University of Cape Coast Nesting Ecology Of

Total Page:16

File Type:pdf, Size:1020Kb

University of Cape Coast Nesting Ecology Of UNIVERSITY OF CAPE COAST NESTING ECOLOGY OF STINGLESS BEES WITHIN THREE LANDSCAPES IN THE NORTHERN PART OF THE VOLTA REGION OF GHANA FERDINAND TORNYIE 2013 UNIVERSITY OF CAPE COAST NESTING ECOLOGY OF STINGLESS BEES WITHIN THREE LANDSCAPES IN THE NORTHERN PART OF THE VOLTA REGION OF GHANA BY FERDINAND TORNYIE THESIS SUBMITTED TO THE DEPARTMENT OF ENTOMOLOGY AND WILDLIFE OF THE SCHOOL OF BIOLOGICAL SCIENCES, UNIVERSITY OF CAPE COAST IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF PHILOSOPHY DEGREE IN ENTOMOLOGY APRIL 2013 DECLARATION i Candidate’s Declaration I hereby declare that this thesis is the result of my own original work and that no part of it has been presented for another degree in this university or elsewhere. Candidate’ Signature:………………………… Date:……………………….... Name: Ferdinand Tornyie Supervisors’ Declaration We hereby declare that the preparation and presentation of the thesis were supervised in accordance with the guidelines on supervision of thesis laid down by the University of Cape Coast. Principal Supervisor’s Signature:………………...... Date:.................................... Name: Dr. Peter Kofi Kwapong Co-Supervisor’s Signature:…………………......... Date:………...................... Name: Dr. Rofela Combey ABSTRACT ii This research was carried out to investigate the nesting ecology of stingless bees in three selected landscapes in the northern part of the Volta Region of Ghana, from June 2011 to February 2012. The study focused on three stingless bee species Meliponula bocandei (Spinola), Meliponula ferruginea (Lepeletier) and Dactylurina staudingeri (Gribodo). Using eight transects (500 X 40 m) in each landscape, number of nests, nesting heights, diameter at breast heights (DBH) of nest trees and potential nest trees were sampled at three sites namely Koru, Abotoase and Kyabobo. Out of a total of 93 stingless bee nests found, M. ferruginea recorded the highest (50) compared to M. bocandei (33) and D. staudingeri (10). Nest density for the three sites was estimated to be 1.9 nests/ha (≈ 2 nests/ha). M. ferruginea was the only species that nested in old termite mounds (17 nests) and in the ground (1 nest). The bees did not show preference for particular tree species they nest in. The two Meliponula bee species were found nesting in trees with DBH ≥15 cm. Landscape characteristics appeared to have some effects on the nesting ecology of stingless bees. Koru, which recorded larger trees had the highest nest density. Less suitable nesting trees in Abotoase influenced M. ferruginea to nest more in old termite mounds than trees. Extraction of potential nesting trees due Agricultural activities and wild honey hunting are threats to stingless bee colonies in Koru and Abotoase. Lack of more suitable nesting trees could account for lower stingless bee nests in Kyabobo National Park. ACKNOWLEDGMENTS iii I wish to express my profound gratitude to Dr. Peter Kwapong, my principal supervisor, who supported me in the entire work. I also wish to thank Dr. Rofela Combey, School of Biological Sciences, University of Cape Coast, for guiding me through this work as my co-supervisor. I am very thankful to my family especially my dad, Mr. Raphael Kujo Tornyie and Richmond Sosu who supported me financially and emotionally throughout my work. I wish to also thank very much the Wildlife Division of Forestry Commission for allowing me to use the Kyabobo National Park for my research. The park manager Mr. Ammed Ankyie and the entire staff of Kyabobo National Park are worth mentioning for their hospitality and assistance during my research there. I cannot forget Mr. David Amedozi and his family for their warm gesture and assistance at Koru. Thanks to my family for all their support during my survey especially at Abotoase. Mr. Percy Danquah assisted me in the identification of the specimens and I wish to thank him so much. I wish to also thank Mr. Francis Otoo of School of Biological Science herbarium for the assistance in plant identification. Thanks to Mr. Samuel Acheampong, Department of Molecular Biology and Biotechnology for his immense contribution during data analysis. To all the farmers and hunters, at all my study sites, I say thank you for your support throughout the studies. Thanks to Mr. Kwame Amede (Abotoase), Wisdom Abotsi (Abotoase), Augustine (Nkwanta) and all others who were very helpful in my research. DEDICATION To the Tornyie Family of Mafi-Adidome iv TABLE OF CONTENTS Content Page v DECLARATION ii ABSTRACT iii ACKNOWLEDGEMENTS iv DEDICATION v TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x LIST OF PLATES xi LIST OF ACRONYMS xiii CHAPTER ONE: INTRODUCTION 1 Background to the study 1 Statement of problem 4 Research aim 6 Research objectives 6 Justification of the study 6 Definition of terms 7 Organisation of thesis 7 CHAPTER TWO: REVIEW OF RELATED LITERATURE 9 Overview 9 Stingless bees 9 Taxonomy and phylogeny of stingless bees 10 Stingless bees and their geographical distribution 12 Differences between honeybee (Apis) and stingless bees (Meliponini) 12 vi Reproductive biology of stingless bees 14 Communication and foraging in stingless bees 16 Nesting biology and behaviour of stingless bees 17 Nest defense in stingless bees 19 Protection of the outer nest by stingless bees 21 Stingless bees defense materials 22 Maintenance behaviour of stingless bees in their nest 24 Stingless beekeeping and livelihood 27 Importance of stingless as pollinators 30 Issue of declining pollinator populations 35 Effects of climate change on bee populations 39 Stingless bees and forest destruction 40 Bees and land uses 43 CHAPTER THREE: METHODOLOGY 50 Overview 50 Study area 50 Selection of experimental areas 50 Area one: Koru forest 52 Area two: Abotoase 52 Area three: Kyabobo National Park 52 Data collection 56 Statistical analysis 64 CHAPTER FOUR: RESULTS 66 vii Overview 66 Diversity of stingless bees species in the three areas 66 Nesting behaviourbehavior 66 Nesting density and nest tree characteristics 71 Tree species and potential nest trees species in which stingless bees nest 76 CHAPTER FIVE: DISCUSSION 84 Overview 84 Stingless bees nest survey and nesting sites for the three study areas 84 Nest and potential nest tree survey at Koru 89 Nest and potential nest tree survey at Abotoase 91 Nest and potential nest tree survey at Kyabobo 94 CHAPTER SIX: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 96 Overview 96 Summary 96 Conclusions 97 Recommendations 97 REFERENCES 99 APPENDIX 131 LIST OF TABLES Table Page 1. Differences between stingless bees and Apis (honeybees) 13 viii 2. Nest density and potential nest tree density for the three sampled areas 73 3. Mean DBH of nest trees and nest height for Meliponula bocandei and Meliponula ferruginea for the three areas 73 4. Mean DBH of nest trees and nest height at the three sampled areas (Koru, Abotoase and Kyabobo) 73 5. Relative percentage of nests found in some specific DBH ranges of nest trees 74 6 a. Nest tree species and number of nests found in them at Koru 77 b. Potential nest tree species and their population at Koru 78 7 a. Nest tree species and number of nests found in them at Abotoase 80 b. Potential nest tree species and their population at Abotoase 81 8 a. Tree species and number of nests found in them at Kyabobo 82 b. Potential nest tree species and their population at Kyabobo 82 LIST OF FIGURES Figures Page 1. Map of northern Volta Region showing the research areas 51 ix 2. Relative nest abundance of three stingless bee species (Meliponula bocandei, Meliponula ferruginea and 67 Dactylurina staudingeri) at the three sampled areas (Koru, Abotoase and Kyabobo) 3. Number of nests found in trees, old termite mounds and in the ground for Meliponula ferruginea at Koru, Abotoase and 68 Kyabobo 4. Relative abundance of nests of the three stingless bee species 68 at the three sites (Koru, Abotoase and Kyabobo) 5 a. Number of nests found in trees of various DBH for 74 Meliponula bocandei across the three study areas b. Number of nests found in trees of various DBH for 75 Meliponula ferruginea across the three study areas 6 a. Number of nests found in trees of various heights for 75 Meliponula bocandei across the three study areas b. Number of nests found in trees of various height for 76 Meliponula ferruginea across the three study areas LIST OF PLATES Plates Pages 1 a. Lumber extracted from the forest in Koru 53 x b. A stream flowing through the forest at Koru 54 2 a. Degraded portions of the forest showing savanna grassland and farmlands at Abotoase 54 b. Forest burnt by wild fire at Abotoase 55 3 a. A low-lying forest with smaller trees Kyabobo National Park 55 b. Montane forest higher up the slopes of Kyabobo National Park 56 4. Stingless bees nest search team searching and documenting for nest presence 57 5. Flagging tapes on trees showing a transect boundary 58 6. Collecting stingless bees with a long sweep net 60 7. Working on stingless bees in the laboratory 61 8. Insect box containing stingless bee species 61 9. Measuring nesting height using calibrated wooden pole 62 10. Measuring diameter at breast height (DBH) of a tree in which stingless bee nest was found 63 11 a. Meliponula ferruginea in a tree trunk showing the entrance 69 b. Meliponula bocandei nest in a tree trunk showing the entrance 69 xi 12. Meliponula ferruginea nest in an old termite mound 70 13. Entrance hole of Meliponula ferruginea nest in the ground showing the entrance 70 14. A logged tree as a result of wild hunting of stingless bee honey 91 LIST OF ACRONYMS ANOVA Analysis of Variance DBH Diameter at breast height FAO Food and Agriculture Organization xii xiii CHAPTER ONE INTRODUCTION Background to the study Stingless bees (Hymenoptera, Apidae, Meliponini) are a group of small- to medium-sized bees with vestigial (non-functional) stings.
Recommended publications
  • Classifying the Biological Status of Honeybee Workers Using Gas Sensors
    sensors Article Classifying the Biological Status of Honeybee Workers Using Gas Sensors Jakub T. Wilk 1,* , Beata B ˛ak 1, Piotr Artiemjew 2 , Jerzy Wilde 1 and Maciej Siuda 1 1 Apiculture Division, Faculty of Animal Bioengineering, University Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; [email protected] (B.B.); [email protected] (J.W.); [email protected] (M.S.) 2 Mathematical Methods and Computer Science Division, Faculty of Mathematics and Computer Science, University Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; [email protected] * Correspondence: teofi[email protected] Abstract: Honeybee workers have a specific smell depending on the age of workers and the biological status of the colony. Laboratory tests were carried out at the Department of Apiculture at UWM Olsztyn, using gas sensors installed in two twin prototype multi-sensor detectors. The study aimed to compare the responses of sensors to the odor of old worker bees (3–6 weeks old), young ones (0–1 days old), and those from long-term queenless colonies. From the experimental colonies, 10 samples of 100 workers were taken for each group and placed successively in the research chambers for the duration of the study. Old workers came from outer nest combs, young workers from hatching out brood in an incubator, and laying worker bees from long-term queenless colonies from brood combs (with laying worker bee’s eggs, humped brood, and drones). Each probe was measured for 10 min, and then immediately for another 10 min ambient air was given to regenerate sensors.
    [Show full text]
  • Honey Bee from Wikipedia, the Free Encyclopedia
    Honey bee From Wikipedia, the free encyclopedia A honey bee (or honeybee) is any member of the genus Apis, primarily distinguished by the production and storage of honey and the Honey bees construction of perennial, colonial nests from wax. Currently, only seven Temporal range: Oligocene–Recent species of honey bee are recognized, with a total of 44 subspecies,[1] PreЄ Є O S D C P T J K Pg N though historically six to eleven species are recognized. The best known honey bee is the Western honey bee which has been domesticated for honey production and crop pollination. Honey bees represent only a small fraction of the roughly 20,000 known species of bees.[2] Some other types of related bees produce and store honey, including the stingless honey bees, but only members of the genus Apis are true honey bees. The study of bees, which includes the study of honey bees, is known as melittology. Western honey bee carrying pollen Contents back to the hive Scientific classification 1 Etymology and name Kingdom: Animalia 2 Origin, systematics and distribution 2.1 Genetics Phylum: Arthropoda 2.2 Micrapis 2.3 Megapis Class: Insecta 2.4 Apis Order: Hymenoptera 2.5 Africanized bee 3 Life cycle Family: Apidae 3.1 Life cycle 3.2 Winter survival Subfamily: Apinae 4 Pollination Tribe: Apini 5 Nutrition Latreille, 1802 6 Beekeeping 6.1 Colony collapse disorder Genus: Apis 7 Bee products Linnaeus, 1758 7.1 Honey 7.2 Nectar Species 7.3 Beeswax 7.4 Pollen 7.5 Bee bread †Apis lithohermaea 7.6 Propolis †Apis nearctica 8 Sexes and castes Subgenus Micrapis: 8.1 Drones 8.2 Workers 8.3 Queens Apis andreniformis 9 Defense Apis florea 10 Competition 11 Communication Subgenus Megapis: 12 Symbolism 13 Gallery Apis dorsata 14 See also 15 References 16 Further reading Subgenus Apis: 17 External links Apis cerana Apis koschevnikovi Etymology and name Apis mellifera Apis nigrocincta The genus name Apis is Latin for "bee".[3] Although modern dictionaries may refer to Apis as either honey bee or honeybee, entomologist Robert Snodgrass asserts that correct usage requires two words, i.e.
    [Show full text]
  • Melissa 6, January 1993
    The Melittologist's Newsletter Ronald J. McGinley. Bryon N. Danforth. Maureen J. Mello Deportment of Entomology • Smithsonian Institution. NHB-105 • Washington. DC 20560 NUMBER-6 January, 1993 CONTENTS COLLECTING NEWS COLLECTING NEWS .:....:Repo=.:..:..rt=on~Th.:..:.=ird=-=-PC=A..::.;M:.:...E=xp=ed=it=io:..o..n-------=-1 Report on Third PCAM Expedition Update on NSF Mexican Bee Inventory 4 Robert W. Brooks ..;::.LC~;.,;;;....;;...:...:...;....;...;;;..o,__;_;.c..="-'-'-;.;..;....;;;~.....:.;..;.""""""_,;;...;....________,;. Snow Entomological Museum .:...P.:...roposo.a:...::..;:;..,:=..ed;::....;...P_:;C"'-AM~,;::S,;::u.;...;rvc...;;e.L.y-'-A"'"-rea.:o..=s'------------'-4 University of Kansas Lawrence, KS 66045 Collecting on Guana Island, British Virgin Islands & Puerto Rico 5 The third NSF funded PCAM (Programa Cooperativo so- RESEARCH NEWS bre Ia Apifauna Mexicana) expedition took place from March 23 to April3, 1992. The major goals of this trip were ...:..T.o..:he;::....;...P.:::a::.::ra::.::s;:;;it:..::ic;....;;B::...:e:..:e:....::L=.:e:.:.ia;:;L'{XJd:..::..::..::u;,;;:.s....:::s.:..:.in.:..o~gc::u.:.::/a:o.:n;,;;:.s_____~7 to do springtime collecting in the Chihuahuan Desert and Decline in Bombus terrestris Populations in Turkey 7 Coahuilan Inland Chaparral habitats of northern Mexico. We =:...:::=.:.::....:::..:...==.:.:..:::::..:::.::...:.=.:..:..:=~:....=..~==~..:.:.:.....:..=.:=L-.--=- also did some collecting in coniferous forest (pinyon-juni- NASA Sponsored Solitary Bee Research 8 per), mixed oak-pine forest, and riparian habitats in the Si- ;:...;N:..::.o=tes;.,;;;....;o;,;,n:....:Nc..:.e.::..;st;:.;,i;,:,;n_g....:::b""-y....:.M=-'-e.;;,agil,;;a.;_:;c=h:..:..:ili=d-=B;....;;e....:::e..::.s______.....:::.8 erra Madre Oriental. Hymenoptera Database System Update 9 Participants in this expedition were Ricardo Ayala (Insti- '-'M:.Liss.:..:..:..;;;in..:....:g..;:JB<:..;ee:..::.::.::;.:..,;Pa:::..rt=s=?=::...;:_"'-L..;=c.:.:...c::.....::....::=:..,_----__;:_9 tuto de Biologia, Chamela, Jalisco); John L.
    [Show full text]
  • {FREE} Life Cycles: Egg To
    LIFE CYCLES: EGG TO BEE PDF, EPUB, EBOOK Camilla de La Bedoyere | 24 pages | 01 Mar 2012 | QED PUBLISHING | 9781848355859 | English | London, United Kingdom The Honey Bee Life Cycle This is the easily recognizable cell that we watch for. It is normal to have more than one queen cell at a time. Worker bees cap the cells with wax. On day 8, the larva becomes a pupa. Inside this capped queen cell, the final transformation takes place. Around day 16 a new queen will emerge. What is the first thing this new queen does? She searches out any possible rivals in other queen cells. When she finds them, she will chew into the cell and kill the virgin queen inside. Being royal is messy business. This is a real Game of Thrones happening inside the beehive. The rivalry is about genetics , only 1 bee can become the mother of the hive. Sometimes, the colony is in crisis. Perhaps the queen died quickly — or a beekeeper squished her? They must use a fresh larva that is already in place on the comb. This is called emergency queen rearing because the situation is not ideal. To produce a good queen, worker bees choose only the very youngest larva. Older larva may not develop into a quality queen bee because the nutrition of the first few days is so important. The size of a queen bee is affected by feeding during development. Queen bees reared in emergency conditions are not always the best quality. They may not lay as well or last as long as a queen bee that is raised during better hive conditions.
    [Show full text]
  • Biology & Anatomy of the Honey
    International Centre of Insect Physiology and Ecology (icipe) African Insect Science for Food and Health Dr. Segenet Kelemu, Director General Major Programme Areas • COMMERCIAL INSECTS • MALARIA • BEE HEALTH • SLEEPING • BIOPROSPECTING SICKNESS • BIODIVERSITY • ARBOVIRAL CONSERVATION INFECTIONS • CLIMATE CHANGE Environmental Human Health Health • HORTICULTURAL Plant Health Animal Health CROP PESTS • STAPLE FOOD CROP • TSETSE PESTS • TICKS • PLANTATION CROP PESTS CONTINENTAL TRAINING OF TRAINERS (TOTs) ON BEE DISEASES AND PESTS, PREVENTION AND CONTROL March 31 – April 4 2014 Honeybee biology and queen breeding Suresh Raina, icipe THE TAXONOMY AND IDENTIFICATION OF BEES Bees all belong to: Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hymenoptera Superfamily: Apoidea • The Apoidea comprises two groups, the Anthophila (bees) and the Spheciformes (sphecid wasps). • The Anthophila has six families in the Afrotropical Region: Colletidae, Andrenidae, Halictidae, Melittidae, Megachilidae and Apidae. Subfamilies Apinae, Nomadinae and Xylocopinae Apidae The Apidae comprising the common honey bees, stingless bees, carpenter bees, orchid bees, cuckoo bees, bumblebees, and various other tribes and groups. Many are valuable pollinators in natural habitats and for agricultural crops. Apidae has three Subfamilies 1. Apinae: honey bees, bumblebees, stingless bees, orchid bees, digger bees, and 14 other tribes, the majority of which are solitary and whose nests are simple burrows in the soil. However, honey bees, stingless bees, and bumblebees are eusocial or colonial.. Subfamily Nomadinae 2. Nomadinae The subfamily Nomadinae, or cuckoo bees, has 31 genera in 10 tribes which are all cleptoparasites bees for their habit of invading nests of solitary bees and laying their own eggs Thyreus splendidulus Democratic Republic of Congo. Image: Nicolas Vereecken (Free University of Brussels) Subfamily Xylocopinae 3.
    [Show full text]
  • Beekeeping 101 Nick Mcdonald
    Beekeeping 101 Nick McDonald www.beekeeping101.net Beekeeping 101 – Beekeeping101.net By Nick McDonald Table of Contents Part 1: Knowing & Understanding the Bee History of Bees 6 History of Beekeeping 8 Bee Species 12 Common Types of Bees 13 Apis florea 13 Apis dorsata 14 Apis cerana 15 Apis mellifera 16 The Anatomy of a Bee 17 The Life Cycle of a Honey Bee 21 At a Glance: The Workings of Bee Society 23 2 Beekeeping 101 – Beekeeping101.net By Nick McDonald Activities of the Worker Bees 24 A Drone’s Life 26 The Queen Honeybee 26 Bees During Winter 27 Bees in Spring 29 Part 2: Beginning Beekeeping 33 Keeping Bees in Your Backyard 33 Installing a Fence 33 Sufficient Water 34 8 Easy Ways to Win Your Neighbors’ Hearts 35 Working With Your Bees 36 Honeybees & Stinging 37 3 Beekeeping 101 – Beekeeping101.net By Nick McDonald Parts of a Langstroth Hive 39 Understanding the Langstroth Hive 40 Know Your Beekeeping Tools 42 Wearing Bee-Tight Clothing 45 Getting Your Bees for the First Time 46 5 Tips for Finding A Good Bee Breeder 47 Collecting Honey 48 How is Honey Harvested? 49 Part 3: Hive Management & Troubleshooting 50 Inspecting the Hive 50 What to Look For During Inspections 52 Moving Your Langstroth Hive... The Right Way 54 Special Report: Swarming & Absconding 57 4 Beekeeping 101 – Beekeeping101.net By Nick McDonald Reasons for Swarming 57 Swarm Preparation 59 Clipped Queen Bees 61 Preventive Measures 62 Hive Reversal 62 Other Strategies for Preventing Swarming Behavior 63 Winter Management 64 Spring Management 66 Making Supplemental Sugar Syrup 67 Common Diseases 68 Watch Out for Bee Pests 69 References 71 5 Beekeeping 101 – Beekeeping101.net By Nick McDonald Part 1: Knowing & Understanding the Bee Welcome to the rich and rewarding world of beekeeping.
    [Show full text]
  • Chromosomal Analysis of the Eggs and Ovaries of the Laying Workers of Apis Cerana F S Verma, a Karol
    Chromosomal analysis of the eggs and ovaries of the laying workers of Apis cerana F S Verma, A Karol To cite this version: S Verma, A Karol. Chromosomal analysis of the eggs and ovaries of the laying workers of Apis cerana F. Apidologie, Springer Verlag, 1992, 23 (4), pp.285-289. hal-00890994 HAL Id: hal-00890994 https://hal.archives-ouvertes.fr/hal-00890994 Submitted on 1 Jan 1992 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Chromosomal analysis of the eggs and ovaries of the laying workers of Apis cerana F S Verma A Karol Nimachal Pradesh University, Department of Bio-Sciences, Summerhill, Shimla-171 005, HP India (Received 18 March 1991; accepted 4 May 1992) Summary &mdash; The chromosomal behavior during mitotic and meiotic cell division of eggs and ovar- ies of Apis cerana F laying workers has been examined. The laying workers are diploid (2n = 32), but undergo meiosis to produce drone brood which possesses a haploid (n = 16) set of chromo- somes. Apis cerana / meiosis / chromosome number / parthenogenesis / laying worker INTRODUCTION devoid of any kind of sperm cells. Ruttner (1976) gave an detailed account of capen- sis taxonomy and concluded that the In a normal honey bee colony the worker workers’ ovaries possess a large number bees and the queen bee are diploid fe- of ovarioles, that they were also surround- males but the drones are haploid males.
    [Show full text]
  • Think Tank Concept Based Notes Applied Zoology, Ethology & Biostatistics B.Sc
    Biyani's Think Tank Concept based notes Applied Zoology, Ethology & Biostatistics B.Sc Dr. Priyanka Dadupanthi Deptt. of Science Biyani Girls College, Jaipur 2 Published by : Think Tanks Biyani Group of Colleges Concept & Copyright : Biyani Shikshan Samiti Sector-3, Vidhyadhar Nagar, Jaipur-302 023 (Rajasthan) Ph : 0141-2338371, 2338591-95 Fax : 0141-2338007 E-mail : [email protected] Website :www.gurukpo.com; www.biyanicolleges.org Edition : 2012 While every effort is taken to avoid errors or omissions in this Publication, any mistake or omission that may have crept in is not intentional. It may be taken note of that neither the publisher nor the author will be responsible for any damage or loss of any kind arising to anyone in any manner on account of such errors and omissions. Leaser Type Setted by : Biyani College Printing Department For free study notes log on: www.gurukpo.com Applied Zoology, Ethylogy & Biostatistics 3 Preface am glad to present this book, especially designed to serve the needs of the I students. The book has been written keeping in mind the general weakness in understanding the fundamental concepts of the topics. The book is self-explanatory and adopts the “Teach Yourself” style. It is based on question-answer pattern. The language of book is quite easy and understandable based on scientific approach. Any further improvement in the contents of the book by making corrections, omission and inclusion is keen to be achieved based on suggestions from the readers for which the author shall be obliged. I acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr.
    [Show full text]
  • Bees and Their Role in Forest Livelihoods. a Guide to the Services Provide
    NON-WOOD FOREST PRODUCTS 19 Bees and their role in forest livelihoods A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products by .ICOLA"RADBEAR FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2009 5IJTQBQFSEJTDVTTFTUSBEJUJPOBMBOEUFNQPSBSZCFFLFFQJOHXJUITPNFPGUIFCFF QSPEVDUTQSPQPTFEBTNFEJDJOFT5IJTNBUFSJBMJTQSFTFOUFEGPSJOGPSNBUJPOPOMZBOE EPFTOPUJNQMZFOEPSTFNFOUCZUIFBVUIPSPSCZ'"06TFPGUIFTFQSPEVDUTJTOPU SFDPNNFOEFEVOMFTTUBLFOVOEFSUIFDBSFBOEHVJEBODFPGBRVBMJGJFEQIZTJDJBO 5SBOTQPSUPGCFFDPMPOJFTBOECFFQSPEVDUT FHCFFTXBY BDSPTTJOUFSOBUJPOBM CPVOEBSJFTDBOQPTFBSJTLPGBDDJEFOUBMJOUSPEVDUJPOPGJOTFDUT GVOHJPSPUIFS QPUFOUJBMMZEFTUSVDUJWFBHFOUT*UJTSFDPNNFOEFEUIBUBOZPOFQMBOOJOHUPNPWFCFF DPMPOJFTBDSPTTJOUFSOBUJPOBMCPVOEBSJFTDIFDLXJUIBQQSPQSJBUFBVUIPSJUJFTJOUIF DPVOUSZGSPNXIFSFUIFQSPEVDUTBSFUPCFFYQPSUFEBOEUIFDPVOUSJFTJOUPXIJDIUIF QSPEVDUTBSFUPCFJNQPSUFEGPSJNQPSUQFSNJUSFRVJSFNFOUT TBOJUBSZDFSUJGJDBUFTPS SFTUSJDUJPOTUIBUNJHIUBQQMZ 5IFEFTJHOBUJPOTFNQMPZFEBOEUIFQSFTFOUBUJPOPGNBUFSJBMJOUIJTJOGPSNBUJPO QSPEVDUEPOPUJNQMZUIFFYQSFTTJPOPGBOZPQJOJPOXIBUTPFWFSPOUIFQBSU PGUIF'PPEBOE"HSJDVMUVSF0SHBOJ[BUJPOPGUIF6OJUFE/BUJPOT '"0 DPODFSOJOHUIF MFHBMPSEFWFMPQNFOUTUBUVTPGBOZDPVOUSZ UFSSJUPSZ DJUZPSBSFBPSPGJUTBVUIPSJUJFT PSDPODFSOJOHUIFEFMJNJUBUJPOPGJUTGSPOUJFSTPSCPVOEBSJFT5IFNFOUJPOPGTQFDJGJD DPNQBOJFTPSQSPEVDUTPGNBOVGBDUVSFST XIFUIFSPSOPUUIFTFIBWFCFFOQBUFOUFE EPFT OPUJNQMZUIBUUIFTFIBWFCFFOFOEPSTFEPSSFDPNNFOEFECZ'"0JOQSFGFSFODFUP PUIFSTPGBTJNJMBSOBUVSFUIBUBSFOPUNFOUJPOFE 5IFWJFXTFYQSFTTFEJOUIJTJOGPSNBUJPOQSPEVDUBSFUIPTFPGUIFBVUIPSBOE
    [Show full text]
  • Beekeeping Glossary
    Beekeeping Glossary Version: 1/19/2018 A Abdomen – the posterior or third region of the body of a bee enclosing the honey stomach, true stomach, intestine, sting, and reproductive organs. Absconding swarm – a swarm composed of an entire colony of bees abandons the hive due to disease, pests, parasites, or other maladies. Africanized Honey Bee (AHB) - a race of bees, Apis mellifera scutellata. Created in an attempt to increase bee production. Highly productive and also highly aggressive. Afterswarm - the secondary or tertiary swarm that leave the hive after the first swarm of the season. Afterswarms usually have virgin queens. Alighting Board – a small projection or platform at the entrance of the hive. Also referred to as a Landing Board. American foulbrood (AFB) – a brood disease of honey bees caused by the spore-forming bacterium, Bacillus larvae. Ambrosia - see Bee bread Anaphylactic shock – constriction of the muscles surrounding the bronchial tubes of a human, caused by hypersensitivity to venom and potentially resulting in death unless immediate medical attention is received. Antenna - pl. antennae - the long, thin sensory organs on the bee's head, used for taste and smell. Anther - a component of the flower where pollen grains are produced. Part of the stamen. Apiary – colonies, hives, and other equipment assembled in one location for beekeeping operations; bee yard. Apiculture – the science and art of raising honey bees. Apis mellifera – scientific name of the honey bee found in the United States. Attendants - worker bees that are attending the queen. When used in the context of queens in cages, these are the workers that are added to the cage to care for the queen.
    [Show full text]
  • Bees of Toronto: a Guide to Their Remarkable World
    BEES OF TORONTO A GUIDE TO THEIR REMARKABLE WORLD WINNER OALA AWARD FOR SERVICE TO THE • City of Toronto Biodiversity Series • ENVIRONMENT Imagine a Toronto with flourishing natural habitats and an urban environment made safe for a great diversity of wildlife species. Envision a city whose residents treasure their daily encounters with the remarkable and inspiring world of nature, and the variety of plants and animals who share this world. Take pride in a Toronto that aspires to be a world leader in the development of urban initiatives that will be critical to the preservation of our flora and fauna. The Packer Collection at York University (PCYU) contains one of the largest research collections of wild bees in the world. A female metallic green sweat bee, Augochlora pura, visits a flower in search of pollen and nectar for herself or to construct a pollen ball, which she will later lay an egg upon. This species makes nests in wood rather than in the ground like most of its relatives. Females of this bee species are solitary - working alone - tirelessly foraging on flowers to increase her contribution to the number of bees in the following generation. Active from late spring to late summer, this bee can have two or more generations per year with only mated females overwintering as adults. Most of Toronto’s bees spend the winter as fully grown larvae in the nest, emerging once per year in sync with the timing of the native flowers they prefer. Cover photo: Augochlora sp. – Amro Zayed City of Toronto © 2016 Agapostemon virescens on a Campanula sp.
    [Show full text]
  • 1. Introduction
    Introduction 1 1. Introduction 1.1 Reproduction and regulation of reproductive dominance The transfer of genes from one generation to the next generation is realized in various ways ranging from solitary breeding to reproduction in social groups. An extreme form of society is giving up personal reproduction in favour of helping to rear the offspring of other colony members. Species, in which the partitioning of reproduction, and additionally the overlap of generations within the society and the cooperation in broodcare are realized, are termed eusocial (Batra 1966, Michener 1974, Wilson 1971). Eusociality has been found in many Hymenoptera species like vespinae wasps, ants and some bees as well as in other species e.g. aphids (Aoki 1987), thrips (Crespi 1992, Crespi and Mound 1997), in shrimps (Duffy 1996), in mole rats (Jarvis et al. 1994), and in ambrosia beetles (Kent and Simpson 1992) Due to Darwins theory of evolution the existence of non-reproductives poses an evolutionary paradoxon between sterility and natural selection (Bourke and Franks 1995). Darwin (1859) solved this problem in arguing that the natural selection in social insects acts rather on the colony than on the individual level (Moritz and Southwick 1992). About 100 years later Hamilton (1964a, b) provided his kin-selection theory which was based on genetical theories of the evolution of sociality. His theory is based on the inclusive fitness, taking the relation of cost (reduction of survival or production of own offspring) and benefit (enhancement of production or survival of offspring of another individual) to relatedness into account (detailed description in Moritz and Southwick 1992).
    [Show full text]