Albert Francis Birch 3 by Thomas J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Selected Bibliography of Publications By, and About, J
A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02]. -
Yale Law School 2007-2008
bulletin of yale university bulletin of yale Series 1o3 8 Number 10, 2007 August 2007–2008 Yale Law School Yale bulletin of yale university August 10, 2007 Yale Law School Periodicals postage paid Periodicals Connecticut Haven, New 06520-8227 CT New Haven Haven New bulletin of yale university bulletin of yale Bulletin of Yale University The University is committed to basing judgments concerning the admission, education, and employment of individuals upon their qualifications and abilities and a∞rmatively Postmaster: Send address changes to Bulletin of Yale University, seeks to attract to its faculty, sta≠, and student body qualified persons of diverse back- PO Box 208227, New Haven CT 06520-8227 grounds. In accordance with this policy and as delineated by federal and Connecticut law, Yale does not discriminate in admissions, educational programs, or employment PO Box 208230, New Haven CT 06520-8230 against any individual on account of that individual’s sex, race, color, religion, age, Periodicals postage paid at New Haven, Connecticut disability, status as a special disabled veteran, veteran of the Vietnam era, or other covered veteran, or national or ethnic origin; nor does Yale discriminate on the basis of Issued seventeen times a year: one time a year in May, November, and December; sexual orientation or gender identity or expression. two times a year in June; three times a year in July and September; six times a year University policy is committed to a∞rmative action under law in employment of in August women, minority group members, individuals with disabilities, special disabled veterans, veterans of the Vietnam era, and other covered veterans. -
Merle A. Tuve
NATIONAL ACADEMY OF SCIENCES M E R L E A N T O N Y T UVE 1901—1982 A Biographical Memoir by P H ILI P H . AbELSON Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1996 NATIONAL ACADEMIES PRESS WASHINGTON D.C. MERLE ANTONY TUVE June 27, 1901–May 20, 1982 BY PHILIP H. ABELSON ERLE ANTONY TUVE WAS a leading scientist of his times. MHe joined with Gregory Breit in the first use of pulsed radio waves in the measurement of layers in the ionosphere. Together with Lawrence R. Hafstad and Norman P. Heydenburg he made the first and definitive measurements of the proton-proton force at nuclear distances. During World War II he led in the development of the proximity fuze that stopped the buzz bomb attack on London, played a crucial part in the Battle of the Bulge, and enabled naval ships to ward off Japanese aircraft in the western Pacific. Following World War II he served for twenty years as director of the Carnegie Institution of Washington’s Department of Ter- restrial Magnetism, where, in addition to supporting a mul- tifaceted program of research, he personally made impor- tant contributions to experimental seismology, radio astronomy, and optical astronomy. Tuve was a dreamer and an achiever, but he was more than that. He was a man of conscience and ideals. Throughout his life he remained a scientist whose primary motivation was the search for knowledge but a person whose zeal was tempered by a regard for the aspirations of other humans. -
University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA St
INFORMATION TO USERS This material was produced from a microfilm copy of tha original document. Whila the most advanced technological meant to photograph and reproduce this document have been used, tha quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Pegs(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pagas to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find » good image of the pege in the adjacent frame; 3. Whan a map, drawing or chart, etc., was part of the materiel being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at tha upper left hand comer of a large sheet and to continue photoing from left to right iii equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
The Evil We Were Interested in Pushing Out
To the Trustees: The article contained in this number of the Confi- dential Monthly Report was written by George V. Gray of our staff and is of such unusual interest that I am sure all the Trustees will want to read it carefully. Whether the release of atomic energy in the long run will result in good or evil for the race, no one can now say; but whatever the consequences, the Foundation and its related boards cannot escape their share of the responsibility, indirect as it may be. The atomic bomb is the result of influences which, for the most part uninten- tionally and unwittingly, we helped to set in motion, because we were interested in pushing out the boundaries of knowledge, It is a tragic irony that when men have been most successful in the pursuit of truth, they have most endangered the possi- bility of human life on this planet. The towering question which faces the world now is whether the new energies can be controlled. It is, I know, the hope of all of us that the Foundation may be able to make some contribution, however slight, to this end. Raymond B. Fosdick CONTENTS THE ATOMIC BOMB AND THE ROCKEFELLER BOARDS Former Fellows Who Worked on the Bomb . 1 "Fortune Favors the Prepared Mind". ... 2 Tools That Pioneered the Job .5 Activities at Columbia and Princeton . 6 Discoveries at California 8 The Giant Magnet Goes into Action ... .10 The Metallurgical Laboratory 13 The Los Alamos Laboratory . .16 Medical Aspects 17 A Jiist of the Former Fellows 20 THE ATOMIC BOMB AND THE ROCKEFELLER BOARDS Many agencies - universities, industrial corporations, and other civilian organizations and individuals - shared in the vast teamwork which produced the atomic bomb. -
Oppenheimer: a Life April 22, 1904-February 18, 1967
Oppenheimer: A Life April 22, 1904-February 18, 1967 an online centennial exhibit of J. Robert Oppenheimer http://ohst.berkeley.edu/oppenheimer/exhibit/ This print edition of the online exhibit is free for use, reproduction, and distribution for educational purposes as long as this cover page and the acknowlegments page are included. It may not be altered or sold. For other usage questions, please contact the Office for History of Science and Technology, Univer- sity of California, Berkeley, at http://ohst.berkeley.edu. All image copyrights are retained by their hold- ers. © 2004 by The Regents of the University of California. 1 Oppenheimer: A Life April 22, 1904-February 18, 1967 Introduction As Alice Kimball Smith and Charles Weiner have noted, “Part of Oppenheimer’s attraction, at first for his friends and later for the public, was that he did not project the popularly held image of the scientist as cold, objective, rational and therefore above human frailty, an image that scientists themselves fostered by underplaying their per- sonal histories and the disorder that precedes the neat scientific conclusion.” There is a cacophony of conflicting descriptions of Oppenheimer – as friends have remembered him, as historians have analyzed him. He has been labeled both warm and cold, friendly and condescending, affable as well as hurtful. Learning Sanskrit and cultivating the air of an aesthete, as a young professor he stretched the bounds of the scientist’s persona. Yet in the space of a decade, the otherworldly theorist was transformed into a political insider par excellence. His fellow scientists remembered him as a visionary and capable leader at Los Alamos, while his security hearing brought to light foolish mistakes in judgment and human relationships. -
Cosmic Ray Neutron Monitors
Printed: 22 September 2013 (WFD – draft) Readme: Cosmic Rays Cosmic Rays Cosmic rays are energetic particles that are found in space and filter through our atmosphere. Cosmic rays have interested scientists for many different reasons. They come from all directions in space, and the origination of many of these cosmic rays is unknown. Cosmic rays were originally discovered because of the ionization they produce in our atmosphere. Cosmic rays also have an extreme energy range of incident particles, which have allowed physicists to study aspects of their field that cannot be studied in any other way. In the past, we have often referred to cosmic rays as "galactic cosmic rays" because we did not know where they originated. Now scientists have determined that the sun discharges a significant amount of these high-energy particles. "Solar cosmic rays" (cosmic rays from the sun) originate in the sun's chromosphere. Most solar cosmic ray events correlate relatively well with solar flares. Scientists have postulated that cosmic rays can affect the earth by causing changes in weather. Cosmic rays can cause clouds to form in the upper atmosphere, after the particles collide with other atmospheric particles in our troposphere. The process of a cosmic ray particle colliding with particles in our atmosphere and disintegrating into smaller pions, muons, and the like, is called a cosmic ray shower. These particles can be measured on the Earth's surface by neutron monitors. Cosmic rays affect satellite electronics and ground-based computer systems at high altitudes. The following text is taken the IBM Journal #40 by Zigler and Srinivasan (1996), “Modern electronic circuits are highly complex systems and, as such, are susceptible to occasional errors or failures. -
Humores Y Hormonas
Historia de las Hormonas Academia Nacional de Medicina HISTORIA DE LAS HORMONAS Más de un siglo de endocrinología 2007 ALFREDO JÁCOME ROCA INDICE 1. Glándulas y humores en la antigüedad Los cuatro humores de Hipócrates Alfredo Jácome Roca 1 Historia de las Hormonas Las primeras glándulas Patologías endocrinas en la edad antigua 2. Las enigmáticas glándulas sin conducto De los anatomistas y otros observadores Teorías filosóficas, aportes médicos Pintores de la patología endocrina Casos y teorías La hermosa voz de soprano de los castrati 3. Addison y Gull, precursores ingleses La Inglaterra de la Reina Victoria Addison y la Insuficiencia Suprarrenal Gull y el Mixedema Otros investigadores de la tiroides Aportes del Reino Unido al conocimiento de las glándulas de secreción interna 4. Enfermedades endocrinas en el siglo diecinueve Investigadores teutones Diabetes por pancreatectomía Se descubren los islotes pancreáticos Experimento pionero de Berthold Alemanes, suizos y austriacos hace aportes Cuando la medicina habló francés Francia y los conocimientos endocrinos del ochocientos Claude Bernard y el medio interno Brown-Sèquard, otro precursor de la endocrinología Pierre Marie y la acromegalia Boussingault y el bocio endémico Contribuciones de otros países 5. Las primeras hormonas Secretina y gastrina Medula suprarrenal y catecolaminas Fitohormonas La opoterapia 6. La insulina y el enorme reto de la diabetes La idea de Banting Los que –casi- descubren la insulina Por fin, la insulina McLeod Hormonas diabetogénicas El metabolismo intermediario Hipoglicemiantes orales 7. Hormonas de las suprarrenales y de la tiroides Alfredo Jácome Roca 2 Historia de las Hormonas De la cuasi-ignorancia al hallazgo de la Cortina Cortina: mezcla de compuestos esteroideos La tiroxina: aportes de Kendall y Harington Cortisona, la droga milagrosa Primeros usos de corticoides en Colombia Aldosterona y presión arterial 8. -
Forbush Effects and Their Connection with Solar, Interplanetary and Geomagnetic Phenomena
Universal Heliophysical Processes Proceedings IAU Symposium No. 257, 2008 © 2009 International Astronomical Union N. Gopalswamy & D.F. Webb, eds. doi:10.1017/S1743921309029676 Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena A. V. Belov Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation Russian Academy of Sciences (IZMIRAN), 142190 Troitsk, Moscow region, Russia email: [email protected] Abstract. Forbush decrease (or, in a broader sense, Forbush effect) - is a storm in cosmic rays, which is a part of heliospheric storm and very often observed simultaneously with a geomagnetic storm. Disturbances in the solar wind, magnetosphere and cosmic rays are closely interrelated and caused by the same active processes on the Sun. Thus, it is natural and useful to investigate them together. Such an investigation in the present work is based on the characteristics of cosmic rays with rigidity of 10 GV. The results are derived using data from the world wide neutron monitor network and are combined with relevant information into a data base on Forbush effects and large interplanetary disturbances. Keywords. elementary particles, Sun: activity, interplanetary medium, solar-terrestrial rela- tions, coronal mass ejections (CMEs), shock waves. 1. Introduction A special kind of cosmic ray (CR) variation which we name Forbush decrease (FD) or Forbush effect (FE) was discovered by S. Forbush in 1937 (Forbush 1937, Forbush 1938). Since then hundreds of such events have been observed and discussed, and a large number of papers have been devoted to their study. The present work is not a traditional review of the published literature, such as the fundamental reviews J. -
Feynman's Struggle and Dyson's Surprise
Max Planck Research Library for the History and Development of Knowledge Proceedings 5 Adrian Wüthrich: Feynman’s Struggle and Dyson’s Surprise: The Development and Early Appli- cation of a New Means of Representation In: Shaul Katzir, Christoph Lehner and Jürgen Renn (eds.): Traditions and Transforma- tions in the History of Quantum Physics : Third International Conference on the History of Quantum Physics, Berlin, June 28 – July 2, 2010 Online version at http://edition-open-access.de/proceedings/5/ ISBN 978-3-8442-5134-0 First published 2013 by Edition Open Access, Max Planck Institute for the History of Science under Creative Commons by-nc-sa 3.0 Germany Licence. http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Printed and distributed by: Neopubli GmbH, Berlin http://www.epubli.de/shop/buch/28021 The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de Chapter 11 Feynman’s Struggle and Dyson’s Surprise: The Development and Early Application of a New Means of Representation Adrian Wüthrich Around the year 1948, Richard Phillips Feynman (1918–1988) began to use a particular kind of diagram for the theoretical treatment of recalcitrant problems in the theory of quantum electrodynamics (QED), that is, the calculation of the self-energy of the electron. Soon thereafter, these so-called Feynman diagrams became a ubiquitous tool in theoretical elementary particle physics. In this contribution, I first briefly sketch how Feynman diagrams are used today, how they are most often interpreted and how their genesis is usually de- scribed, see sec. -
John A. Wheeler 1911–2008
John A. Wheeler 1911–2008 A Biographical Memoir by Kip S. Thorne ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOHN ARCHIBALD WHEELER July 9, 1911–April 13, 2008 Elected to the NAS, 1952 John Archibald Wheeler was a theoretical physicist who worked on both down- to-earth projects and highly speculative ideas, and always emphasized the importance of experiment and observation, even when speculating wildly. His research and insights had large impacts on nuclear and particle physics, the design of nuclear weapons, general relativity and relativistic astrophysics, and quantum gravity and quantum information. But his greatest impacts were through the students, postdocs, and mature physicists whom he educated and inspired. Photography by AIP Emilio Segrè Visual Archives Photography by AIP Emilio Segrè He was guided by what he called the “principle of radical conservatism, ”inspired by Niels Bohr: Base your research on well-established physical laws (be conservative), but By Kip S. Thorne push them into the most extreme conceivable domains (be radical). He often pushed far beyond the boundaries of well understood physics, speculating in prescient ways that inspired future generations of physicists. After completing his PhD. with Karl Herzfeld at Johns Hopkins University (1933), Wheeler embarked on a postdoctoral year with Gregory Breit at New York University (NYU) and another with Niels Bohr in Copenhagen. He then moved to a three-year assistant professorship at the University of North Carolina (1935–1937), followed by a 40-year professorial career at Princeton University (1937–1976) and then ten years as a professor at the University of Texas, Austin (1976–1987). -
Dear Friends
Department of Earth and Planetary Sciences University of Tennessee, Knoxville 2005 Annual Newsletter 2005 Newsletter Department of Earth and Planetary Sciences University of Tennessee, Knoxville Editors: Larry McKay and Bill Deane Cover photos: Top Right: Geology 586 – Field and Lab Methods in Hydrogeology – goes caving. Photo courtesy of Larry McKay. Top Left: This specimen measuring 40 mm is Pentremites robustus from the Sloan's Valley Member of the Pennington Formation, Upper Mississippian from near Berea, Kentucky. Photo courtesy of Colin Sumrall. Bottom: No, this is not the Vol Navy! Larry McKay and Vijay Vulava are preparing to collect sediments from Chattanooga Creek. Photo courtesy of Larry McKay. The University of Tennessee does not discriminate on the basis of race, sex, religion, national origin, age, disability, or veteran status in provision of educational programs and services or employment opportunities and benefits. This policy extends to both employment and admission to the University. The University does not discriminate on the basis of race, sex or disability in the educational programs and activities pursuant to the requirements of the Title VI of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act (ADA) of 1990. Inquiries and charges of violation concerning Title VI, Title IX, Section 504, ADA or the Age Discrimination in Employment Act (ADEA) or any of the other above referenced policies should be directed to the Office of Equity and Diversity (OED), 1840 Melrose Avenue, Knoxville, TN 37996-3560, telephone (865) 974- 2498 (V/TTY available) or 974-2440.