Quantum Times: Physics, Philosophy, and Time in the Postwar United States

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Times: Physics, Philosophy, and Time in the Postwar United States Quantum Times: Physics, Philosophy, and Time in the Postwar United States The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Crystal, Lisa. 2013. Quantum Times: Physics, Philosophy, and Time in the Postwar United States. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11051191 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quantum Times: Physics, Philosophy, and Time in the Postwar United States A dissertation presented by Lisa Crystal to The Department of the History of Science In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of History of Science Harvard University Cambridge, Massachusetts April, 2013 © 2013 Lisa Crystal All Rights Reserved. Dissertation Advisor: Professor Peter Galison Lisa Crystal Quantum Times: Physics, Philosophy, and Time in the Postwar United States Abstract The concept of time in physics underwent significant changes in the decades following World War II. This dissertation considers several ways in which American physicists grappled with these changes, analyzing the extent to which philosophical methods and questions played a role in physicists’ engagement with time. Two lines of questioning run through the dissertation. The first asks about the professional identities of postwar American physicists in relation to philosophy, as exemplified by their engagement with the concept of time. The second analyzes the heterogeneous nature of time in physics, and the range of presuppositions and assumptions that have constituted this “fundamental” physical concept. The first chapter looks to the development of atomic clocks and atomic time standards from 1948-1958, and the ways in which new timekeeping technologies placed concepts such as “clock”, “second,” and “measure of time” in a state of flux. The second chapter looks to the experimental discovery of CP violation by particle physicists in the early 1960s, raising questions about nature of time understood as the variable “t” in the equations of quantum mechanics. The third chapter considers attempts to unify quantum mechanics and general relativity in the late 1960s, which prompted physicists to question iii the “existence” of time in relation to the universe as a whole. In each episode considered, physicists engaged with the concept of time in a variety of ways, revealing a multiplicity of relationships between physics, philosophy, and time. Further, in each case physicists brought a unique set of assumptions to their concepts of time, revealing the variety ways in which fundamental concepts functioned and changed in late twentieth century physics. The result is a heterogeneous picture of the practice of physics, as well as one of physics’ most basic concepts. iv TABLE OF CONTENTS Acknowledgments vi INTRODUCTION 1 CHAPTER ONE Atomic Times: Clocks and Time Standards in the Post-War era 34 CHAPTER TWO The Discovery of CP Violation: Physics, Fundamentality, and the Arrow of Time 76 CHAPTER THREE Time and Quantum Gravity: Wheeler, DeWitt, And the “Equation of the Universe” 120 CONCLUSION 177 v ACKNOWLEDGEMENTS This project would not have been possible without the tremendous help and support I received along the way. I would like to thank the archivists and librarians who have assisted me from the following institutions: the American Institute of Physics; the American Philosophical Society; the Briscoe Center for American History at the University of Texas, the Harvard University Archives, the M. Louis Salmon Library at the University of Alabama; the National Museum of American History, the National Physical Laboratory Library, the Seeley G. Mudd Manuscript Library at Princeton University, and the US Naval Observatory Library. I would also like to thank the Social Science and Humanities Research Council of Canada, the Charles Warren Center for Studies in American History, the Erwin Hiebert Fellowship for Dissertation Research, and the Harvard Graduate School of Arts and Science for their generous support. I am deeply indebted to Peter Galison, David Kaiser, and Jimena Canales for their insight and guidance throughout the dissertation process. It has been a pleasure working with such an engaged, thoughtful, and encouraging team of advisors. I am also indebted to the wonderful graduate student community at the history of science department at Harvard for their incredible support and encouragement. This project has benefited enormously from their willingness to engage with my ideas in formal and informal contexts. I am particularly grateful for constant support and feedback from Myrna Perez, Stephanie Dick, and Jenna Tonn. Our conversations over brunches, dinners, and glasses of wine have been invaluable to my thinking as well as my overall happiness. vi Special thanks to Myles for his companionship during long days of writing; my grandmother “Bubbie” Joan for nurturing my early interest in science; Rachel, Steph, and Myrna for being the best possible friends; my parents, Valerie, Mauricio, and Glen for the unconditional love and support; and Bryan for absolutely everything. Bryan, this dissertation is dedicated to you. vii INTRODUCTION 1. The concept of time is a central one for contemporary scholars in a range of disciplines, including physics, philosophy, psychology, anthropology, and literary theory. As such, it is a particularly appropriate point of entry for investigating relationships among the disciplines of the late twentieth century. What do conceptions of time, as employed by different groups of scholars, have in in common and how do they differ? How are questions about time framed differently in various disciplines, and which methods are used to answer these questions? What presuppositions about the nature and boundaries of a given discipline contribute to its practitioners’ treatments of time? Even within a traditional academic discipline such as physics, there are subgroups of researchers who understand the concept of time, and the intellectual problems it poses, very differently. Thus, a study of the ways scholars have handled the concept of time can illustrate the relations among disciplines, as well as within a given discipline. This dissertation will examine how different subgroups of physicists, working in the United Sates in the 1950s and 1960s, approached fundamental questions about time. Specifically, it will consider the extent to which each subgroup asked questions about the meaning and nature of time, as well as how speculative and interpretive methods factored into their answers. Within each subgroup, physicists operated under a particular understanding of what it meant to do physics, influencing the types of questions they 1 asked and how freely they speculated about the nature of their central concepts. The primary objective of this dissertation will be to account for the various ways American physicists understood their work and discipline in the decades following World War II, as exemplified by their engagement with the concept of time. This will set the stage for a secondary objective: to understand what a fundamental concept, like time, looks like when situated within shifting understandings of physics. Each chapter focuses on a specific episode in the history of physics in the postwar United States in which the nature of time emerged as a salient issue. The first chapter considers a subgroup of physicists working on the development of atomic clocks and atomic time standards in the 1950s, who engaged in debates over the universality of measures of time. The second chapter considers a subgroup of experimental particle physicists in the early-1960s, whose work raised questions about the directionality of time. The third chapter looks to a subgroup of physicists seeking to unify quantum mechanics and general relativity in the late-1960s, who argued about the existence of time. In each case, leading physicists approached questions about time in remarkably different ways, revealing a variety of relationships among interpretation, physics, and time. The subgroup working on atomic clocks and standards in the 1950s did not overtly acknowledge that their work raised questions about the nature of time, although their definitions of basic timekeeping concepts were in flux. The subgroup of experimental particle physicists in the early 1960s identified questions about the nature of time as at stake in their research, but did not pursue these questions themselves, considering them to be outside the boundaries of their discipline. Finally, the subgroup working on the 2 unification of quantum mechanics and general relativity understood interpretive questions and methods as central to their work. I use the word “subgroup” to refer to clusters of physicists, working directly alongside one another, in pursuit of a related set of problems. Rather than examining “physicists” at the general level, or the large and diverse groups designated by the labels “theorists” and “experimentalists,” I take small groups of physicists, directed toward a specific objective, as my unit of analysis. These subgroups were narrower in scope than professionally designated fields of physics, such as the divisions named by the American Philosophical Society (APS), and did not
Recommended publications
  • Preliminary Acknowledgments
    PRELIMINARY ACKNOWLEDGMENTS The central thesis of I Am You—that we are all the same person—is apt to strike many readers as obviously false or even absurd. How could you be me and Hitler and Gandhi and Jesus and Buddha and Greta Garbo and everybody else in the past, present and future? In this book I explain how this is possible. Moreover, I show that this is the best explanation of who we are for a variety of reasons, not the least of which is that it provides the metaphysical foundations for global ethics. Variations on this theme have been voiced periodically throughout the ages, from the Upanishads in the Far East, Averroës in the Middle East, down to Josiah Royce in the North East (and West). More recently, a number of prominent 20th century physicists held this view, among them Erwin Schrödinger, to whom it came late, Fred Hoyle, who arrived at it in middle life, and Freeman Dyson, to whom it came very early as it did to me. In my youth I had two different types of experiences, both of which led to the same inexorable conclusion. Since, in hindsight, I would now classify one of them as “mystical,” I will here speak only of the other—which is so similar to the experience Freeman Dyson describes that I have conveniently decided to let the physicist describe it for “both” of “us”: Enlightenment came to me suddenly and unexpectedly one afternoon in March when I was walking up to the school notice board to see whether my name was on the list for tomorrow’s football game.
    [Show full text]
  • Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us About the Role of Providence in Nature 247 Bruce L
    Journal of Biblical and Theological Studies JBTSVOLUME 2 | ISSUE 2 Christianity and the Philosophy of Science Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature 247 Bruce L. Gordon [JBTS 2.2 (2017): 247-298] Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature1 BRUCE L. GORDON Bruce L. Gordon is Associate Professor of the History and Philosophy of Science at Houston Baptist University and a Senior Fellow of Discovery Institute’s Center for Science and Culture Abstract: Modern science has revealed a world far more exotic and wonder- provoking than our wildest imaginings could have anticipated. It is the purpose of this essay to introduce the reader to the empirical discoveries and scientific concepts that limn our understanding of how reality is structured and interconnected—from the incomprehensibly large to the inconceivably small—and to draw out the metaphysical implications of this picture. What is unveiled is a universe in which Mind plays an indispensable role: from the uncanny life-giving precision inscribed in its initial conditions, mathematical regularities, and natural constants in the distant past, to its material insubstantiality and absolute dependence on transcendent causation for causal closure and phenomenological coherence in the present, the reality we inhabit is one in which divine action is before all things, in all things, and constitutes the very basis on which all things hold together (Colossians 1:17). §1. Introduction: The Intelligible Cosmos For science to be possible there has to be order present in nature and it has to be discoverable by the human mind.
    [Show full text]
  • The Pursuit of Quantum Gravity
    The Pursuit of Quantum Gravity Cécile DeWitt-Morette The Pursuit of Quantum Gravity Memoirs of Bryce DeWitt from 1946 to 2004 123 Cécile DeWitt-Morette Department of Physics Center for Relativity University of Texas at Austin Austin Texas USA [email protected] ISBN 978-3-642-14269-7 e-ISBN 978-3-642-14270-3 DOI 10.1007/978-3-642-14270-3 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011921724 c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con- cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publica- tion or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protec- tive laws and regulations and therefore free for general use. Cover design:WMXDesignGmbH,Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to our daughters, Nicolette, Jan, Christiane, Abigail Preface This book is written for the curious reader. I hope it will also be a good read for the professional physicist.
    [Show full text]
  • The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes
    S S symmetry Article The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes Mutahir Ali *, Farhad Ali , Abdus Saboor, M. Saad Ghafar and Amir Sultan Khan Department of Mathematics, Kohat University of Science and Technology, Kohat 26000, Pakistan; [email protected] (F.A.); [email protected] (A.S.); [email protected] (M.S.G.); [email protected] (A.S.K.) * Correspondence: [email protected] Received: 5 December 2018; Accepted: 22 January 2019; Published: 13 February 2019 Abstract: This research provides second-order approximate Noether symmetries of geodetic Lagrangian of time-conformal plane symmetric spacetime. A time-conformal factor is of the form ee f (t) which perturbs the plane symmetric static spacetime, where e is small a positive parameter that produces perturbation in the spacetime. By considering the perturbation up to second-order in e in plane symmetric spacetime, we find the second order approximate Noether symmetries for the corresponding Lagrangian. Using Noether theorem, the corresponding second order approximate conservation laws are investigated for plane symmetric gravitational waves like spacetimes. This technique tells about the energy content of the gravitational waves. Keywords: Einstein field equations; time conformal spacetime; approximate conservation of energy 1. Introduction Gravitational waves are ripples in the fabric of space-time produced by some of the most violent and energetic processes like colliding black holes or closely orbiting black holes and neutron stars (binary pulsars). These waves travel with the speed of light and depend on their sources [1–5]. The study of these waves provide us useful information about their sources (black holes and neutron stars).
    [Show full text]
  • Of Charles D. Ferguson, on Behalf Of
    FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1725 DeSales Street, NW 6th Floor Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] PRM-70-9 DOCKETED Board of Sponsors (75FR80730) USNRC (PartialList) March 4, 2011 March 7, 2011 (10:30 am) •Pacr Agre * SidnheyAman * Philip W. Anderson *Kenneth J. Arrow To: Secretary, U.S. Nuclear Regulatory Commission OFFICE OF SECRETARY * David Baltimore RULEMAKINGS AND * Bamj Be.....ea Washington, DC 20555-0001 SPaulBerg ADJUDICATIONS STAFF * J. Michael Bishop AT-TN: Rulemakings and Adjudications Staff * Guther Blobel * Nicolaas Bloensbergen * Paul Boyce Ann Pitts Carter Subject: Comment on Docket ID NRC-2010-0372, "Petition for Rulemaking, * Stanley Cohen * Leon N. Cooper Francis Slakey on Behalf of the American Physical Society" * E. J. Corey 'James Cronin * Johann Deismehofer ArmDruyan *RenatoDulbeomo As Board Members of the Federation of American Scientists, an independent, Paul L Ehrlich George Field nonpartisan think tank, we strongly support the petition submitted by the Vat L. Fitch * JeromeI. Friedman American Physical Society that requests proliferation risk assessments become a * Riccardo Giacoani * Walter Gilbert required part of the NRC licensing process. * Alfed G. Gilman " Donald Glaser * Sheldon L. Glashow Marvin L. Goidhergr * Joseph L. Goldstein Emerging nuclear fuel technologies such as laser enrichment of uranium can pose Roger C. L. Gaillemin * L[land H. Hartwell significant proliferation risks due to difficulties in detecting facilities using these * Herbert A. Hauptman " Dudley RKHIaechach technologies. If such technologies are developed without a clear, objective, and * Roald Hoff-aan John P. Hoidren detailed assessment, they can dangerously undermine U.S. nuclear * -l Robert Horvitz * David H.
    [Show full text]
  • A Selected Bibliography of Publications By, and About, J
    A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02].
    [Show full text]
  • CERN Courier Is Distributed to Member-State Governments, Institutes and Laboratories Affiliated with CERN, and to Their Personnel
    I n t e r n at I o n a l J o u r n a l o f H I g H - e n e r g y P H y s I c s CERN COURIERV o l u m e 4 6 n u m b e r 9 n o V e m b e r 2 0 0 6 OPERA makes its grand debut ACCELERATORS COMPUTING NEWS INTERVIEW Laser-wakefield device Business signs up to Stephen Hawking pays reaches 1 GeV p5 work with EGEE p12 a visit to CERN p28 CCENovCover1.indd 1 18/10/06 08:53:59 CERN & ProCurve Networking 15 petabytes of data And a network that can handle it “CERN uses ProCurve Switches because we generate a colossal amount of data, making dependability a top priority.” —David Foster, Communication Systems Group Leader, CERN CERN has joined with ProCurve to build their network based on high-performance security, reliability and flexibility, along with a lifetime warranty.* From the world’s largest applications, to a company-wide email, just think what ProCurve could do for your network. Get a closer look at CERN and the world’s biggest physics experiment. Visit www.hp.com/eur/procurvecern1 *For as long as you own the product, with next-business-day advance replacement (available in most countries). For details, refer to the ProCurve Software License, Warranty and Support booklet at www.hp.com/rnd/support/warranty/index.htm The ProCurve Routing Switch 9300m series, ProCurve Routing Switch 9408sl, ProCurve Switch 8100fl series, and the ProCurve Access Control Server 745wl have a one-year- warranty with extensions available.
    [Show full text]
  • Science & ROGER PENROSE
    Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez.
    [Show full text]
  • Mathematical Languages Shape Our Understanding of Time in Physics Physics Is Formulated in Terms of Timeless, Axiomatic Mathematics
    comment Corrected: Publisher Correction Mathematical languages shape our understanding of time in physics Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would ofer a perspective that is closer to our experience of physical reality. Nicolas Gisin n 1922 Albert Einstein, the physicist, met in Paris Henri Bergson, the philosopher. IThe two giants debated publicly about time and Einstein concluded with his famous statement: “There is no such thing as the time of the philosopher”. Around the same time, and equally dramatically, mathematicians were debating how to describe the continuum (Fig. 1). The famous German mathematician David Hilbert was promoting formalized mathematics, in which every real number with its infinite series of digits is a completed individual object. On the other side the Dutch mathematician, Luitzen Egbertus Jan Brouwer, was defending the view that each point on the line should be represented as a never-ending process that develops in time, a view known as intuitionistic mathematics (Box 1). Although Brouwer was backed-up by a few well-known figures, like Hermann Weyl 1 and Kurt Gödel2, Hilbert and his supporters clearly won that second debate. Hence, time was expulsed from mathematics and mathematical objects Fig. 1 | Debating mathematicians. David Hilbert (left), supporter of axiomatic mathematics. L. E. J. came to be seen as existing in some Brouwer (right), proposer of intuitionist mathematics. Credit: Left: INTERFOTO / Alamy Stock Photo; idealized Platonistic world. right: reprinted with permission from ref. 18, Springer These two debates had a huge impact on physics.
    [Show full text]
  • Marcel Grossmann Awards
    MG15 MARCEL GROSSMANN AWARDS ROME 2018 ICRANet and ICRA MG XV MARCEL GROSSMANN AWARDS ROME 2018 and TEST The 15th Marcel Grossmann Meeting – MG XV 2nd July 2018, Rome (Italy) Aula Magna – University “Sapienza” of Rome Institutional Awards Goes to: PLANCK SCIENTIFIC COLLABORATION (ESA) “for obtaining important constraints on the models of inflationary stage of the Universe and level of primordial non-Gaussianity; measuring with unprecedented sensitivity gravitational lensing of Cosmic Microwave Background fluctuations by large-scale structure of the Universe and corresponding B- polarization of CMB, the imprint on the CMB of hot gas in galaxy clusters; getting unique information about the time of reionization of our Universe and distribution and properties of the dust and magnetic fields in our Galaxy” - presented to Jean-Loup Puget, the Principal Investigator of the High Frequency Instrument (HFI) HANSEN EXPERIMENTAL PHYSICS LABORATORY AT STANFORD UNIVERSITY “to HEPL for having developed interdepartmental activities at Stanford University at the frontier of fundamental physics, astrophysics and technology” - presented to Research Professor Leo Hollberg, HEPL Assistant Director Individual Awards Goes to LYMAN PAGE “for his collaboration with David Wilkinson in realizing the NASA Explorer WMAP mission and as founding director of the Atacama Cosmology Telescope” Goes to RASHID ALIEVICH SUNYAEV “for the development of theoretical tools in the scrutinising, through the CMB, of the first observable electromagnetic appearance of our Universe” Goes to SHING-TUNG YAU “for the proof of the positivity of total mass in the theory of general relativity and perfecting as well the concept of quasi-local mass, for his proof of the Calabi conjecture, for his continuous inspiring role in the study of black holes physics” Each recipient is presented with a silver casting of the TEST sculpture by the artist A.
    [Show full text]
  • HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas P Letizia
    HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas P Letizia To cite this version: P Letizia. HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas: A possible explanation of Dark Energy. 2017. hal-01424099 HAL Id: hal-01424099 https://hal.archives-ouvertes.fr/hal-01424099 Preprint submitted on 3 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License SUBMITTED FOR STUDY January 1st, 2017 HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas P. Letizia Abstract Nowadays it seems that understanding the Nature of Time is not more a priority. It seems commonly admitted that Time can not be clearly nor objectively defined. I do not agree with this vision. I am among those who think that Time has an objective reality in Physics. If it has a reality, then it must be understood. My first ambition with this paper was to submit for study a proposition concerning the Nature of Time. However, once defined I understood that this proposition embeds an underlying logic.
    [Show full text]
  • U. S. Naval Observatory Washington, D. C. 20392-5420 Ued to Advance for the Astronomical Almanac and Astro- Nomical Phenomena
    633 U. S. Naval Observatory Washington, D. C. 20392-5420 ued to advance for The Astronomical Almanac and Astro- nomical Phenomena. The Astronomical Almanac for 2001 was published at the earliest date in over 15 years. Proceed- I. PERSONNEL ings of the U.S. NAO Sesquicentennial Symposium, held last A. Civilian Personnel year, were published during this reporting period. USNO Circular 178, ‘‘List of Active Professional Observatories,’’ Retirements included Alan Bird. by M. Lukac and R. Miller, went to press in June 2000. Tom Corbin retired on Oct. 2, 1999 after a 35-year career Exchange of material also continued with both the Institut de at USNO. F.S. Gauss retired on 2 June, after a 37-year career Mechanique Celeste ͑France͒ and HMNAO. at USNO. A major effort to streamline almanac production is ongo- ing within the NAO. S. Stewart continued to review, docu- B. DoD Science and Engineering Apprenticeship ment, upgrade, and standardize production of Sections E and Program HofThe Astronomical Almanac, as well as documenting the rest of the sections prepared by the U.S. NAO. This infor- The USNO summer intern program for high school and mation and the status of all publications are now on-line college students continued in the summer of 1999. This pro- within the department for easier access and timeliness. Al- gram, called the Science and Engineering Apprentice Pro- manac production software is being moved into an auto- gram ͑SEAP͒, is sponsored by the Department of Defense mated version control system for the purposes of standard- ͑DoD͒ and managed by George Washington University.
    [Show full text]