Challenges in Earth Modelling (Plate Tectonics, Subduction … ) Www
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic History of Siletzia, a Large Igneous Province in the Oregon And
Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. -
A Continuous Plate-Tectonic Model Using Geophysical Data to Estimate
GEOPHYSICAL JOURNAL INTERNATIONAL, 133, 379–389, 1998 1 A continuous plate-tectonic model using geophysical data to estimate plate margin widths, with a seismicity based example Caroline Dumoulin1, David Bercovici2, Pal˚ Wessel Department of Geology & Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, 96822, USA Summary A continuous kinematic model of present day plate motions is developed which 1) provides more realistic models of plate shapes than employed in the original work of Bercovici & Wessel [1994]; and 2) provides a means whereby geophysical data on intraplate deformation is used to estimate plate margin widths for all plates. A given plate’s shape function (which is unity within the plate, zero outside the plate) can be represented by analytic functions so long as the distance from a point inside the plate to the plate’s boundary can be expressed as a single valued function of azimuth (i.e., a single-valued polar function). To allow sufficient realism to the plate boundaries, without the excessive smoothing used by Bercovici and Wessel, the plates are divided along pseudoboundaries; the boundaries of plate sections are then simple enough to be modelled as single-valued polar functions. Moreover, the pseudoboundaries have little or no effect on the final results. The plate shape function for each plate also includes a plate margin function which can be constrained by geophysical data on intraplate deformation. We demonstrate how this margin function can be determined by using, as an example data set, the global seismicity distribution for shallow (depths less than 29km) earthquakes of magnitude greater than 4. -
Sterngeryatctnphys18.Pdf
Tectonophysics 746 (2018) 173–198 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Subduction initiation in nature and models: A review T ⁎ Robert J. Sterna, , Taras Geryab a Geosciences Dept., U Texas at Dallas, Richardson, TX 75080, USA b Institute of Geophysics, Dept. of Earth Sciences, ETH, Sonneggstrasse 5, 8092 Zurich, Switzerland ARTICLE INFO ABSTRACT Keywords: How new subduction zones form is an emerging field of scientific research with important implications for our Plate tectonics understanding of lithospheric strength, the driving force of plate tectonics, and Earth's tectonic history. We are Subduction making good progress towards understanding how new subduction zones form by combining field studies to Lithosphere identify candidates and reconstruct their timing and magmatic evolution and undertaking numerical modeling (informed by rheological constraints) to test hypotheses. Here, we review the state of the art by combining and comparing results coming from natural observations and numerical models of SI. Two modes of subduction initiation (SI) can be identified in both nature and models, spontaneous and induced. Induced SI occurs when pre-existing plate convergence causes a new subduction zone to form whereas spontaneous SI occurs without pre-existing plate motion when large lateral density contrasts occur across profound lithospheric weaknesses of various origin. We have good natural examples of 3 modes of subduction initiation, one type by induced nu- cleation of a subduction zone (polarity reversal) and two types of spontaneous nucleation of a subduction zone (transform collapse and plumehead margin collapse). In contrast, two proposed types of subduction initiation are not well supported by natural observations: (induced) transference and (spontaneous) passive margin collapse. -
Environmental Geology Chapter 2 -‐ Plate Tectonics and Earth's Internal
Environmental Geology Chapter 2 - Plate Tectonics and Earth’s Internal Structure • Earth’s internal structure - Earth’s layers are defined in two ways. 1. Layers defined By composition and density o Crust-Less dense rocks, similar to granite o Mantle-More dense rocks, similar to peridotite o Core-Very dense-mostly iron & nickel 2. Layers defined By physical properties (solid or liquid / weak or strong) o Lithosphere – (solid crust & upper rigid mantle) o Asthenosphere – “gooey”&hot - upper mantle o Mesosphere-solid & hotter-flows slowly over millions of years o Outer Core – a hot liquid-circulating o Inner Core – a solid-hottest of all-under great pressure • There are 2 types of crust ü Continental – typically thicker and less dense (aBout 2.8 g/cm3) ü Oceanic – typically thinner and denser (aBout 2.9 g/cm3) The Moho is a discontinuity that separates lighter crustal rocks from denser mantle below • How do we know the Earth is layered? That knowledge comes primarily through the study of seismology: Study of earthquakes and seismic waves. We look at the paths and speeds of seismic waves. Earth’s interior boundaries are defined by sudden changes in the speed of seismic waves. And, certain types of waves will not go through liquids (e.g. outer core). • The face of Earth - What we see (Observations) Earth’s surface consists of continents and oceans, including mountain belts and “stable” interiors of continents. Beneath the ocean, there are continental shelfs & slopes, deep sea basins, seamounts, deep trenches and high mountain ridges. We also know that Earth is dynamic and earthquakes and volcanoes are concentrated in certain zones. -
The Saharides and Continental Growth During the Final Assembly of Gondwana-Land
Reconstructing orogens without biostratigraphy: The Saharides and continental growth during the final assembly of Gondwana-Land A. M. Celâl S¸ engöra,b,1, Nalan Lomc, Cengiz Zabcıb, Gürsel Sunalb, and Tayfun Önerd aIstanbul_ Teknik Üniversitesi (ITÜ)_ Avrasya Yerbilimleri Enstitüsü, Ayazaga˘ 34469 Istanbul,_ Turkey; bITÜ_ Maden Fakültesi, Jeoloji Bölümü, Ayazaga˘ 34469 Istanbul,_ Turkey; cDepartement Aardwetenschappen, Universiteit Utrecht, 3584 CB Utrecht, The Netherlands; and dSoyak Göztepe Sitesi, Üsküdar 34700 Istanbul,_ Turkey Contributed by A. M. Celâl S¸ engör, October 3, 2020 (sent for review July 17, 2020; reviewed by Jonas Kley and Leigh H. Royden) A hitherto unknown Neoproterozoic orogenic system, the Sahar- identical to those now operating (the snowball earth and the ab- ides, is described in North Africa. It formed during the 900–500-Ma sence of land flora were the main deviating factors), yet the interval. The Saharides involved large subduction accretion com- dominantly biostratigraphy-based methods used to untangle oro- plexes occupying almost the entire Arabian Shield and much of genic evolution during the Phanerozoic are not applicable Egypt and parts of the small Precambrian inliers in the Sahara in- to them. cluding the Ahaggar mountains. These complexes consist of, at least by half, juvenile material forming some 5 million km2 new Method of Reconstructing Complex Orogenic Evolution in continental crust. Contrary to conventional wisdom in the areas the Neoproterozoic without Biostratigraphy: Example of the they occupy, -
Plate Tectonics and the Cycling of Earth Materials
Plate Tectonics and the cycling of Earth materials Plate tectonics drives the rock cycle: the movement of rocks (and the minerals that comprise them, and the chemical elements that comprise them) from one reservoir to another Arrows are pathways, or fluxes, the I,M.S rocks are processes that “reservoirs” - places move material from one reservoir where material is temporarily stored to another We need to be able to identify these three types of rocks. Why? They convey information about the geologic history of a region. What types of environments are characterized by the processes that produce igneous rocks? What types of environments are preserved by the accumulation of sediment? What types of environments are characterized by the tremendous heat and pressure that produces metamorphic rocks? How the rock cycle integrates into plate tectonics. In order to understand the concept that plate tectonics drives the rock cycle, we need to understand what the theory of plate tectonics says about how the earth works The major plates in today’s Earth (there have been different plates in the Earth’s past!) What is a “plate”? The “plate” of plate tectonics is short for “lithospheric plate” - - the outermost shell of the Earth that behaves as a rigid substance. What does it mean to behave as a rigid substance? The lithosphere is ~150 km thick. It consists of the crust + the uppermost mantle. Below the lithosphere the asthenosphere behaves as a ductile layer: one that flows when stressed It means that when the substance undergoes stress, it breaks (a non-rigid, or ductile, substance flows when stressed; for example, ice flows; what we call a glacier) Since the plates are rigid, brittle 150km thick slabs of the earth, there is a lot of “action”at the edges where they abut other plates We recognize 3 types of plate boundaries, or edges. -
From Oceanic Plateaus to Allochthonous Terranes: Numerical Modelling
Gondwana Research 25 (2014) 494–508 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr From oceanic plateaus to allochthonous terranes: Numerical modelling Katharina Vogt a,⁎, Taras V. Gerya a,b a Geophysical Fluid Dynamics Group, Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology (ETH-Zurich), Sonneggstrasse, 5, 8092 Zurich, Switzerland b Adjunct Professor of Geology Department, Moscow State University, 119899 Moscow, Russia article info abstract Article history: Large segments of the continental crust are known to have formed through the amalgamation of oceanic pla- Received 29 April 2012 teaus and continental fragments. However, mechanisms responsible for terrane accretion remain poorly un- Received in revised form 25 August 2012 derstood. We have therefore analysed the interactions of oceanic plateaus with the leading edge of the Accepted 4 November 2012 continental margin using a thermomechanical–petrological model of an oceanic-continental subduction Available online 23 November 2012 zone with spontaneously moving plates. This model includes partial melting of crustal and mantle lithologies and accounts for complex rheological behaviour including viscous creep and plastic yielding. Our results in- Keywords: Crustal growth dicate that oceanic plateaus may either be lost by subduction or accreted onto continental margins. Complete Subduction subduction of oceanic plateaus is common in models with old (>40 Ma) oceanic lithosphere whereas models Terrane accretion with younger lithosphere often result in terrane accretion. Three distinct modes of terrane accretion were Oceanic plateau identified depending on the rheological structure of the lower crust and oceanic cooling age: frontal plateau accretion, basal plateau accretion and underplating plateaus. -
Seafloor Spreading and Plate Tectonics
OCN 201: Seafloor Spreading and Plate Tectonics I Revival of Continental Drift Theory • Kiyoo Wadati (1935) speculated that earthquakes and volcanoes may be associated with continental drift. • Hugo Benioff (1940) plotted locations of deep earthquakes at edge of Pacific “Ring of Fire”. • Earthquakes are not randomly distributed but instead coincide with mid-ocean ridge system. • Evidence of polar wandering. Revival of Continental Drift Theory Wegener’s theory was revived in the 1950’s based on paleomagnetic evidence for “Polar Wandering”. Earth’s Magnetic Field Earth’s magnetic field simulates a bar magnet, but it is caused by A bar magnet with Fe filings convection of liquid Fe in Earth’s aligning along the “lines” of the outer core: the Geodynamo. magnetic field A moving electrical conductor induces a magnetic field. Earth’s magnetic field is toroidal, or “donut-shaped”. A freely moving magnet lies horizontal at the equator, vertical at the poles, and points toward the “North” pole. Paleomagnetism in Rocks • Magnetic minerals (e.g. Magnetite, Fe3 O4 ) in rocks align with Earth’s magnetic field when rocks solidify. • Magnetic alignment is “frozen in” and retained if rock is not subsequently heated. • Can use paleomagnetism of ancient rocks to determine: --direction and polarity of magnetic field --paleolatitude of rock --apparent position of N and S magnetic poles. Apparent Polar Wander Paths • Geomagnetic poles 200 had apparently 200 100 “wandered” 100 systematically with time. • Rocks from different continents gave different paths! Divergence increased with age of rocks. 200 100 Apparent Polar Wander Paths 200 200 100 100 Magnetic poles have never been more the 20o from geographic poles of rotation; rest of apparent wander results from motion of continents! For a magnetic compass, the red end of the needle points to: A. -
Plate Tectonics
Plate tectonics tive motion determines the type of boundary; convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The lateral relative move- ment of the plates typically varies from zero to 100 mm annually.[2] Tectonic plates are composed of oceanic lithosphere and thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, subduction carries plates into the mantle; the material lost is roughly balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total surface of the globe remains the same. This predic- The tectonic plates of the world were mapped in the second half of the 20th century. tion of plate tectonics is also referred to as the conveyor belt principle. Earlier theories (that still have some sup- porters) propose gradual shrinking (contraction) or grad- ual expansion of the globe.[3] Tectonic plates are able to move because the Earth’s lithosphere has greater strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection. Plate movement is thought to be driven by a combination of the motion of the seafloor away from the spreading ridge (due to variations in topog- raphy and density of the crust, which result in differences in gravitational forces) and drag, with downward suction, at the subduction zones. Another explanation lies in the different forces generated by the rotation of the globe and the tidal forces of the Sun and Moon. The relative im- portance of each of these factors and their relationship to each other is unclear, and still the subject of much debate. -
Oceanic Plateau and Island Arcs of Southwestern Ecuador: Their Place in the Geodynamic Evolution of Northwestern South America
Reprinted from TECTONOPHYSICS INTERNATIONAL JOURNAL OF GEOTECTONICS AND THE GEOLOGY AND PHYSICS OF THE INTERIOR OF THE EARTH Tectonophysics 307 (1999) 235-254 Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America Cédric Reynaud a, fitienne Jaillard a,b, Henriette Lapierre al*, Marc Mamberti %c, Georges H. Mascle a '' UFRES, A-5025, Université Joseph Fourier; Institut Doloniieu, 15 rue Maurice-Gignoux, 38031 Grenoble cedex, Francel IO, "IRD lfoniierly ORSTOM), CSI, 209-213 rue Lu Fayette, 75480 Faris cedex France 'Institut de Minéralogie et Fétrogrphie, Université de Lausanne, BFSH2 (3171), I015 Lausanne, Switzerland Received 12 August 1997; accepted 11 March 1999 Fonds Documentaire ORSTOM 9" ELSEVIER Cote :&e4 973 9 Ex : LII>f c.- TECTONOPHYSICS Editors-in-Chief J.-P. BURG ETH-Zentrum, Geologisches Institut, Sonneggstmße 5, CH-8092, Zürich, Switzerland. Phone: +41.1.632 6027; FAX: +41.1.632 1080; e-mail: [email protected] T. ENGELDER Pennsylvania State University, College of Earth & Mineral Sciences, 336 beike Building, University Park, PA 16802, USA. Phone: +I .814.865.3620/466.7208; FAX: +I .814.863.7823; e-mail: engelderOgeosc.psu.edu K.P. FURLONG Pennsylvania State University, Department of Geosciences, 439 Deike Building, University Park, PA 16802, USA. Phone: +1 .814.863.0567; FAX: +1.814.865.3191; e-mail: kevinOgeodyn.psu.edu F. WENZEL Universität Fridericiana Karlsruhe, Geophysikalisches Institut, Hertzstraße Bau Karlsruhe, Germany. .physik.uni-karlsruhe.de16, 42, D-76187 Phone: +49.721.608 4431; FAX +49.721.711173; e-mail: fwenzel@gpiwapl Honorary Editor: S. Uyeda Editorial Board Z. -
The Ocean Basin & Plate Tectonics
Sept. 2010 MAR 110 HW 3: 1 Homework 3: The Ocean Basin & Plate Tectonics 3-1. THE OCEAN BASIN The world ocean basin is an extensive suite of connected depressions (or basins) that are filled with salty water; covering 72% of the Earth’s surface. The ocean basin bathymetric profile in Figure 3-1 highlights features of a typical ocean basin, which is bordered by continental margins at the ocean’s edge. Starting at the coast, the sea floor the slopes slightly across the continental shelf to the shelf break where it plunges down the steeper continental slope to continental rise and the abyssal plain, which is flat because accumulated sediments. The continental shelf is the flooded edge of the continent -extending from the beach to the shelf break, with typical depths ranging from 130 m to 200 m. The sea floor slopes over wide shelves are 1° to 2° - virtually flat- and somewhat steeper over narrower shelves. Continental shelves are generally gently undulating surfaces, sometimes interrupted by hills and valleys (see Figure 3-2). Sept. 2010 MAR 110 HW 3: 2 The continental slope connects the continental shelf to the deep ocean, with typical depths of 2 to 3 km. While appearing steep in these vertically exaggerated pictures, the bottom slopes of a typical continental slope region are modest angles of 4° to 6°. Continental slope regions adjacent to deep ocean trenches tend to descend somewhat more steeply than normal. Sediments derived from the weathering of the continental material are delivered by rivers and continental shelf flow to the upper continental slope region just beyond the continental shelf break. -
Future Accreted Terranes: a Compilation of Island Arcs, Oceanic Plateaus, Submarine Ridges, Seamounts, and Continental Fragments” by J
Open Access Solid Earth Discuss., 6, C1212–C1222, 2014 www.solid-earth-discuss.net/6/C1212/2014/ Solid Earth © Author(s) 2014. This work is distributed under Discussions the Creative Commons Attribute 3.0 License. Interactive comment on “Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments” by J. L. Tetreault and S. J. H. Buiter J. L. Tetreault and S. J. H. Buiter [email protected] Received and published: 30 October 2014 Response to Review C472: M. Pubellier I thank M. Pubellier for his in-depth review; the suggestions are very constructive and have truly improved the manuscript. I will first reply to the review letter below, and then to points in the supplement that need further explanation/discussion. Otherwise, if the point is not addressed, it has simply been corrected. In the review letter, the reviewer writes: I agree with most of the results presented in this paper but I regret a bit that the empha- C1212 sis was a bit too much on ancient examples (except the Solomon Islands and Taiwan that has been just mentioned). The authors could give more attention to the recent examples such as Southeast Asia. I have suggested some examples (which of course are those I know well) for reference; but there are others. I am sorry to have put some references of papers for which I participated but it is just for the sake of discussion. I think some examples of recent tectonics bring elements in this interesting discussion. The reviewer comments that my paper is quite heavy on ancient examples of accreted terranes, and I admit, now looking back on my review, that it was done so, albeit sub- consciously.