Phylogenetic Classification of the Halichondrids (Porifera, Demospongiae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data. -
A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds. -
Deep-Water Sinkholes and Bioherms of South Florida and the Pourtalès Terrace — Habitat and Fauna
BULLETIN OF MARINE SCIENCE, 77(2): 267–296, 2005 CORAL REEF PAPER DEEP-WATER SINKHOLES AND BIOHERMS OF SOUTH FLORIDA AND THE POURTALÈS TERRACE — HABITAT AND FAUNA John K. Reed, Shirley A. Pomponi, Doug Weaver, Charles K. Paull, and Amy E. Wright ABSTRACT Only a small percentage of deep-water reefs have had their benthic and fish re- sources characterized. This study surveyed eight deep-water, high-relief, hard-bot- tom sites off south Florida using human occupied submersibles to characterize habitat and describe the fish and macrobenthic communities: the Naples deep-water sink- hole on the southwest Florida shelf, Jordan and Marathon deep-water sinkholes on the Pourtalès Terrace, and five high-relief bioherms on the Pourtalès Terrace. These submersible dives were the first to enter and explore any of these features. The up- per sinkhole rims ranged from 175 to 461 m in depth and had a maximum relief of 180 m. The Jordan sinkhole may be one of the deepest and largest sinkholes known. The high-relief bioherms occurred at depths of 198–319 m, with a maximum height of 120 m. A total of 26 and 16 fish taxa were identified from the sinkhole and bio- herm sites, respectively. Species of potentially commercial importance included tilefish, sharks, speckled hind, yellowedge grouper, warsaw grouper, snowy grouper, blackbelly rosefish, red porgy, drum, scorpionfish, amberjack, and phycid hakes. In total, 66 Porifera taxa were identified and four are possible new species. Twenty- one species of Cnidaria included Antipatharia (three spp.), stylasterid hydrocorals (five spp.), octocorals (11 spp.), and one scleractinian. -
Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida). -
Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia
Diversity 2016, 8, 21; doi:10.3390/d8040021 S1 of S3 9 Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia Jane Fromont, Muhammad Azmi Abdul Wahab, Oliver Gomez, Merrick Ekins, Monique Grol and John Norman Ashby Hooper 1. Materials and Methods 1.1. Collation of Sponge Occurrence Data Data of sponge occurrences were collated from databases of the Western Australian Museum (WAM) and Atlas of Living Australia (ALA) [1]. Pilbara sponge data on ALA had been captured in a northern Australian sponge report [2], but with the WAM data, provides a far more comprehensive dataset, in both geographic and taxonomic composition of sponges. Quality control procedures were undertaken to remove obvious duplicate records and those with insufficient or ambiguous species data. Due to differing naming conventions of OTUs by institutions contributing to the two databases and the lack of resources for physical comparison of all OTU specimens, a maximum error of ± 13.5% total species counts was determined for the dataset, to account for potentially unique (differently named OTUs are unique) or overlapping OTUs (differently named OTUs are the same) (157 potential instances identified out of 1164 total OTUs). The amalgamation of these two databases produced a complete occurrence dataset (presence/absence) of all currently described sponge species and OTUs from the region (see Table S1). The dataset follows the new taxonomic classification proposed by [3] and implemented by [4]. The latter source was used to confirm present validities and taxon authorities for known species names. The dataset consists of records identified as (1) described (Linnean) species, (2) records with “cf.” in front of species names which indicates the specimens have some characters of a described species but also differences, which require comparisons with type material, and (3) records as “operational taxonomy units” (OTUs) which are considered to be unique species although further assessments are required to establish their taxonomic status. -
The Chemistry of Marine Sponges∗ 4 Sherif S
The Chemistry of Marine Sponges∗ 4 Sherif S. Ebada and Peter Proksch Contents 4.1 Introduction ................................................................................ 192 4.2 Alkaloids .................................................................................. 193 4.2.1 Manzamine Alkaloids ............................................................. 193 4.2.2 Bromopyrrole Alkaloids .......................................................... 196 4.2.3 Bromotyrosine Derivatives ....................................................... 208 4.3 Peptides .................................................................................... 217 4.4 Terpenes ................................................................................... 240 4.4.1 Sesterterpenes (C25)............................................................... 241 4.4.2 Triterpenes (C30).................................................................. 250 4.5 Concluding Remarks ...................................................................... 268 4.6 Study Questions ........................................................................... 269 References ....................................................................................... 270 Abstract Marine sponges continue to attract wide attention from marine natural product chemists and pharmacologists alike due to their remarkable diversity of bioac- tive compounds. Since the early days of marine natural products research in ∗The section on sponge-derived “terpenes” is from a review article published -
Chapter 13. State of Deep-Sea Coral and Sponge Ecosystems of the U.S
State of Deep‐Sea Coral and Sponge Ecosystems of the Southeast United States Chapter 13 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Hourigan TF, Reed J, Pomponi S, Ross SW, David AW, Harter S (2017) State of Deep‐Sea Coral and Sponge Ecosystems of the Southeast United States. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 60 p. Available online: http://deepseacoraldata.noaa.gov/library. STATE OF THE DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE SOUTHEAST UNITED STATES Squat lobster perched on Lophelia pertusa colonies with a sponge in the background. Courtesy of NOAA/ USGS. 408 STATE OF THE DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE SOUTHEAST UNITED STATES STATE OF THE DEEP- SEA CORAL AND Thomas F. Hourigan1*, SPONGE ECOSYSTEMS John Reed2, OF THE SOUTHEAST Shirley Pomponi2, UNITED STATES Steve W. Ross3, Andrew W. David4, and I. Introduction Stacey Harter4 The Southeast U.S. region stretches from the Straits of Florida north to Cape Hatteras, North Carolina, and encompasses the 1 NOAA Deep Sea Coral Southeast U.S. Continental Shelf large marine ecosystem (LME; Research and Technology Carolinian ecoregion) and associated deeper waters of the Blake Program, Office of Habitat Plateau, as well as a small portion of the Caribbean LME off the Conservation, Silver Florida Keys (eastern portion of the Floridian ecoregion). Within Spring, MD * Corresponding Author: U.S. waters, deep‐sea stony coral reefs reach their greatest [email protected] abundance and development in this region (Ross and Nizinski 2007). -
Marine Sponge (Porifera: Demospongiae) Liosina Paradoxa Thiele, 1899 from Sandspit Backwater Mangroves at Karachi Coast, Pakistan
Indian Journal of Geo Marine Sciences Vol. 47 (06), June 2018, pp. 1296-1299 Marine Sponge (Porifera: Demospongiae) Liosina paradoxa Thiele, 1899 from Sandspit backwater mangroves at Karachi coast, Pakistan Hina Jabeen, Seema Shafique*, Zaib-un-Nisa Burhan & Pirzada Jamal Ahmed Siddiqui Centre of Excellence in Marine Biology, University of Karachi, Karachi-75270, Pakistan *[E.Mail: [email protected]] Received 22 August 2016 ; revised 07 December 2016 Marine sponge Liosina paradoxa was recently collected from pneumatophore of Avicennia marina at Sandspit backwater (66°54'25" E, 24°49'20" N), Karachi coast in May 2015. Identification of specimen was based on the structure of siliceous spicules scattered irregularly in mesohyl observed under light microscope and scanning electron microscope. Spicules are megascleres, entirely smooth, strongyle (length = 310-451 ± 59.65 µm, width = 5-8 ± 1.8 µm), microscleres absent. The result has been shown that the species is Liosina paradoxa (Family Dictyonellidae) first time reported from coastal area of Pakistan. [Keywords: Marine sponge; mangroves; Demospongiae; Bubarida; Dictyonellidae; Liosina paradoxa] Introduction derivatives16. Most species of Dictyonellidae found in Mangroves are salt tolerant vegetation that inhabits warm waters. The following ten genera have been tropical and sub-tropical coastal regions and are included in this family; Liosina, Acanthella, considered among the world’s most productive Rhaphoxya, Lipastrotethya, Tethyspira, Scopalina, ecosystems1, which provide food and shelter for a Dictyonella, Phakettia, Svenzea and Stylissa16,18,19. wide variety of organisms2. Fungi, algal (micro and Liosina is massive, encrusting sponge with muddy macro) communities and many other invertebrates appearance. Spicules may scatter irregularly near the (sponges, polychaetes, bryozoans, barnacles and surface in the form of bundles within spongin, mostly molluscs) are the most abundant epibionts of monactines and diactines13,14. -
Pallas 1766) (Porifera: Demospongiae) Populations
UvA-DARE (Digital Academic Repository) On the Phylogeny of Halichondrid Demosponges Erpenbeck, D.J.G. Publication date 2004 Link to publication Citation for published version (APA): Erpenbeck, D. J. G. (2004). On the Phylogeny of Halichondrid Demosponges. Universiteit van Amsterdam. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Chapterr 5 AA molecular comparison of Alaskan and North East Atlantic HalichondriaHalichondria panicea (Pallas 1766) (Porifera: Demospongiae) populations (in(in press, Boll. Mus. 1st. bio. Univ. Genova) D.. Erpenbeck*, A.L. Knowlton", S.L. Talbot"*, R.C. Highsmith" and R.W.M. van Soest * TBED/Zoologicall Museum, University of Amsterdam, P.O. Box 94766,1090GT Amsterdam, Netherlands "Institutee of Marine Science, University of Alaska Fairbanks, P.O. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Connecticut Aquatic Nuisance Species Management Plan
CONNECTICUT AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Connecticut Aquatic Nuisance Species Working Group TABLE OF CONTENTS Table of Contents 3 Acknowledgements 5 Executive Summary 6 1. INTRODUCTION 10 1.1. Scope of the ANS Problem in Connecticut 10 1.2. Relationship with other ANS Plans 10 1.3. The Development of the CT ANS Plan (Process and Participants) 11 1.3.1. The CT ANS Sub-Committees 11 1.3.2. Scientific Review Process 12 1.3.3. Public Review Process 12 1.3.4. Agency Review Process 12 2. PROBLEM DEFINITION AND RANKING 13 2.1. History and Biogeography of ANS in CT 13 2.2. Current and Potential Impacts of ANS in CT 15 2.2.1. Economic Impacts 16 2.2.2. Biodiversity and Ecosystem Impacts 19 2.3. Priority Aquatic Nuisance Species 19 2.3.1. Established ANS Priority Species or Species Groups 21 2.3.2. Potentially Threatening ANS Priority Species or Species Groups 23 2.4. Priority Vectors 23 2.5. Priorities for Action 23 3. EXISTING AUTHORITIES AND PROGRAMS 30 3.1. International Authorities and Programs 30 3.2. Federal Authorities and Programs 31 3.3. Regional Authorities and Programs 37 3.4. State Authorities and Programs 39 3.5. Local Authorities and Programs 45 4. GOALS 47 3 5. OBJECTIVES, STRATEGIES, AND ACTIONS 48 6. IMPLEMENTATION TABLE 72 7. PROGRAM MONITORING AND EVALUATION 80 Glossary* 81 Appendix A. Listings of Known Non-Native ANS and Potential ANS in Connecticut 83 Appendix B. Descriptions of Species Identified as ANS or Potential ANS 93 Appendix C. -
Florida Keys Species List
FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P.