab­ extracts from plants belonging to the tribe Lactu- lished by comparison of its spectral data with those ceae of the Asteraceae exhibited chemoprotective in the literature (Kuwajima et al., 1992). The com­ effects on chemical carcinogenesis and differentia­ pound is reported for the first time from Crepis tion-inducing activities on human leukemia and species. Since no complete XH NMR data are mause melanoma cell lines. Some bioactive triter- available for 4 (Kisiel, 1983), we have included all pene and sesquiterpene lactone constituents of the our assignments in Table I, along with unreported plant extracts were isolated and identified (Taka- 13C NMR data in CDC13 and pyridine-d5.
    [Show full text]
  • Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia That Depends on Early Activation of the Camp Pathway
    The Journal of Neuroscience, July 1, 2002, 22(13):5687–5693 Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia that Depends on Early Activation of the cAMP Pathway K. A. Sluka Graduate Program in Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa 52242 Pain and hyperalgesia from deep somatic tissue (i.e., muscle tissue was reversed by spinal blockade of adenylate cyclase or and joint) are processed differently from that from skin. This protein kinase A (PKA). Interestingly, mechanical allodynia was study examined differences between deep and cutaneous tis- reversed if adenylate cyclase or PKA inhibitors were adminis- sue allodynia and the role of cAMP in associated behavioral tered spinally 24 hr, but not 1 week, after injection of capsaicin. changes. Capsaicin was injected into the plantar aspect of the Spinally administered 8-bromo-cAMP resulted in a similar pat- skin, plantar muscles of the paw, or ankle joint, and responses tern, with heat hypoalgesia and mechanical allodynia occurring to mechanical and heat stimuli were assessed until allodynia simultaneously. Thus, injection of capsaicin into deep tissues resolved. Capsaicin injected into skin resulted in a secondary results in a longer-lasting mechanical allodynia and heat hy- mechanical allodynia and heat hypoalgesia lasting ϳ3hr.In poalgesia compared with injection of capsaicin into skin. The contrast, capsaicin injection into muscle or joint resulted in a mechanical allodynia depends on early activation of the cAMP long-lasting bilateral (1–4 weeks) mechanical allodynia with a pathway during the first 24 hr but is independent of the cAMP simultaneous unilateral heat hypoalgesia.
    [Show full text]
  • Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
    Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury
    [Show full text]
  • Isolation, Identification and Characterization of Allelochemicals/Natural Products
    Isolation, Identification and Characterization of Allelochemicals/Natural Products Isolation, Identification and Characterization of Allelochemicals/Natural Products Editors DIEGO A. SAMPIETRO Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina CESAR A. N. CATALAN Instituto de Química Orgánica Universidad Nacional de Tucumán, Tucumán Argentina MARTA A. VATTUONE Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina Series Editor S. S. NARWAL Haryana Agricultural University Hisar, India Science Publishers Enfield (NH) Jersey Plymouth Science Publishers www.scipub.net 234 May Street Post Office Box 699 Enfield, New Hampshire 03748 United States of America General enquiries : [email protected] Editorial enquiries : [email protected] Sales enquiries : [email protected] Published by Science Publishers, Enfield, NH, USA An imprint of Edenbridge Ltd., British Channel Islands Printed in India © 2009 reserved ISBN: 978-1-57808-577-4 Library of Congress Cataloging-in-Publication Data Isolation, identification and characterization of allelo- chemicals/natural products/editors, Diego A. Sampietro, Cesar A. N. Catalan, Marta A. Vattuone. p. cm. Includes bibliographical references and index. ISBN 978-1-57808-577-4 (hardcover) 1. Allelochemicals. 2. Natural products. I. Sampietro, Diego A. II. Catalan, Cesar A. N. III. Vattuone, Marta A. QK898.A43I86 2009 571.9’2--dc22 2008048397 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher, in writing. The exception to this is when a reasonable part of the text is quoted for purpose of book review, abstracting etc.
    [Show full text]
  • The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium Intybus L.) Roots Promotor Prof
    The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Promotor Prof. dr. Æ. de Groot, hoogleraar in de bio-organische chemie, Wageningen Universiteit Co-promotoren Dr. M.C.R. Franssen, universitair hoofddocent, Laboratorium voor Organische Chemie, Wageningen Universiteit Dr. ir. H.J. Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Promotiecommissie Prof. dr. J. Gershenzon (Max Planck Institute for Chemical Ecology, Germany) Prof. dr. L.H.W. van der Plas (Wageningen Universiteit) Prof. dr. ir. I.M.C.M. Rietjens (Wageningen Universiteit) Prof. dr. E.J.R. Sudhölter (Wageningen Universiteit) Jan-Willem de Kraker The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit prof. dr. ir. L. Speelman in het openbaar te verdedigen op woensdag 9 januari 2002 des namiddags te vier uur in de Aula de Kraker, J.-W. The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Thesis Wageningen University – with summaries in English and Dutch ISBN 90-5808-531-7 Voorwoord — Preface De afgelopen vijf jaar was het voor mij witlof, dag in dag uit. Waarschijnlijk is dit ook de reden dat ik al ruim 3 jaar geen witlof meer kan ruiken, laat staan eet. Als je dan ongeacht waar je in Europa bent overal in de wegberm uitsluitend blauwe bloemen ziet opduiken, is het wel goed en verstandig er eens een punt achter te zetten. Hoewel het eind van dit promotie- onderzoek door al het ‘wachtgeldgedoe’ en bijbehorende ‘dode mussen’ wel erg abrupt en weinig chique kwam, kan ik me nu met goed gevoel weer eens op wat anders storten.
    [Show full text]
  • Production De Terpènes Fonctionnalisés Par Les Cytochromes P450 De Plantes Recombinants
    Université de Strasbourg Ecole doctorale des Sciences de la Vie et de la Santé (ED 414) Institut de Biologie Moléculaire des Plantes (CNRS, UPR2357) THESE Présentée pour obtenir le grade de DOCTEUR de l’Université de Strasbourg Discipline : Biochimie et biologie moléculaire par Carole Gavira Production de terpènes fonctionnalisés par les cytochromes P450 de plantes recombinants Soutenue le 26 février 2013 à Strasbourg devant le jury composé de : Dr. D. Werck-Reichhart Directeur de Recherche au CNRS, IBMP, Strasbourg Directeur de thèse Pr. F. Bourgaud Professeur à l’ENSAIA de Nancy Rapporteur Pr. A. Tissier Professeur à l’IPB Leibniz Institut, Halle, Allemagne Rapporteur Pr. T. Bach Professeur à l’Université de Strasbourg Examinateur Dr. R. Feyereisen Directeur de Recherche à l’INRA, Sophia-Antipolis Examinateur Remerciements J’adresse mes plus sincères remerciements à Mme Danièle Werck-Reichhart, ma Directrice de thèse, pour m’avoir donné l’opportunité de réaliser ces travaux et pour la confiance et la liberté qu’elle m’a accordée. Je remercie également M. Joseph Zucca, mon co- Directeur, et Mme Fanny Lambert, sa Collaboratrice, de la Société V. MANE Fils, qui ont été les initiateurs de ce projet réalisé en harmonie sous convention CIFRE, et qui m’ont permis de participer à deux congrès de renommée internationale. Je souhaite, d’une part, remercier vivement M. Thomas Bach, M. Frédéric Bourgaud, M. Alain Tissier et M. René Feyereisen d’avoir accepté d’être membres de mon jury. Je voudrais, d’autre part, remercier M. Christophe Crocoll, pour son aide précieuse et sa disponibilité, M. Erich Glawischnig et Mme Laurence Miesch pour leur collaboration.
    [Show full text]
  • Sesquiterpene Glycosides from the Roots of Codonopsis Pilosula
    Acta Pharmaceutica Sinica B 2016;6(1):46–54 Chinese Pharmaceutical Association Institute of Materia Medica, Chinese Academy of Medical Sciences Acta Pharmaceutica Sinica B www.elsevier.com/locate/apsb www.sciencedirect.com ORIGINAL ARTICLE Sesquiterpene glycosides from the roots of Codonopsis pilosula Yueping Jianga,b, Yufeng Liua, Qinglan Guoa, Chengbo Xua, Chenggen Zhua, Jiangong Shia,n aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China bDepartment of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China Received 6 August 2015; received in revised form 10 September 2015; accepted 14 September 2015 KEYWORDS Abstract Three new sesquiterpene glycosides, named codonopsesquilosides AÀC(1À3), were isolated from an aqueous extract of the dried roots of Codonopsis pilosula. Their structures including absolute Codonopsis pilosula; fi Campanulaceae; con gurations were determined by spectroscopic and chemical methods. These glycosides are categorized Sesquiterpene glycoside; as C15 carotenoid (1), gymnomitrane (2), and eudesmane (3) types of sesquiterpenoids, respectively. Codonopsesquilosides Compound 1 is the first diglycoside of C15 carotenoids to be reported. Compound 2 represents the second AÀC; reported example of gymnomitrane-type sesquiterpenoids from higher plants. The absolute configurations C15 carotenoid; were supported by comparison of the experimental circular dichroism (CD) spectra with the calculated Gymnomitrane; electronic CD (ECD) spectra of 1À3, their aglycones, and model compounds based on quantum- Eudesmane mechanical time-dependent density functional theory. The influences of the glycosyls on the calculated ECD spectra of the glycosidic sesquiterpenoids, as well as some nomenclature and descriptive problems with gymnomitrane-type sesquiterpenoids are discussed.
    [Show full text]
  • Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks
    processes Article Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks Waldeyr M. C. da Silva 1,2,3,∗ , Jakob L. Andersen 4 , Maristela T. Holanda 5 , Maria Emília M. T. Walter 3 , Marcelo M. Brigido 2 , Peter F. Stadler 5,6,7,8,9 and Christoph Flamm 7 1 Federal Institute of Goiás, Rua 64, esq. c/ Rua 11, s/n, Expansão Parque Lago, Formosa, GO 73813-816, Brazil 2 Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] 3 Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; [email protected] 4 Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; [email protected] 5 Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] (M.T.H.); [email protected] (P.F.S.) 6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions Dresden-Leipzig, and Leipzig Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany 7 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; [email protected] 8 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany 9 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA * Correspondence: [email protected]; Tel.: +55-61-99671-6025 Received: 28 February 2019; Accepted: 11 April 2019; Published: 25 April 2019 Abstract: Plants produce a diverse portfolio of sesquiterpenes that are important in their response to herbivores and the interaction with other plants.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,214.507 B2 Bouwmeester Et Al
    US007214507B2 (12) United States Patent (10) Patent No.: US 7,214.507 B2 BOuWmeester et al. (45) Date of Patent: May 8, 2007 (54) PLANT ENZYMES FOR BIOCONVERSION (56) References Cited (75) Inventors: Hendrik Jan Bouwmeester, Renkum U.S. PATENT DOCUMENTS (NL); Jan-Willem de Kraker, Jena 6,200,786 B1* 3/2001 Huang et al. ............... 435,132 (DE); Marloes Schurink, Ede (NL); 6,451,576 B1* 9/2002 Croteau et al. ............. 435/232 Raoul John Bino, Wageningen (NL); Aede de Groot, Wageningen (NL); OTHER PUBLICATIONS Maurice Charles R. Franssen, Dedeyan B et al. 2000. Appl Env Microbiol 66: 925-929.* Wageningen (NL) Yoder OC et al. 2001. Curr Opin Plant Biol 4: 315-321.* Nielsen KAetal. 2005. Cytochrome P450s in plants. In Cytochrome (73) Assignee: Plant Research International B.V., P450: structure, mechanism, and biochemistry, 3' ed., Ortiz de Wageningen (NL) Montellano, ed., p. 553.* Bohlmann, Jorg, et al., “Plant terpenoid synthases: Molecular (*) Notice: Subject to any disclaimer, the term of this biology and phylogenetic analysis”. Proc. Natl. Acad. Sci. 1998, patent is extended or adjusted under 35 95:4126-4133. de Kraker, Jan-Willem, et al., “Biosynthesis of Germacrene A U.S.C. 154(b) by 0 days. Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP-Dependent (21) Appl. No.: 10/489,762 Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis”. Plant Physiology 2001, 125:1930-1940. (22) PCT Filed: Sep. 17, 2002 de Kraker, Jan-Willem, et al., “Germacrenes from fresh costus roots”, Phytochemistry 2001, 58:481-487. (86). PCT No.: PCT/NLO2/OO591 de Kraker, Jan-Willem, et al., “(+)-Germacrene A Biosynthesis'.
    [Show full text]
  • Costunolide—A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential
    Review Costunolide—A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential Dae Yong Kim 1 and Bu Young Choi 2,* 1 Department of Biology Education, Seowon University, Cheongju, Chungbuk 361-742, So Korea; [email protected] 2 Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, South Korea * Correspondance: [email protected]; Tel.: +82-043-299-8411 Received: 23 April 2019; Accepted: 12 June 2019; Published: 14 June 2019 Abstract: Sesquiterpene lactones constitute a major class of bioactive natural products. One of the naturally occurring sesquiterpene lactones is costunolide, which has been extensively investigated for a wide range of biological activities. Multiple lines of preclinical studies have reported that the compound possesses antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Many of these bioactivities are supported by mechanistic details, such as the modulation of various intracellular signaling pathways involved in precipitating tissue inflammation, tumor growth and progression, bone loss, and neurodegeneration. The key molecular targets of costunolide include, but are not limited to, intracellular kinases, such as mitogen-activated protein kinases, Akt kinase, telomerase, cyclins and cyclin-dependent kinases, and redox-regulated transcription factors, such as nuclear factor-kappaB, signal transducer and activator of transcription, activator protein-1. The compound also diminished the production and/expression of proinflammatory mediators, such as cyclooxygenase-2, inducible nitric oxide synthase, nitric oxide, prostaglandins, and cytokines. This review provides an overview of the therapeutic potential of costunolide in the management of various diseases and their underlying mechanisms. Keywords: costunolide; antioxidants; anti-inflammatory; anti-allergic; bone regenerating; neuroprotective; antimicrobial; hair growth promoting; anticancer; antidiabetic properties 1.
    [Show full text]
  • Isolation and Characterization of Two Germacrene a Synthase Cdna Clones from Chicory1
    Isolation and Characterization of Two Germacrene A Synthase cDNA Clones from Chicory1 Harro J. Bouwmeester*, Jan Kodde, Francel W.A. Verstappen, Iris G. Altug, Jan-Willem de Kraker, and T. Eelco Wallaart2 Plant Research International, Business Unit Cell Cybernetics, P.O. Box 16, 6700 AA Wageningen, The Netherlands (H.J.B., J.K., F.W.A.V.); Department of Organic Chemistry, Hamburg University, D–20146 Hamburg, Germany (I.G.A.); Department of Organic Chemistry, Wageningen Agricultural University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands (J.-W.d.K.); and University Centre for Pharmacy, Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands (T.E.W.) Chicory (Cichorium intybus) sesquiterpene lactones were recently shown to be derived from a common sesquiterpene intermediate, (ϩ)-germacrene A. Germacrene A is of interest because of its key role in sesquiterpene lactone biosynthesis and because it is an enzyme-bound intermediate in the biosynthesis of a number of phytoalexins. Using polymerase chain reaction with degenerate primers, we have isolated two sesquiterpene synthases from chicory that exhibited 72% amino acid identity. Heterologous expression of the genes in Escherichia coli has shown that they both catalyze exclusively the formation of (ϩ)-germacrene A, making this the first report, to our knowledge, on the isolation of (ϩ)-germacrene A synthase (GAS)-encoding genes. Northern analysis demonstrated that both genes were expressed in all chicory tissues tested albeit at varying levels. Protein isolation and partial purification from chicory heads demonstrated the presence of two GAS proteins. On MonoQ, these proteins co-eluted with the two heterologously produced proteins.
    [Show full text]
  • Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots
    Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots Reza Sohrabi Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences Dorothea Tholl, Committee Chair Glenda Gillaspy Khidir Hilu John Jelesko July 23rd 2013 Blacksburg Virginia Keywords: Cytochrome P450, plant volatiles, specialized metabolism, root chemical defense, Arabidopsis iii Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots Reza Sohrabi ABSTRACT Plants have evolved a variety of constitutive and induced chemical defense mechanisms against biotic stress. Emission of volatile compounds from plants facilitates interactions with both beneficial and pathogenic organisms. However, knowledge of the chemical defense in roots is still limited. In this study, we have examined the root-specific biosynthesis and function of volatile terpenes in the model plant Arabidopsis. When infected with the root rot pathogen Pythium irregulare, Arabidopsis roots release the acyclic C11-homoterpene (E)-4,8- dimethylnona-1,3,7-triene (DMNT), which is a common constituent of volatile blends emitted from insect-damaged foliage. We have identified a single cytochrome P450 monooxygenase of the CYP705 family that catalyzes a root-specific oxidative degradation of the C30-triterpene precursor arabidiol thereby causing the release of DMNT and a C19-degradation product named arabidonol. We found that DMNT shows inhibitory effects on P. irregulare mycelium growth and oospore germination in vitro, and that DMNT biosynthetic mutant plants were more susceptible to P. irregulare infection. We provide evidence based on genome synteny and phylogenetic analysis that the arabidiol biosynthetic gene cluster containing the arabidiol synthase (ABDS) and CYP705A1 genes possibly emerged via local gene duplication followed by iv de novo neofunctionalization.
    [Show full text]