Chapter Viii Closure and Reclamation

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Viii Closure and Reclamation 108 TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW 109 MANAGEMENT OF TAILINGS: PAST, PRESENT AND FUTURE CHAPTER VIII CLOSURE AND RECLAMATION Gord McKenna, Geotechnical Engineer and Landform Designer, McKenna Geotechnical Inc, Adjunct Professor, University of Alberta Dirk Van Zyl*, Professor of Mining Engineering, Norman B. Keevil Institute of Mining Engineering, University of British Columbia 1. INTRODUCTION 2. OVERVIEW OF CURRENT PRACTICE Tailings landforms are an enduring legacy of many Worldwide, many mines have one or more active or mining landscapes – the design and construction inactive tailings facilities. Each tailings facility is a of these facilities to perform well for the next mining landform that is already part of the permanent millennium is just as great a challenge and effort landscape, and which will require reclamation as as is maintaining operational dam safety. This part of mining’s commitment to be a temporary chapter provides an overview of leading practices use of the land and to enable individual mines to for design, construction, deposition, stabilisation, leave a positive mining legacy. Each of these tailings decommissioning, capping, reclamation, and aftercare landforms must be sited, designed, constructed/ for tailings facilities. It builds on the work detailed in filled, decommissioned, stabilised, reclaimed, Sustainable design and post-closure performance of and deregulated as dams, relinquished and then tailings dams (ICOLD 2013). maintained over the long-term by landowners or regulatory agencies. Where the relinquishment cannot An important advance in mine closure design is the be accomplished, ongoing maintenance will be framework of landform design — a new concept that responsibility of the mine owner. is breaking out internationally under different names by various groups and practitioners. Landform design Tailings facilities typically occupy 10 to 40 per cent of entails a paradigm shift away from the practice the area of a reclaimed mining landscape, with pits of separating construction and operations from and waste rock dumps responsible for most of the closure and reclamation. Instead, it calls for a fully rest. Typically, regulators require reclaimed facilities integrated approach that provides design, support, to meet agreed-upon land uses and performance and stewardship throughout the life of the mine and standards that sustain landscapes for the benefits of beyond. local communities (e.g. Brazilian Mining Association [IBRAM] 2014). After mining, the sites are commonly A new Landform Design Institute (LDI 2020) was used as natural areas or wildlife habitat (especially recently formed, which provides ‘how-to’ advice for remote mines). Near cities, they may be used on designing, constructing, and reclaiming mining for agricultural, recreational, or industrial activities landforms and landscapes that are easy to reliably (Pearman 2009). reclaim. The Institute helps mines meet their commitment to be temporary users of the land. Most tailings facilities are difficult to stabilise Effective reclamation of tailings facilities requires and reclaim to the point where they meet societal sound design and planning before construction of the expectations of only an extremely low risk of mining landform even begins. Globally, there are tens catastrophic failure, acceptable residual impacts on of thousands of mining landforms that are partially the environment, and access for agreed-upon land constructed and in need of improved reclamation uses. Many dams cannot be deregulated (i.e. where practices. Sections 5 and 6 of this chapter provides they are no longer regulated as a dam but as a mine a more complete discussion of the landform design waste storage facility). In particular, it is very unlikely approach to overall mine (and specifically tailings) that a dam will be deregulated if it contains ponded closure for both existing and new mining landforms. water or potentially mobile materials, due to concerns *Member of the GTR Expert Panel 110 TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW 111 regarding catastrophic dam failure even after closure. damage the reclamation below. • regulatory requirements often straightforward to reclaim and perform well, as In practice, most tailings landforms need regular do tailings sand beaches. However, tailings facilities • mining company corporate closure criteria monitoring and maintenance, perhaps in perpetuity. Currently, most mines have a ‘conceptual closure plan’ typically present several challenges for closure and that details what needs to be done for the mine site • commitments made by the company to regulatory reclamation: Historically, tailings dam design has focussed on (landscape scale) and for each mining landform (such agencies and communities during the mine life safely containing hydraulically placed tailings during as waste rock dumps, tailings facilities, open pits, and cycle Sand dams, comprised of fine sand and silt mine operations. More recently, designing these plant sites). The plan applies to decommissioning, tailings, are highly erodible. Even when capped and • leading international practices for projects in tailings landforms to be safe, stable, and useful after regrading / stabilisation, mine reclamation, and water revegetated, gullies can penetrate the cover, leading similar climates, with similar physical and chemical filling and reclamation has become a parallel but management and water treatment. Excellent guidance to erosion of mine waste, fan deposition, and elevated conditions and environmental settings, and in not necessarily integrated focus (ICOLD 2013). But for development of modern closure plans is provided suspended sediments in downstream watercourses, similar socio-economic settings. improvements are needed. Most tailings facilities by IBRAM (2014), Government of Western Australia necessitating ongoing maintenance. owners and users still face one or more significant (2015), Asia Pacific Economic Cooperation (APEC, These criteria are captured and addressed in the geotechnical, safety, geo-environmental, or financial 2018) and ICMM (2019). However, at most mines, the Tailings and the tailings pore-water (the water that design basis memorandum (DBM) as described risks related to operational reclamation activities and design and operation of tailings facilities is conducted fills the porosity between the grains of tailings) may below, and then reviewed periodically. For existing long-term landscape performance (McKenna 2002). separately from closure and reclamation. contain elevated levels of metals and may be prone to tailings facilities that have no or too simplistic closure acid rock drainage. Both can affect groundwater and criteria, a DBM should be developed as a high priority. Reclamation practices vary widely according to Mines are required to post financial assurances surface water, creating unacceptable water quality climate, commodity, and regulatory environment. to cover the costs of reclamation and long-term and toxicity to plants, animals, and aquatic life. 3.2 IDENTIFY ALTERNATIVE TECHNOLOGIES Most mines employ conventional reclamation care in most jurisdictions, but depending on the techniques, including regrading of slopes, placement regulatory framework, the assurances can end up The next step is to identify the alternative tailings and • Tailings dam internal drainage systems of cover materials (usually a growth medium), being a small fraction of the eventual requirements. closure technologies and practices that will satisfy (underdrains, gravel drains within the dam, and and planting with site-appropriate, ideally native, In some jurisdictions the land may be abandoned the closure criteria. An options analysis is undertaken socked-slotted drainage pipe) can be prone to vegetation. Reclamation is often conducted while only partially reclaimed, and must be managed using mine plans that incorporate each of the leading clogging, fouling, or collapse, affecting the long- progressively, whereby mine areas, especially mine by the state, with little or no funding available for the tailings technologies. (See Consortium of Tailings term groundwater table and the geotechnical and waste landforms such as tailings facilities and waste remaining work. Management Consultants [CTMC] 2012, for a list erosional stability of dams. rock dumps, are reclaimed soon after bulk material of nearly 100 tailings technologies). This requires • Potentially mobile materials (soft tailings, placement is completed. At some mines, each lower considering the climatic and topographical location liquefiable tailings, or water) stored behind dams bench of dams and dumps is reclaimed as the next of the tailings facility and the feasibility (technical and 3. TAILINGS CLOSURE: WHAT IS GOOD PRACTICE? may pose elevated risks of sudden catastrophic bench above is placed. This approach cannot be used economical) and constructability of different options.1 dam failures and outflows that threaten lives, the for most downstream and centerline constructed Good practice tailings closure development and environment, and property downstream. facilities which can generally only be reclaimed once design starts during the initial stages of the mine Technology developments during the facility mine life all lifts have been
Recommended publications
  • Chapter Ii Mine Tailings Facilities
    14 TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW 15 SETTING THE SCENE CHAPTER II Upstream MINE TAILINGS 4 3 FACILITIES: OVERVIEW 2 1 AND INDUSTRY TRENDS Starter dyke: 1 Downstream The embankment design terms, upstream, Elaine Baker*, Professor, The University of Sydney, Australia and GRID Arendal, Arendal, Norway downstream and centreline, indicate the 4 Michael Davies*, Senior Advisor – Tailings & Mine Waste, Teck Resources Limited, Vancouver, Canada direction in which the embankment crest 3 moves in relation to the starter dyke at the Andy Fourie, Professor, University of Western Australia, Australia 2 base of the embankment wall. Gavin Mudd, Associate Professor, RMIT University, Australia 1 Kristina Thygesen, Programme Group Leader, Geological Resources and Ocean Governance, GRID Arendal, Norway Centreline Dyke: 2 to 4 or more 4 Dykes are added to raise the embankment. This continues throughout the operation 3 of the mine. 1. INTRODUCTION The tailings are most commonly stored on site 2 in a tailings storage facility. Storage methods for 1 This chapter provides an overview of mine tailings conventional tailings include cross-valley and paddock and mine tailings facilities. It illustrates why and (ring-dyke) impoundments, where the tailings are how mine tailings are produced, and the complexity behind a raised embankment(s) that then, by many Source: Vick, 1983, 1990 involved in the long-term storage and management definitions, become a dam, or multiple dams. of this waste product. The call for a global standard However, a tailings facility can have an embankment Figure 1.
    [Show full text]
  • Landscape Engineering, Protecting Soil, and Runoff Storm Water
    Chapter 27 Landscape Engineering, Protecting Soil, and Runoff Storm Water Mehmet Cetin Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55812 1. Introduction Landscape engineering thinks about the application of mathematics and science to the creation of convenient outdoor living areas. These outdoor living areas are a consequence of the design and the construction process made feasible by landscape architects through landscape contractors. Beside landscape engineer’s interested in containing site grading and drainage, earthwork calculations, and watersheds [1,12,13]. Landscape engineers employ engineering knowledge when designing and building spaces. They demand to know how to interpret contour maps which shows elevations and surface configuration by means of contour line sand and also consider how to interpret 2-D images, compute angles and grading requirements for pavements, parking lots, bridges, roads and other structures. Beside they understand the amount of fill needed for specific areas and figure out how water runoff and flow should affect their designs. Developing and improving for landscape engineering [1,3,13,14] 1. Stormwater management: building up bioswales, landscape materials used to gather and install runoff, rain gardens and porous asphalt. 2. Mitigation of the urban heat island effect: diminishing the quantity of paved surfaces, building up green roofs and green walls, and using building materials with low reflectivity. 3. Wildlife habitat: protecting habitat and building up green roofs and rain gardens. 4. Social spaces: areas for walking, biking, gathering and eating. 5. Transportation: growth expanding pedestrian accessibility, limiting vehicle speeds and encouraging the use of public transportation.
    [Show full text]
  • Dam Effects on Low-Tide Channel Pools and Fish Use of Estuarine Habitat
    Beaver in Tidal Marshes: Dam Effects on Low-Tide Channel Pools and Fish Use of Estuarine Habitat W. Gregory Hood Wetlands Official Scholarly Journal of the Society of Wetland Scientists ISSN 0277-5212 Wetlands DOI 10.1007/s13157-012-0294-8 1 23 Your article is protected by copyright and all rights are held exclusively by Society of Wetland Scientists. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Wetlands DOI 10.1007/s13157-012-0294-8 ARTICLE Beaver in Tidal Marshes: Dam Effects on Low-Tide Channel Pools and Fish Use of Estuarine Habitat W. Gregory Hood Received: 31 August 2011 /Accepted: 16 February 2012 # Society of Wetland Scientists 2012 Abstract Beaver (Castor spp.) are considered a riverine or can have multi-decadal or longer effects on river channel form, lacustrine animal, but surveys of tidal channels in the Skagit riverine and floodplain wetlands, riparian vegetation, nutrient Delta (Washington, USA) found beaver dams and lodges in the spiraling, benthic community structure, and the abundance and tidal shrub zone at densities equal or greater than in non-tidal productivity of fish and wildlife (Jenkins and Busher 1979; rivers. Dams were typically flooded by a meter or more during Naiman et al.
    [Show full text]
  • Inventory of Tidepool and Estuarine Fishes in Acadia National Park
    INVENTORY OF TIDEPOOL AND ESTUARINE FISHES IN ACADIA NATIONAL PARK Edited by Linda J. Kling and Adrian Jordaan School of Marines Sciences University of Maine Orono, Maine 04469 Report to the National Park Service Acadia National Park February 2008 EXECUTIVE SUMMARY Acadia National Park (ANP) is part of the Northeast Temperate Network (NETN) of the National Park Service’s Inventory and Monitoring Program. Inventory and monitoring activities supported by the NETN are becoming increasingly important for setting and meeting long-term management goals. Detailed inventories of fishes of estuaries and intertidal areas of ANP are very limited, necessitating the collection of information within these habitats. The objectives of this project were to inventory fish species found in (1) tidepools and (2) estuaries at locations adjacent to park lands on Mount Desert Island and the Schoodic Peninsula over different seasons. The inventories were not intended to be part of a long-term monitoring effort. Rather, the objective was to sample as many diverse habitats as possible in the intertidal and estuarine zones to maximize the resultant species list. Beyond these original objectives, we evaluated the data for spatial and temporal patterns and trends as well as relationships with other biological and physical characteristics of the tidepools and estuaries. For the tidepool survey, eighteen intertidal sections with multiple pools were inventoried. The majority of the tidepool sampling took place in 2001 but a few tidepools were revisited during the spring/summer period of 2002 and 2003. Each tidepool was visited once during late spring (Period 1: June 6 – June 26), twice during the summer (Period 2: July 3 – August 2 and Period 3: August 3 – September 18) and once during early fall (Period 4: September 29 – October 21).
    [Show full text]
  • Beaver Dam Mine Project Environmental Impact Statement
    Plain Language Summary BEAVER DAM MINE PROJECT ENVIRONMENTAL IMPACT STATEMENT 1 Table Of Contents 3 About 4 Project Overview 5 Sustainable Development at Beaver Dam Mine Project 6 Current Condition of the Project Site 8 Project Description 10 The Life of the Mine 12 The Environmental Assessment Process 14 Engaging Communities of Nova Scotia • Meeting with the Mi’kmaq of Nova Scotia • Meeting with the General Public 16 Traditional Use by Mi’kmaq People • Nearest Mi’kmaq Communities 18 The Natural & Human Environment Today • Fish & Wildlife • Water • Current Use by Mi’kmaq Communities • Mi’kmaq Ecological Knowledge Study • Traditional Land and Resource Use Study (Millbrook First Nation) • Cultural and Heritage Resources • Recreational and Commercial Activities 22 Effects on the Natural & Human Environment • Air • Light • Noise • Groundwater • Surface Water • Land • Animals • Fish • Birds • Cultural and Heritage Resources • Effects to the Mi’kmaq People 34 Environmental Monitoring 36 Reclamation 38 Environmental Management Programs ꢀ 40ꢀ BenefitsꢀofꢀtheꢀProject 2 41 Conclusions 1 Increase font size for all body copy? About The purpose of this booklet is to describe, in plain language, theꢀproposed development of a gold mine at Beaver Dam (Marinette), inꢀHalifax County, Nova Scotia. Atlantic Mining NS Corp. (Atlantic Gold) isꢀtheꢀcompany that wants to develop this mine. This is a plain language summary of the Environmental Impact Statement that Atlantic Gold first gave to the federal government in 2017. It is important to Atlantic Gold that you understand how they will build the mine. Atlantic Gold wants you to know how they will protect the environment during building, operating and closure of the mine.
    [Show full text]
  • Louvicourt Mine Tailings Storage Facility and Polishing Pond 2019 Dam Safety Inspection
    REPORT Louvicourt Mine Tailings Storage Facility and Polishing Pond 2019 Dam Safety Inspection Submitted to: Morgan Lypka, P.Eng. Teck Resources Ltd. 601 Knighton Road, Kimberley, BC V1A 3E1 Submitted by: Golder Associates Ltd. 7250, rue du Mile End, 3e étage Montréal (Québec) H2R 3A4 Canada +1 514 383 0990 001-19118317-5000-RA-Rev0 25 March 2020 25 March 2020 001-19118317-5000-RA-Rev0 Distribution List 1 e-copy: Teck Resources Ltd., Kimberley, BC 1 e-copy: Golder Associates Ltd., Saskatoon, SK 1 e-copy: Golder Associates Ltd., Montreal, QC 1 e-copy: MELCC, Rouyn-Noranda, QC 1 copy: MELCC, Rouyn-Noranda, QC i 25 March 2020 001-19118317-5000-RA-Rev0 Executive Summary This report presents the 2019 annual dam safety inspection (DSI) for the tailings storage facility (TSF) and polishing pond at the closed Louvicourt mine site located near Val-d’Or, Quebec. This report was prepared based on a site visit carried out on September 24, 2019 by Laurent Gareau and Simon Chapuis of Golder Associates Ltd (Golder), Morgan Lypka and Jason McBain of Teck Resources Limited (Teck, Owner), Jonathan Charland of Glencore Canada (Glencore, Owner) and Rene Fontaine of WSP (who conducts routine inspections with Glencore personnel), as well as on a review of available data representative of conditions over the period since the previous annual DSI. Golder Associates are the original designer of the facility and have been the provider of the Engineer of Record (EOR) since 2017. Golder performed an inspection in 2009, and then has performed annual inspections of the facilities since 2014.
    [Show full text]
  • Ecology Design
    ECOLOGY and DESIGN Ecological Literacy in Architecture Education 2006 Report and Proposal The AIA Committee on the Environment Cover photos (clockwise) Cornell University's entry in the 2005 Solar Decathlon included an edible garden. This team earned second place overall in the competition. Photo by Stefano Paltera/Solar Decathlon Students collaborating in John Quale's ecoMOD course (University of Virginia), which received special recognition in this report (see page 61). Photo by ecoMOD Students in Jim Wasley's Green Design Studio and Professional Practice Seminar (University of Wisconsin-Milwaukee) prepare to present to their client; this course was one of the three Ecological Literacy in Architecture Education grant recipients (see page 50). Photo by Jim Wasley ECOLOGY and DESIGN Ecological by Kira Gould, Assoc. AIA Literacy in Lance Hosey, AIA, LEED AP Architecture with contributions by Kathleen Bakewell, LEED AP Education Kate Bojsza, Assoc. AIA 2006 Report Peter Hind , Assoc. AIA Greg Mella, AIA, LEED AP and Proposal Matthew Wolf for the Tides Foundation Kendeda Sustainability Fund The contents of this report represent the views and opinions of the authors and do not necessarily represent the opinions of the American Institute of Architects (AIA). The AIA supports the research efforts of the AIA’s Committee on the Environment (COTE) and understands that the contents of this report may reflect the views of the leadership of AIA COTE, but the views are not necessarily those of the staff and/or managers of the Institute. The AIA Committee
    [Show full text]
  • Beavers Are Cleaning Stormwater, Cooling Streams, and Increasing Complexity in Gresham
    Beavers are Cleaning Stormwater, Cooling Streams, and Increasing Complexity in Gresham Katie Holzer Watershed Scientist City of Gresham, Oregon 1 Overview 1) Stormwater facility study 2) Stream temperature study 3) Stream complexity observations 2 Gresham 3 Dozens of Beaver Dams in Gresham Streams • Seem to be increasing drastically in past 10 years • Most strongly associated with public land 4 Variety of Dams https://www.facebook.com/JohnsonCreekWC/videos/382315012475862/ 5 1) Stormwater Facility Study 6 Columbia Slough Regional Water Quality Facility • Constructed in 2007-08 • 13-acre site • Treats 965 acres of industrial and commercial land • Cost = $2.4M • Goals: clean stormwater, provide habitat, foster education 7 Columbia Slough Regional Water Quality Facility 8 Columbia Slough Regional Water Quality Facility + Beavers 9 Question: Do the beaver dams help or hinder the water quality treatment in this facility? 10 Methods – Dam Removal 11 Methods – Water Quality Sampling • Collected water quality samples during storms • Inlets and outlets of facility • Before and after dam removal and rebuilding • 7 storms without dams, 7 storms with dams • Metals, nutrients, sediment, pesticides 12 Results 100 No beaver dams 80 60 40 20 % Pollutant Removal Pollutant % 0 -20 -40 13 Results 100 No beaver dams With beaver dams 80 60 40 20 % Pollutant Removal Pollutant % 0 -20 -40 14 Beaver dams slow and filter stormwater 15 New Question: What if the beavers leave?! 16 Continually Remove One Dam 17 Suggestions for Designing Stormwater Facilities with
    [Show full text]
  • Beaver Dam Lake Report 2012
    Beaver Dam Lake Aquatic Macrophytic Survey Report 580 Rockport Rd. Hackettstown, NJ 07840 Phone: 908-850-8690 Fax: 908-850-4994 www.alliedbiological.com Table of Contents Introduction .................................................................................................................................................. 3 Procedures: ............................................................................................................................................... 3 Macrophyte Summary: ................................................................................................................................. 4 Macrophyte Abundance and Distribution Discussion .................................................................................. 9 Summary of Findings: ................................................................................................................................. 12 2 11/30/2012 Beaver Dam Lake Protection and Rehabilitation District 557 Shore Drive New Windsor, NY 12553 2012 Aquatic Macrophytic Survey Report Beaver Dam Lake Orange County, New York Introduction On September 7, 2012 Allied Biological, Inc. conducted a detailed aquatic macrophyte survey at Beaver Dam Lake located in Orange County, NY. During the survey, 102 GPS-referenced locations were sampled for the presence of aquatic macrophytes in the main basin of the lake. The primary goal of the survey was to map the diverse vegetation present in the lake for scientific determination of best management strategies. In the Appendix
    [Show full text]
  • W234 N8676 Woodside Rd. Lisbon, WI 53089
    TOWN OF LISBON W234 N8676 Woodside Rd. Lisbon, WI 53089 Join Zoom Meeting Online: https://zoom.us/j/97986382979?pwd=T3V0cURMY3dIRnU4eHhHNXgxOHBsQT09 Join Zoom by Phone: Dial 1-312-626-6799 Meeting ID: 979 8638 2979 Passcode: 060914 TOWN BOARD MEETING AGENDA Lisbon Town Hall Board Room Monday, June 14, 2021 6:30 P.M. 1. Roll Call. 2. Pledge of Allegiance. 3. Comments from citizens present. Citizens are invited to share their questions, comments, or concerns with the Town Board. When speaking, citizens should state their name and address for the record and limit their presentation to three minutes. Where possible, the Board will answer factual questions immediately. If a response would involve discussion of Board policy or decisions, which might be of interest to citizens, not present at the meeting, the Board may place the item on a future meeting agenda. 4. Meeting Minutes. • Discussion and necessary action regarding approval of May 24, 2021, Town Board minutes. 5. Accounts Payable. • Authorize the payment of bills in the amount of $242,407.54 • Monthly report of ACH & Autopays – May 2021 6. Announcements/Correspondence. • Sanitary Sewer District #1 Commission – Wednesday, 6/16/21 at 6:30p.m., Town Hall • Lisbon Community Festival – Saturday, 6/19/21, 11:00a.m. – 4:00p.m., Community Park • Parks Committee – Monday, 6/21/21 at 6:30p.m., Richard Jung Fire Station • Town Board Meeting – Monday, 6/28/21 at 6:30 p.m. Town Hall • Plan Commission – Thursday, 7/1/21 at 6:30p.m., Richard Jung Fire Station 7. Administrator’s Report. 8.
    [Show full text]
  • Beaver Dam Management
    BMP Factsheet #8 BEAVER DAM MANAGEMENT Introduction corn, other herbaceous plants, and a variety of woody Beavers are North America’s largest rodent and perhaps plants. Beaver dams create habitat for many animals and are second only to humans in their ability to alter the plants and provide essential habitat for juvenile salmon, environment. Beaver dams can cause drainage problems particulary Coho. In winter, deer and elk frequent beaver on managed watercourses and impounded water can ponds to forage on shrubby plants that grow where cause property damage. beavers cut down trees for food or to use in making their dams and lodges. Weasels, raccoons, and herons Pursuant to RCW 77.55 a permit must be issued for hunt frogs and other prey along the marshy edges of work that will use, obstruct, change, or divert the bed beaver ponds. Migratory waterbirds use beaver ponds as or flow of state waters. To remove or modify a beaver nesting areas and resting stops during migration. Ducks dam on a natural or modified watercourse, you must and geese often nest on top of beaver lodges, since they have a Hydraulic Project Approval (HPA) issued by the offer warmth and protection, especially when lodges are Washington Department of Fish & Wildlife (WDFW). formed in the middle of a pond. The trees that die as a In emergency situations (when an immediate threat to result of rising water levels attract insects, which in turn property or life exists), verbal approval from WDFW may feed woodpeckers, whose holes later provide homes for be obtained for work necessary to solve the problem.
    [Show full text]
  • Effects of Beaver Dams on Subarctic Wetland Runoff
    EFFECTS OF BEAVER DAMS ON SUBARCTIC WETLAND RUNOFF BY JAMES MICHAEL WADDINGTON A Research Paper Submi tted to the Department of Geography i n Fulfilment of the Requirements of Geography 4C6 McMaster University March 1989 URBAN DOCUMENT CENTRE RESEARCH UNir " URBAN STUDIES M STER UNiVERSill HAI~ILTON, ONTARIO ABSTRACT Beaver ams located on streams of a western James Bay marsh were stu ied to determine their effects on the runoff from subarctic wetlands. A survey of the location, type, class, and geometry of 50 dams on five different creeks were related to streamflow hydrographs from the 1987 field season. The hydrographs showed that although gapflow and overflow type dams stored more water upstream during low flow, little alteration to s tormflow occurred except for the shedding of water to the s rrounding wetland. Throughflow type dams altered streamfl ow only at the local scale, while underflow type beaver dams, despite having little affect at low flow, created a 12 hour time lag and a long hydrograph recession during high flows. A water balance comparison was performed for the period June 18th to July 28th, 1988 between a basin without a beaver dam and one dammed by the beaver to determine the effects of the beaver dams at the basin scale. The amount of water stored in the beaver dam basin (18mm) was 53mm greater than that stored in the basin without a dam (-35mm) indicating (ii) a distinct diffe rence in the basins' abilities to store water. In both basi ns, net subsurface flow was negligible. Precipitation wa s similar in magnitude between the two basins.
    [Show full text]