Exotic Plant and Environment Investigations Report

Total Page:16

File Type:pdf, Size:1020Kb

Exotic Plant and Environment Investigations Report Exotic plant and environment investigations report: July to September 2017 Horticultural pests A photo of a suspect exotic fruit-piercing The Ministry for Primary Industries Incursion Investigation team moth found in the Nelson Hospital car and the Plant Health Environment Laboratory (PHEL) teams park in the city of Nelson was submitted investigate and diagnose suspect exotic pests and diseases in the to MPI entomologists. The moth was plant and environment sectors. Investigators and scientists are identified as a female Eudocima materna based in Auckland and Christchurch. These teams provide field (fruit-piercing moth), which is native investigation, diagnostic testing and technical expertise on new to northern Queensland and usually pests and diseases affecting plants and the environment. They also migrates south during late winter. It have surveillance and response functions and carry out research has previously been intercepted in and development to support surveillance and incursion response New Zealand. The larvae of this moth activities. are host-specific and the host plants are not present in New Zealand. The larvae feed on snake vine (Tinospora smilacina) and roundleaf vine (Legnephora moorei) nor any previous borer-related issues. had previously been found in imported (synonyms of Cocculus spp., family Additionally, no recent reports had been American ash flooring timber. In this Menispermaceae). There are no records received from members of the public instance no adult beetles were collected. of any of these names in the Plant who had purchased these boards. This The size of the borer exit holes was Biosecurity Index except on exotic report probably resulted from a single consistent with a Lyctus sp. Even though voucher specimens of Cocculus from consignment with a low-level infestation, the entire house had the same flooring, Rarotonga and China. Both species are which is not considered an ongoing only about 20 adult beetle exit holes had tropical in origin and are frost-sensitive. biosecurity risk. The immediate risk was been seen over a 3-month period since The very specific host range ofE. materna managed by destroying infested chopping the floor had been laid. The property larvae is considered to limit this species’ boards. Any ongoing risk will be owner had syringed insecticide into chances of successfully establishing. Staff managed by MPI’s normal requirements the holes as they became apparent. operating the High Risk Site Surveillance for imported goods. The importer had The flooring importer was unable to Programme have been advised to watch already discussed how to improve quality determine the specific consignment from in case the host plants appear in NZ. control with the Chinese supplier. which the timber had been sourced. However, examination of the current A TradeMe site listed a range of unusual Forest and timber pests American ash timber stock found no tree and shrub species for sale, including Borer holes and dust were seen in sign of borer, and no additional reports Pinus spp. considered not present in Chinese bamboo chopping boards on of borer had been received from other New Zealand. In all cases the scientific sale at a home merchandise retail store. customers who had bought the same name of the plants was stated, an The store’s head office advised that 2 685 timber. Overall, this information indication that the seller was acting chopping boards were held by 11 of suggested a low borer infestation in the responsibly and professionally. On the 43 stores in New Zealand. All these original imported consignment. The checking MPI’s Plant Biosecurity Index boards were examined and 31 were found insecticide applied to the exit holes likely (PBI), all four species (P. densiflora, to have signs of borer beetle. The most addressed any residual biosecurity risk P. hwangshanensis, P. armandii and heavily infested boards were sent to MPI and no further action was considered P. thunbergii) were listed as permitted and adult Dinoderus minutus were found necessary. imports subject to border inspection and in in them. None were found alive and provision of a phytosanitary certificate some had likely only recently emerged. Fruit fly from the country of export. Several Infested boards were double-bagged and An Australian visitor noticed maggots other plant species offered for sale were returned to the supplier and importer. on fresh mandarins provided as a snack chosen at random and similarly checked The remaining 1 482 boards held at the food while visiting the SkyCity casino against the PBI, and all were listed. This importer’s distribution centre were re- in Auckland. The visitor was a grower investigation concluded that there was no examined and one more was found to and exporter of table grapes in Western biosecurity risk. have signs of borer. Although D. minutus Australia, familiar with fruit-fly maggots, is an exotic species absent from Borer emergence holes were noticed and phone discussions confirmed him to New Zealand, it is not considered a high in the newly laid floor of a house in be a highly credible notifier. Traceback risk. The distributor has been importing Wellington. The flooring was premium- revealed that the fruit had been imported bamboo chopping boards for about 10 grade ash timber imported from the from Australia. Remaining fruit held years and a review of the MPI database of US. Live borer (Lyctus planicollis/ by the supplier were examined and no imported goods found no irregularities cavicollis complex or L. brunneus, both sign of damage or fruit fly was found. associated with their importation, of which are present in New Zealand) No additional public reports were Surveillance 44 (4) 2017 27 received of suspect fruit fly maggots in identification ruled out fruit fly and the Two live centipedes were found upon Australian mandarins. Although the specimen was identified as an Australian opening a package in a consignment of report was of maggots (not caterpillars) leafroller tachinid (Trigonospila statues from Vietnam. The centipedes and they were too small to be vinegar fly brevifacies). This species is present in were carefully destroyed and the (Drosophila spp.), it is considered most New Zealand and of no biosecurity risk. remaining packages and the pallet likely that the maggots were drosophilid were wrapped in plastic. The pallet and not tephritid fruit fly maggots. General biosecurity pests had something concealed in it that resembled an egg mass. The centipedes A single live fly suspected to be a and contaminants were identified as Lithobius forficatus Queensland fruit fly (Bactrocera tryoni) An Auckland plastic manufacturing (garden centipede), a species present was found inside a compost container in company received a large moulding in New Zealand. Webbing was found a residential kitchen in Hamilton. Photos machine on a wooden pallet from a local but there were no insect eggs. Three of the specimen were requested and the dealer. The machine had been imported Armadillidium vulgare were also notifier was advised to keep the compost from Germany in a container. They found, a species of woodlouse present in container closed and double-bagged until noticed insects in the plastic surrounding New Zealand. further notice. A PHEL entomologist the pallet (2 dead, 1 alive). A photo confirmed that the specimen was emailed to MPI revealed a species of A caller noticed insect damage on not a Queensland fruit fly and was wood wasp that was identified as Sirex bananas that she had purchased. The consistent with a local, naturalised juvencus, a regulated species. An MPI caller advised that no insects were found, species. Specimen submission for formal Quarantine Officer visited the site and only an aged exit hole. Imported bananas identification was not required. found that the container was free of are routinely treated on arrival in any wasps (dead or alive) or evidence New Zealand ports to mitigate potential Insect feeding damage was found on of habitation (nest). Only the one pallet biosecurity risks. The caller was advised feijoa fruit grown in the garden of had been shipped inside this container, to freeze the bananas as a precaution. a rental property. The notifier was but it was established that three other A sample was submitted and checked unfamiliar with guava moth, the larvae pieces of timber had been used as bracing by two entomologists, who found of which are a common pest of feijoas in inside the container,to keep the pallet no invertebrates. Auckland. The caller promised to search secure. These pieces were inspected by for guava moth images to confirm the A customer at a pharmacy in Rolleston, the Authorised Person on site at the pest was indeed guava moth and not fruit near Christchurch, found two small flies Transitional Facility. The pallet had an fly. When later contacted, he reported in a cosmetic pressed powder compact International Standards for Phytosanitary having discussed the issue with local manufactured in the US. The item was Measures Regulating Wood Packaging garden centre staff and had concluded completely sealed and the flies were stamp on it but one of the 10 boards the damage was caused by guava moth, visible through the packaging. The on the pallet showed signs of insect Coscinoptycha improbana. specimen was determined by the PHEL infestation (exit holes). The wasps found entomologist to be midges (Diptera: Small white insects that looked like fruit- were adjacent to these exit holes. The Chironomidae) but the species was not fly maggots were seen on the outside pallet was wrapped on site and fumigated identified. Chironomids are also known of feijoa fruit collected from a home to mitigate any biosecurity issue. as non-biting midges and are often garden. They were identified from photos A traveller returning from Bali found a confused with mosquitoes. as the immature stages of springtails small number of live ants in her suitcase.
Recommended publications
  • The Macadamia Industry in New Zealand
    Copyright is owned by the Author of the thesis. Pennission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the pennission of the Author. THE MACADAMIA INDUSTRY IN NEW ZEALAND A Thesis for the Degree of Master of Philosophy At Massey University Palmerston North Bernard Coleman Whangarei 2005 ABSTRACT The New Zealand macadamia industry has been characterised by many small plantings, lifestyle blocks up to 1500 trees and two commercial plantations with more than 10000 trees. Completed research programmes have been few, mainly because government funding in horticulture has been channelled to the needs of the major crops such as kiwifruit. Changes in political policy affected funding for minor horticultural crops and spasmodic cuts in finance severely hindered long-term research projects. Because of its small size the macadamia industry had limited funds available from members but some research programmes have been completed including pest control, tree nutrition, basal stain and future research needs. A private consultant, Ian Gordon has carried out variety trials on a local selection. Several selections have been planted in different locations and have proven to be useful in pollination of Beaumont, the main variety planted in New Zealand. Within the limits, set by climatic factors, the suitable growing areas are north of a line from New Plymouth to Gisbome. Both of those areas are marginal for commercial planting but sites on the sheltered north facing positions could grow satisfactory yields. Yields per tree, generally have been below commercial requirements.
    [Show full text]
  • List of Other Pests of Interest
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 8 - Other interesting findings: -pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU -pests of interest for other crops identified during the study 1 Pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU Information was extracted from the datasheets prepared for the Alert list. Please refer to the datasheets for more information (e.g. on Distribution, full host range, etc). Pest (taxonomic group) Hosts/damage Alert List Aegorhinus superciliosus A. superciliosus is mentioned as the most important pest of Apple (Coleoptera: raspberry and blueberry in the South of Chile. It is also a pest on Vaccinium Curculionidae) currant, hazelnut, fruit crops, berries, gooseberries. Amyelois transitella A. transitella is a serious pest of some nut crops (e.g. almonds, Grapevine (Lepidoptera: Pyralidae) pistachios, walnut) Orange- mandarine Archips argyrospilus In the past, heavy damage in the USA and Canada, with serious Apple (Lepidoptera: Tortricidae) outbreaks mostly on Rosaceae (especially apple and pear with Orange- 40% fruit losses in some cases) mandarine Argyrotaenia sphaleropa This species also damage Diospyrus kaki and pear in Brazil Grapevine (Lepidoptera: Tortricidae) Orange- mandarine Vaccinium Carpophilus davidsoni Polyphagous. Belongs to most serious pests of stone fruit in South Grapevine (Coleoptera: Nitidulidae) Australia (peaches, nectarines and apricots).
    [Show full text]
  • Pest Risk Analysis for Six Moth Species: Lessons for the Biosecurity System on Managing Hitchhiker Organisms
    Pest risk analysis for six moth species: lessons for the biosecurity system on managing hitchhiker organisms Draft approved for release for review February 2008 Pest risk analysis for six moth species: lessons for the biosecurity system on managing hitchhiker organisms MAF Biosecurity New Zealand Wellington New Zealand February 2008 i ii MAF Biosecurity New Zealand Te Manatu Ahuwhenua, Ngaherehere Pastoral House 25 The Terrace P O Box 2526 Wellington New Zealand Telephone: +64 4 894 0100 Facsimile: +64 4 894 0733 Internet: http://www.biosecurity.govt.nz Policy and Risk MAF Biosecurity New Zealand Pest risk analysis for six moth species: lessons for the biosecurity system on managing hitchhiker organisms Date 2008 Draft approved for release for review iii iv Contributors to this Risk Analysis Numerous staff within MAF Biosecurity New Zealand and MAF Quarantine Service contributed invaluable advice, data, ideas and information – many thanks. Both New Zealand and overseas scientists have provided advice and unpublished information from their own research – this support is greatly appreciated. Staff from within the following MAF groups have reviewed all or part of the risk analysis: • Biosecurity Monitoring Group; • Biosecurity Standards Group; • Biosecurity Policy Group; • Response Group; • Surveillance Group; • Incursion and Diagnostic Centres; • MAF Quarantine Service; • Risk Analysis group. The draft risk analysis has also been reviewed by: • John Bain, ENSIS (all chapters); • Melody Keena, Acting Project Leader/Research Entomologist,
    [Show full text]
  • View Full Text
    SurveillanceMINISTRY FOR PRIMARY INDUSTRIES REPORTING ON NEW ZEALAND’S BIOSECURITY HEALTH STATUS VOLUME 44, NO 4, DECEMBER 2017 INSIDE: Quarterly report of investigations of suspected exotic diseases PlantsINSIDE: and environment investigation report Quarterly report of investigations of suspected exotic marine and freshwater pestsReports and from diseases Ministry for Primary Industries Introducing the MPI Readiness and Response Services Directorate Quarterly reports: July to September 2017 Ants: old foes and new threats to New Zealand Surveillance ISSN 1176-5305 Surveillance is published on behalf of the Director Diagnostics & Surveillance Services Contents (Veronica Herrera). The articles in this quarterly report do not necessarily reflect government policy. Editorial Editor: Michael Bradstock Aquatic biosecurity: pathways to protection 3 Technical Editors: Jonathan Watts, Lora Peacock ANIMALS Correspondence and requests to receive Reports from Ministry for Primary Industries Surveillance should be addressed to: Introducing the MPI Readiness and Response Services Directorate 4 Editor Korea-New Zealand 2nd Animal Health and Epidemiology Workshop, Surveillance Ministry for Primary Industries 13−15 September 2017 6 PO Box 2526 Wellington, New Zealand Quarterly reports: July to September 2017 email: [email protected] Quarterly review of diagnostic cases 8 Quarterly report of investigations of suspected exotic diseases 19 Reproduction: Articles in Surveillance may be reproduced (except for commercial use or on advertising or promotional material), provided proper acknowledgement is made to the author MARINE AND FRESHWATER and Surveillance as source. Reports from Ministry for Primary Industries Publication: Surveillance is published quarterly Emerging risks in the aquatic space 21 in March, June, September and December. Distribution via email is free of charge for Quarterly reports: July to September 2017 subscribers in New Zealand and overseas.
    [Show full text]
  • Technical Annual Report 2002/03
    Northern Territory Department of Business, Industry and Resource Development Primary Industry Group Technical Annual Report 2002-03 Northern Territory Department of Business, Industry and Resource Development Primary Industry Group Berrimah Farm Makagon Road Berrimah NT 0828 GPO Box 3000 Darwin NT 0801 www.dbird.nt.gov.au [email protected] Tel: +61 8 8999 2313 Fax: +61 8 8999 2307 Technical Bulletin No. 313 Price: $11.00 ISSN: 0158-2763 DISCLAIMER While all care has been taken to ensure that information contained in this Technical Bulletin is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of its information. The Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this Technical Bulletin, or that it is suitable for your intended use. You should not rely upon information in this publication for the purpose of making any serious, business or investment decisions without obtaining independent and/or professional advice in relation to your particular situation. The Northern Territory of Australia disclaims any liability or responsibility or duty of care towards any person for loss or damage caused by any use of or reliance on the information contained in this publication. November 2003 CONTENTS INTRODUCTION ..................................................................................................................................... 5 PASTORAL ............................................................................................................................................
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • (Eudocima) Materna (L.) (Lepidoptera: Noctuidae) on Pomegranate, Punica Granatum
    Published online: February 24, 2021 ISSN : 0974-9411 (Print), 2231-5209 (Online) journals.ansfoundation.org Research Article A study on biology and larval behaviour of fruit piercing moth of Othreis (Eudocima) materna (L.) (Lepidoptera: Noctuidae) on pomegranate, Punica granatum Eknath Shendge Article Info Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad- https://doi.org/10.31018/ 431004 (Maharashtra), India jans.v13i1.2489 Bapurao Khaire Received: January 9, 2021 Department of Zoology, Anandrao Dhonde Alias Babaji College, Kada, Dist. Beed-414202 Revised: February 16, 2021 (Maharashtra), India Accepted: February 21, 2021 Ramrao Chavan* Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad- 431004 (Maharashtra), India *Corresponding author. Email. [email protected] How to Cite Shendge, E. et al. (2021). A study on biology and larval behaviour of fruit piercing moth of Othreis (Eudocima) materna (L.) (Lepidoptera: Noctuidae) on pomegranate, Punica granatum. Journal of Applied and Natural Science, 13(1): 178 - 182. https://doi.org/10.31018/jans.v13i1.2489 Abstract Among different fruit piercing moths, the genus Othreis are the most harmful, causing widespread damage to pomegranate, citrus and mango fruits causing fruit fall in tropical and subtropical countries. The present communication deals with the study on the biology of Othreis materna (L) from egg to adult’s death which was carried out at room temperature of the laboratory to investigate the delicate and vulnerable stages of its life cycle. The life cycle of the moth was completed within 45-61 days, with an average 55.03 days in case of male and within 47-63 days with an average 57.07±4.92 in case of female.
    [Show full text]
  • Natural Parasitoids of Fruit Piercing Moth, Eudocima Spp
    Journal of Biological Control, 31(1): 10-12, 2017, DOI: 10.18311/jbc/2017/15557 Research Article Natural parasitoids of fruit piercing moth, Eudocima spp. P. N. MAGAR*, S. R. KULKARNI and A. G. CHANDELE Department of Entomology, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar - 413 722, Maharastra, India *Corresponding author E-mail: [email protected] ABSTRACT: Eudocima spp. (Noctuidae) also known as fruit piercing moth, is a serious pest of tropical countries including subtropical Southeast Asia, Australia, and the western Pacific islands. It is found commonly occurring on ripening fruits. Surveys conducted in Ma- harashtra revealed that three abundant larval parasitoids viz., a tachinid fly, Goniophthalmus halli, eulophid wasps, Euplectrus maternus and Tetrastichus sp. were contributing up to 36.65, 41.46 and 36.58 % larval mortality, respectively. Laboratory assays were conducted to test the parasitoids for host specificity by exposing them to larvae of Eudocima sp. However, Goniophthalmus halli showed parasitization on other species of Eudocima, whereas E. maternus was found to be host specific on E. materna. In laboratory investigation, 72 to 89% parasitization of Trichogramma chilonis on the eggs of E. materna was also recorded. KEY WORDS: Eudocima spp., fruit piercing moth, larval parasitoids (Article chronicle: Received: 22.02.2017; Revised: 24.03.2017; Accepted: 31.03.2017) INTRODUCTION enables them to have insufficient contact with chemicals and escapes from knockdown effect. Also adequate holding Adult fruit piercing moth (Eudocima spp.) is a de- period is not achieved as ripe fruits are normally attacked. structive pest of ripening fruits in tropical and subtropical Hence biological control using egg and larval parasitoids countries including India, Africa, Southeast Asia, Australia is a safe and better alternative to manage these fruit pierc- and the South Pacific (Waterhouse and Norris 1987).
    [Show full text]
  • 1. Padil Species Factsheet Scientific Name: Common Name Image
    1. PaDIL Species Factsheet Scientific Name: Eudocima materna (Linnaeus) (Lepidoptera: Noctuidae: Catocalinae) Common Name fruit-piercing moth Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/136304 Image Library Australian Biosecurity Live link: http://www.padil.gov.au/pests-and-diseases/ Partners for Australian Biosecurity image library Department of Agriculture, Water and the Environment https://www.awe.gov.au/ Department of Primary Industries and Regional Development, Western Australia https://dpird.wa.gov.au/ Plant Health Australia https://www.planthealthaustralia.com.au/ Museums Victoria https://museumsvictoria.com.au/ 2. Species Information 2.1. Details Specimen Contact: Museum Victoria - [email protected] Author: Walker, K. Citation: Walker, K. (2006) fruit-piercing moth(Eudocima materna)Updated on 2/25/2009 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/136304 2.3. Facets Status: Exotic Species Outbreak in Australia Group: Moths Commodity Overview: Horticulture Commodity Type: Fresh Vegetables, Fresh Fruit, Citrus, Pome fruits, Stone fruits, Berries Distribution: USA and Canada, Central and South America, Africa, South and South-East Asia, Australasian - Oceanian 2.4. Other Names Eudocima apta (Walker) Eudocima chalcogramma (Walker) Eudocima hybrida (Fabricius) Othreis materna (Linnaeus) 2.5. Diagnostic Notes The adult moth has fawn forewings with a variable pattern of pale and dark lines and patches. The hind wings are bright yellow to orange, with a broad dark border and a dark spot in the middle.
    [Show full text]
  • Animal and Plant Health Inspection Service, USDA § 319.56–21
    Animal and Plant Health Inspection Service, USDA § 319.56–21 a declaration certifying that the prod- with this section and all other applica- ucts were grown in a greenhouse in the ble provisions of this subpart. exporting country on Honshu Island or (a) Inspection and treatment for pests of north thereof. the family Tortricidae. An inspector (xiii) Only precleared consignments must take a biometrically designed that have been treated in accordance sample from each lot of apples or pears with part 305 of this chapter are au- that are offered for entry into the thorized. The consignment must be ac- United States. If inspection of the sam- companied by a PPQ Form 203 signed ple discloses that pests of the family by the APHIS inspector on site in the Tortricidae (fruit-leaf roller moths) are exporting country. not present in the lot sampled, the (xiv) Must be accompanied by a fruit may be imported without treat- phytosanitary certificate issued by the ment. If any such pests are found upon national plant protection organization inspection, the lot must be treated of Israel that declares ‘‘These tomatoes with methyl bromide as prescribed in were grown in registered greenhouses part 305 of this chapter. in the Arava Valley of Israel.’’ (b) Treatment of apples and pears from (xv) Must be treated in accordance Australia for fruit flies. (1) Apples from with part 305 of this chapter. Australia (including Tasmania) may be imported without treatment for the (xvi) Must be accompanied by a following fruit flies if they are im- phytosanitary certificate issued by the ported from an area in Australia that national plant protection organization meets the requirements of § 319.56–5 for of the country of origin and with an ad- pest freedom: Mediterranean fruit fly ditional declaration stating that the (Ceratitis capitata), the Queensland fruit fruit is free from Cnephasia jactatana, fly (Bactrocera tryoni), Bactrocera Coscinoptycha improbana, Ctenopseustis aquilonis, and B.
    [Show full text]
  • Pheromone Production, Male Abundance, Body Size, and the Evolution of Elaborate Antennae in Moths Matthew R
    Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths Matthew R. E. Symonds1,2, Tamara L. Johnson1 & Mark A. Elgar1 1Department of Zoology, University of Melbourne, Victoria 3010, Australia 2Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia. Keywords Abstract Antennal morphology, forewing length, Lepidoptera, phylogenetic generalized least The males of some species of moths possess elaborate feathery antennae. It is widely squares, sex pheromone. assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically Correspondence released in minute quantities. Accordingly, females of species in which males have Matthew R. E. Symonds, School of Life and elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce Environmental Sciences, Deakin University, 221 the smallest quantities of pheromone. Alternatively, antennal morphology may Burwood Highway, Burwood, Victoria 3125, Australia. Tel: +61 3 9251 7437; Fax: +61 3 be associated with the chemical properties of the pheromone components, with 9251 7626; E-mail: elaborate antennae being associated with pheromones that diffuse more quickly (i.e., [email protected] have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence Funded by a Discovery Project grant from the more elaborate antennae. We conducted a phylogenetic comparative analysis to test Australian Research Council (DP0987360). these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing Received: 13 September 2011; Revised: 23 length), which suggests a biological cost that smaller moth species cannot bear.
    [Show full text]
  • Developing an Attractant for Monitoring Fruit-Feeding Moths in Citrus Orchards
    Developing an attractant for monitoring fruit-feeding moths in citrus orchards A thesis submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE of RHODES UNIVERSITY by Mathew Keith Goddard February 2016 Abstract Fruit-piercing moths are a sporadic pest of citrus, especially in the Eastern Cape Province of South Africa, where the adults can cause significant damage in outbreak years. Currently the only way in which to successfully control fruit-feeding moths within the orchards is the use of repellent lights. However, growers confuse fruit-piercing moths with fruit-sucking moths that don‘t cause primary damage, and there is no way of monitoring which moth species are attacking the fruit in the orchards during the night. In a previous study, banana was shown to be the most attractive bait for a variety of fruit-feeding moth species. Therefore the aim of this study was to determine the population dynamics of fruit-feeding moths develop a cost- effective alternative to the use of fresh banana as a bait for fruit-piercing moths. Fresh banana was compared to nine alternative synthetic attractants, frozen banana and a control under field conditions in several orchards in the Eastern Cape Province. Once again, banana was shown to be the most attractive bait. Some 23 species of fruit-feeding moth species were sampled in the traps, but there was only two fruit-piercing species, Serrodes partita (Fabricius) (Lepidoptera: Noctuidae) and Eudocima sp. Surprisingly S. partita, which was thought to be the main pest, comprised only 6.9% of trap catches. Serrodes partita, is a sporadic pest, only becoming problematic every five to 10 years after good rainfall in the Little Karoo region that causes flushes of their larval host, wild plum, Pappea capensis (Ecklon & Zeyher).
    [Show full text]