Investigation

Total Page:16

File Type:pdf, Size:1020Kb

Investigation Name: ___________________________________________ Date: ________________ Investigation 9.3 Earth’s Two Major Mountain Ranges What causes Earth’s major mountain ranges to form? The Andes and the Himalayas are the two highest mountain ranges on Earth. These two majestic mountain ranges contain mountains over 22,000 feet in elevation. Both were formed by the same process; converging tectonic plates There is one major difference between these two mountain ranges, and in this investigation you will examine this major difference. The Andes - An oceanic plate/continental plate subduction zones Earth’s tectonic plates can move apart, or they can move toward one another. When they move toward one another they collide with an almost unimanginable force. Often these collisions go on for millions of years and slowly produce mountains. When the conditions are just right, truly massive mountain ranges can be produced by converging plates. Locate the Andes on your bathymetric map. Identify the location of the Nazca Plate and the South American Plate as well. a. What does the term “subduction” mean? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ b. What happens to the tectonic plate that subducts under another plate? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ c. How does subduction produce mountains? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ d. What do you think is causing the Nazca Plate to subduct under the South American Plate? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ e. How do buoyancy and density affect the subduction event that has produced the Andes mountains? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ Investigation Answer Sheet: Earth’s Two Major Mountain Ranges p.1 © 2014 CPO Science • May be duplicated for classroom use. f. How do the density of the Nazca Plate and the South American Plate compare? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ The Himalayas - When two continental plates collide The Himalayas are the tallest mountain range in the world. They are the result of two continental plates converging. The Indo-Australian Plate is slamming into the enormous Eurasian Plate and the result is a vast collection of the world’s tallest peaks. The Himalayas are a relatively young mountain range, and are in fact growing every day. The process that created them is similar to that which produced the Andes but with one major difference; both plates are continental plates. As the two plates collide, parts of both plates have folded and been uplifted. Prior to the collision, and ancient oceanic plate subducted under the Eurasian plate and began the uplifting process. The Indo-Australian Plate is following that ancient plate under the Eurasian plate, but since the two continental plates are about the same density the Indo- Australian Plate is slamming into, scraping, and uplifting the Eurasian Plate as it is forced under. The ancient oceanic plate was more dense than the Eurasian plate, so it slid under without the massive collision taking place now. As the Indo-Australian Plate slammed into the massive Eurasian plate, the two crumpled on their contacting edges, producing the many parallel ridges of the Himalayan Range. These are called fold mountains. The massive force of these two plates coming together is forcing the Indo-Australian Plate to reluctantly subduct under the Eurasian plate, and this is causing continuing uplift to the range. Thinking about converging plates a. Why is the Indo-Australian Plate resisting subduction so much and not simply sliding under the Eurasian plate, like the Nazca Plate is sliding under the South American Plate in the subduction zone that has created the Andes? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ b. What do you think is responsible for moving the Indo-Australian Plate thousands of miles over millions of years? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ c. Use your hands to model the collision between the Indo-Australian Plate and the Eurasian Plate. Use your fingers to create the Himalayan Mountains similar to how the Eurasian Plate is folding and being uplifted by the Indo-Australian Plate. _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ Investigation Answer Sheet: Earth’s Two Major Mountain Ranges p.2 © 2014 CPO Science • May be duplicated for classroom use. d. The Peru–Chile Trench, also known as the Atacama Trench, is a deep-ocean trench in the eastern Pacific Ocean. It is located about 160 km (100 mi) off the coast of Peru and Chile. At its deepest point, it is 8,065 m (26,460 ft) below sea level. Use the concept of subduction to explain its existence. _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ e. On your bathymetric map locate another likely oceanic plate and continental plate subduction zone. What would be the clues you would look for? What did you find? Use the Internet and other research materials to see if you are correct in your prediction of the location of another likely oceanic plate and continental plate subduction zone. _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ f. On your bathymetric map locate another likely location of two continental plates coming together. What would be the clues you would look for? What did you find? Use the Internet and other research materials to see if you are correct in your prediction of the location of another likely oceanic plate and continental plate subduction zone. _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ g. Challenge: The Peru–Chile Trench is the ninth deepest oceanic trench in the world. Marianas Trench is the deepest. Research this trench and propose a reason why it is deeper than the Peru–Chile Trench. Bonus: Two plates are converging to form the Marianas Trench. One is the Pacific Plate. What is the other? Can you explain why the Pacific Plate is the one subducting? _______________________________________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ Investigation Answer Sheet: Earth’s Two Major Mountain Ranges p.3 © 2014 CPO Science • May be duplicated for classroom use..
Recommended publications
  • Dynamic Subsidence of Eastern Australia During the Cretaceous
    Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data.
    [Show full text]
  • Overview of Zealandia and Its Subduction Record
    Overview of Zealandia and its subduction record Nick Mortimer, GNS Science, Dunedin, New Zealand GNS Science New Guinea SW Pacific geography Fiji New Caledonia Scattered, remote Australia islands Tasman 4 million people Sea New Near Australia Zealand 1000 km GNS Science SW Pacific bathymetry Fiji New Based on satellite Caledonia gravity Broad plateaus and ridges 1-2 km water depth New Zealand 1000 km Sandwell & Smith (1997), Stagpoole (2002) GNS Science SW Pacific 87 present day Fiji tectonics 77 New Caledonia 67 mm/yr • Pacific and Australian plates 53 • nearby pole of PAC plate rotation AUS plate New Zealand 38 • convergence variably oblique • subduction polarity 30 changes 1000 km Bird (2003) GNS Science OJP MP Zealandia • continent that is 95% submerged • rifted internally and on most margins 45-0 Ma 120-85 Ma • now on two plates PAC plate • Hikurangi Plateau adjacent AUS plate HP continental rock 85-55 Ma samples Median Batholith (Cambrian-Cret) Late Cret. MCCs 85-0 Ma Early Cret LIPs 45-0 Ma Preserved E Cret subduction zone 1000 km GNS Science Zealandia and Gondwana • ZLD on PAC and AUS plates PAC plate • match piercing points AUS plate HP • track fracture zones • rotation and translation 1000 km Sutherland (1995, 1999) GNS Science 1000 km 14 April 84,000,000 B.P. Gondwana reconstruction NG Just before major LP breakup episode MR QP KP Continental crust MP NewCal Oceanic crust NLHR AUST Hikurangi LIP SNR SLHR <85 Ma continental breakup D ZLND lines ET Chall STR IB HP Camp CR • Zealandia EANT WR was a ribbon continent WANT After Gaina et al.
    [Show full text]
  • USGS Analysis of the Australian UNCLOS Submission
    USGS Analysis of the Australian UNCLOS Submission By Deborah R. Hutchinson and Robert W. Rowland Open-File Report 2006-1073 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia For Additional Information: See the United Nations web page on the United Nations Convention on the Law of the Sea at http://www.un.org/Depts/los/index.htm, and the Executive Summary of the Australian UNCLOS submission at http://www.un.org/Depts/los/clcs_new?submission_files/submission_aus.htm. Contact Deborah R. Hutchinson U.S. Geological Survey 384 Woods Hole Road Woods Hole, MA, 02543 [email protected] 508-457-2263 Robert W. Rowland U.S. Geological Survey, Retired 55825 River Shore Lane Elkhart, IN 46516 [email protected] For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation Hutchinson, D.R., and Rowland, R.W., 2006, USGS Analysis of the Australian UNCLOS Submission: U.S. Geological Survey Open-File Report 2006-1073, 19 p., http://pubs.usgs.gov/of/2006/1073. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government, nor does the interpretation presented here reflect official U.S.
    [Show full text]
  • Original Pdf Version
    Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 North America subducted under Rubia Are there modern analogs for Hildebrand’s model of North America subducting under Rubia? In the Geological Society of America Special Papers “Did Westward Subduction Cause Cretaceous–Tertiary Orogeny in the North American Cordillera?” and “Mesozoic Assembly of the North American Cordillera” by Robert S. Hildebrand, the author argues that the North American continent experienced westward subduction under what he calls a “ribbon continent” known as Rubia around ~124Ma. This ribbon continent is composed of multiple terranes both known to be exotic to North America, and terranes that were previously thought to be part of North America. As the seaway between Rubia and North America closed, Hildebrand postulates that North America was dragged underneath with the oceanic crust. This continental material combined with the fluids from the margin caused great amounts of magmatism in the North American Cordillera. Eventually the continental crust broke due to upward buoyancy. This caused slab failure around 75-60 Ma, followed by a reversal of subduction polarity around 53 Ma, with eastward subduction through the mid- Tertiary (Fig. 1). As a way of checking to see if this hypothesis is plausible, I investigated modern geologic settings that are undergoing similar tectonic events. Although these regions are Figure 1: Hildebrand’s model of subduction of not perfect analogies, they share enough North America and Rubia. From Hildebrand, 2009. 1 Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 tectonic features that Hildebrand’s model appears somewhat less outlandish.
    [Show full text]
  • Presentation on Pacific Plate and Associated Boundaries
    PACIFIC PLATE AND ASSOCIATED BOUNDARIES The Pacific Plate • Pacific Plate is the largest plate and an oceanic plate. • It shares its boundaries with numerous plates namely; North American Plate.(Convergent and transform fault) Philippine Plate.(Convergent) Juan de Fuca Plate.(Convergent) Indo – Australian Plate.(Convergent, Transform Fault) Cocos Plate.(Divergent) Nazca Plate.(Divergent) Antarctic Plate.(Divergent,Transform Fault) Types of Plate Boundaries • Convergent Boundary: Subduction zones where two plates converges. Eg; Aleutian Islands(Alaska) • Divergent Boundary: Spreading centres where two plates move away from each other. Eg; East Pacific Rise (MOR, Pacific Ocean). • Transform Faults: Boundary where two plates slide past each other. For Eg. ; San Andreas Fault. BOUNDARY WITH ANTARCTIC PLATE DIVERGENT BOUNDARY • Pacific – Antarctic Ridge TRANSFORM FAULT • Louisville Seamount Chain Pacific – Antarctic Ridge Pacific – Antarctic Ridge(PAR) is located on the seafloor of the South Pacific Ocean. It is driven by the interaction of a mid oceanic ridge and deep mantle plumes located in the eastern portion of East Pacific Ridge. Louisville Seamount Chain It is the longest line of seamount chain in the Pacific Ocean of about 4,300 km, formed along the transform boundary in the western side between Pacific plate and Antarctic plate. It was formed from the Pacific Plate sliding over a long – lived centre of upwelling magma called the Louisville hotspot. BOUNDARY WITH PHILIPPINE PLATE CONVERGENT BOUNDARY • Izu – Ogasawara Trench • Mariana Trench Izu – Ogasawara Trench It is an oceanic trench in the western Pacific Ocean. It stretches from Japan to northern most section of Mariana Trench. Here, the Pacific Plate is being subducted beneath the Philippine Sea Plate.
    [Show full text]
  • Seismic Tomography Constraints on Reconstructing
    SEISMIC TOMOGRAPHY CONSTRAINTS ON RECONSTRUCTING THE PHILIPPINE SEA PLATE AND ITS MARGIN A Dissertation by LINA HANDAYANI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Geophysics SEISMIC TOMOGRAPHY CONSTRAINTS ON RECONSTRUCTING THE PHILIPPINE SEA PLATE AND ITS MARGIN A Dissertation by LINA HANDAYANI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Thomas W. C. Hilde Mark E. Everett (Chair of Committee) (Member) Richard L. Gibson David W. Sparks (Member) (Member) William R. Bryant Richard L. Carlson (Member) (Head of Department) December 2004 Major Subject: Geophysics iii ABSTRACT Seismic Tomography Constraints on Reconstructing the Philippine Sea Plate and Its Margin. (December 2004) Lina Handayani, B.S., Institut Teknologi Bandung; M.S., Texas A&M University Chair of Advisory Committee: Dr. Thomas W.C. Hilde The Philippine Sea Plate has been surrounded by subduction zones throughout Cenozoic time due to the convergence of the Eurasian, Pacific and Indian-Australian plates. Existing Philippine Sea Plate reconstructions have been made based primarily on magnetic lineations produced by seafloor spreading, rock magnetism and geology of the Philippine Sea Plate. This dissertation employs seismic tomography model to constraint the reconstruction of the Philippine Sea Plate. Recent seismic tomography studies show the distribution of high velocity anomalies in the mantle of the Western Pacific, and that they represent subducted slabs. Using these recent tomography data, distribution maps of subducted slabs in the mantle beneath and surrounding the Philippine Sea Plate have been constructed which show that the mantle anomalies can be related to the various subduction zones bounding the Philippine Sea Plate.
    [Show full text]
  • Australia and Oceania: Physical Geography
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Australia and Oceania: Physical Geography Encyclopedic entry. Oceania is a region made up of thousands of islands throughout the South Pacific Ocean. G R A D E S 6 - 12+ S U B J E C T S Biology, Earth Science, Geology, Geography, Human Geography, Physical Geography C O N T E N T S 10 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/oceania-physical-geography/ Oceania is a region made up of thousands of islands throughout the Central and South Pacific Ocean. It includes Australia, the smallest continent in terms of total land area. Most of Australia and Oceania is under the Pacific, a vast body of water that is larger than all the Earth’s continental landmasses and islands combined. The name “Oceania” justly establishes the Pacific Ocean as the defining characteristic of the continent. Oceania is dominated by the nation of Australia. The other two major landmasses of Oceania are the microcontinent of Zealandia, which includes the country of New Zealand, and the eastern half of the island of New Guinea, made up of the nation of Papua New Guinea. Oceania also includes three island regions: Melanesia, Micronesia, and Polynesia (including the U.S. state of Hawaii). Oceania’s physical geography, environment and resources, and human geography can be considered separately. Oceania can be divided into three island groups: continental islands, high islands, and low islands.
    [Show full text]
  • Geodynamic Patterns of Ophiolites and Marginal Basins in the Indonesian and New Guinea Regions
    Geodynamic patterns of ophiolites and marginal basins in the Indonesian and New Guinea regions RON HARRIS Department ofGeology, Brigham Young University, Provo, UT 84602-4606, USA (e-mail: [email protected]) Abstract: Analysis of spatial, temporal, geological and geochemical patterns of ophiolites in the Indonesian and New Guinea region indicates a strong correlation with marginal basin development and closure. The spatial distribution of ophiolites is mostly linked with marginal basin producing zones of oblique convergence and collision. Strain partitioning in these zones creates a series of ephemeral plate boundaries between several independently moving lithospheric blocks. Repeated disruption of the diffuse boundaries between the blocks by changes in plate motion and collision-induced mantle extrusion creates space that is rapidly filled by new ocean basins in the upper plate of subduction zones. Suprasubduction zone (SSZ) spreading of these basins is enhanced by episodic extrusion of asthenosphere escaping collisional suture zones. Various closure events and global plate motion changes are reflected in the temporal distribution of marginal basin and ophiolite ages. Most ophiolite slabs in the Indonesian and New Guinea region represent fragments of oceanic lithosphere with a subduction zone component, as indicated by the common refractory petrochemistry of the mantle sequence and occurrence ofboninite. .Age and compositional heterogeneity may indicate that some ophiolite bodies are composite terranes. Collisions with buoyant lithosphere transfo= parts of these ocean basins into ophiolites. The connection between ophiolites and marginal basins is strongest where parts of actively spreading SSZ basins are partially represented as ophiolites in collision zones. Many of the various tectonic models proposed for rollback, subduction polarity asymmetry, astheno­ the origin and tectonic evolution of ophiolites are spheric flow and plate kinematics.
    [Show full text]
  • 38. Tectonic Constraints on the Hot-Spot Formation of Ninetyeast Ridge1
    Weissel, J., Peirce, J., Taylor, E., Alt, J., et al. 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 121 38. TECTONIC CONSTRAINTS ON THE HOT-SPOT FORMATION OF NINETYEAST RIDGE1 Jean-Yves Royer,2 John W. Peirce,3 and Jeffrey K. Weissel4 ABSTRACT This paper examines the constraints on the tectonic setting of Ninetyeast Ridge, based on a compilation of bathymetric and magnetic data from the basins surrounding Ninetyeast Ridge in the Indian Ocean that includes the magnetic profiles collected under way during ODP Leg 121. Magnetic data in the Central Indian Basin demonstrate that the spreading center immediately west of Ninetyeast Ridge jumped to the south by a total amount of 11° between 68 and 46 Ma, implying that parts of the mirror image of Ninetyeast Ridge on the Antarctic plate were transferred onto the Indian plate. The obliquity of Ninetyeast Ridge relative to the fracture zone pattern and the occurrence of an Eocene extinct spreading axis in the Wharton Basin suggest that the northern part of Ninetyeast Ridge was emplaced by intraplate volcanism on the Indian plate, whereas the middle and southern parts of the ridge were emplaced along transform plate boundaries. The northward drift of the Indian plate over a single hot spot is the most plausible origin for Ninetyeast Ridge. Based on a recent kinematic model for the relative motions of the Indian, Antarctic, and Australian plates, we present a simple model that reconciles most of the available observations for Ninetyeast Ridge: Paleomagnetism, distribution of basement ages, geochemistry, and geometry. In addition, the model predicts a slow westward migration of the Kerguelen/Ninetyeast hot spot with respect to the Antarctic and Australian plates between the Late Cretaceous and early Oligocene (84 to 36 Ma).
    [Show full text]
  • Analysis of Intraplate Earthquakes and Deformation in the Indo-Australian Plate: Moment Tensor and Focal Depth Modeling
    Analysis of Intraplate Earthquakes and Deformation in the Indo-Australian Plate: Moment Tensor and Focal Depth Modeling Honor’s Thesis by Wardah Mohammad Fadil Department of Earth and Environmental Sciences University of Michigan Abstract The April 2012 sequence of MW > 8.0 strike-slip earthquakes off the northern coast of Sumatra ​ ​ and the May 2014 ~50 km deep earthquake in the Bay of Bengal are rare intraplate earthquakes that have sparked numerous studies on internal deformation of the Indo-Australian Plate. In this thesis, we conducted moment tensor analysis and observed the NW/SE pattern of compression in the southern Indian Ocean, perpendicular to the compression directions at the Sunda Trench. We estimated principal stress directions for a cluster of 55 intraplate earthquakes in the southern Indian Ocean, demonstrating that they are consistent with the general stress directions in the region. Analysis of depth phase arrival times and surface wave dispersion for the May 21 2014 Bay of Bengal earthquake at the BJT and PALK seismic stations confirmed the 40-60 km focal depth of the earthquake. The occurrence of intraplate earthquakes and orientation of stress within the Indo-Australian Plate indicate the complex and dynamic plate boundary forces and the formation of a diffuse deformation zone. However, the causes of deep focal depths of intraplate earthquakes are still ambiguous. 1. Introduction The Indo-Australian Plate is a unique tectonic plate. It includes the continents of India and Australia and the surrounding oceanic lithosphere. The plate formed approximately 42 million years ago when the Indian and Australian plates fused together [Royer et al, 1991; Cande and Kent, 1995; Krishna et al, 1995].
    [Show full text]
  • Tectonic Controls on the Distribution of Large Copper and Gold Deposits in Southeast Asia to Identify Productive and Non-Productive Structures
    Tectonic controls on the distribution of large copper and gold deposits in Southeast Asia to identify productive and non-productive structures Bert De Waele, Peter Williams, Gavin Chan SRK Consulting, 10, Richardson Street, West Perth, WA6005, Western Australia Abstract. Ore deposits occur in a wide range of tectonic the east, however, on Sumbawa, several porphyry settings, and are highly variable in their local systems are known, of which the largest is the 5 Million characteristics. In this paper, we focus on the distribution year-old Batu Hijau deposit. Tectonics in that region, of copper and gold deposits in the Southeast Asia region, east of longitude 115°E, consists of the consumption of and investigate large-scale plate-tectonic controls on the the IP below the remnants of the Molucca Sea Plate distribution and characteristics of these porphyry copper and epithermal gold deposits. We then discuss the (MSP), i.e intra-oceanic subduction and the formation of applicability of these results to exploration in older island arcs. geological terranes, and suggest clues to distinguishing In Northern Indonesia, dextral escape tectonics productive from non-productive geological structures. related to India-Asia collision resulted in the southward subduction of the proto-South China Sea Plate (PSCSP) Keywords: Porphyry Copper-Gold, Tectonics below Borneo. This subduction ceased at about 24 Ma, with continent-continent collision and accretion of the 1 Tectonics and mineralisation in SE Asia sedimentary prism to northern Borneo. The cessation of subduction changed motion of the PSP, and collision of Southeast Asia is a collage of ophiolitic, island and the AP with the Sunda Arc resulted in counter clockwise oceanic arc terranes that formed as part of a complex rotation of Borneo.
    [Show full text]
  • Australian Paleo-Stress Fields and Tectonic Reactivation Over the Past
    padmavathym 27/7/11 12:32 TAJE_A_605801 (XML) Australian Journal of Earth Sciences (2011) 00, (1–16) Australian paleo-stress fields and tectonic reactivation 5 over the past 100 Myr 65 R. D. MU¨LLER1*, S. DYKSTERHUIS1,2 AND P. REY1 10 1EarthByte Group, School of Geosciences, The University of Sydney, Madsen Building F09, NSW 2006, Australia. 70 2ExxonMobil, 12 Riverside Quay, Southbank, VIC 3006, Australia. Even though a multitude of observations suggest time-dependent regional tectonic reactivation of the 15 Australian Plate, its large-scale intraplate stress field evolution remains largely unexplored. This arises 75 because intraplate paleo-stress models are difficult to construct, and that observations of tectonic reactivation are often hard to date. However, because the Australian plate has undergone significant changes in plate boundary types and geometries since the Cretaceous, we argue that even simple models can provide some insights into the nature and timing of crustal reactivation through time. We present Australian intraplate stress models for key times from the Early Cretaceous to the present, and 20 link them to geological observations for evaluating time-dependent fault reactivation. We focus on the 80 effect time-dependent geometries of mid-ocean ridges, subduction zones and collisional plate boundaries around Australia have on basin evolution and fault reactivation through time by reconstructing tectonic plates, restoring plate boundary configurations, and modelling the effect of selected time-dependent plate driving forces on the intraplate stress field of a rheologically 25 heterogeneous plate. We compare mapped fault reactivation histories with paleo-stress models via 85 time-dependent fault slip tendency analysis employing Coulomb-Navier criteria to determine the likelihood of strain in a body of rock being accommodated by sliding along pre-existing planes of weakness.
    [Show full text]