Mitochondrial DNA in Mammalian Reproduction

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial DNA in Mammalian Reproduction Reviews of Reproduction (1998) 3, 172–182 Mitochondrial DNA in mammalian reproduction Jim Cummins Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia Mitochondrial DNA (mtDNA) forms a semi-autonomous asexually reproducing genome in eukaryotic organisms. It plays an essential role in the life cycle through the control of energy production, by the inherently dangerous process of oxidative phosphorylation. The asym- metric nature of its inheritance – almost exclusively through the female – imposes different evolutionary constraints on males and females, and may lie at the heart of anisogamy. This review examines the implications of recent findings on the biology of mtDNA for reproduction and inheritance in mammals. Although the existence of mitochondria has been known since encodes for tryptophan in mammalian mitochondria). The in- the last century, mitochondrial DNA (mtDNA) has been studied heritance of mitochondria through the female lineage remains most extensively in the past two decades. Mitochondria have one of the central enigmas of reproductive biology. a profound role to play in mammalian tissue bioenergetics, in Mitochondria have certain tissue-specific configurations that growth, in ageing and in apoptosis, and yet they descend from presumably reflect local energetic requirements (Fawcett, 1981). an asexually reproducing independent life form. It has been New techniques for visualizing mitochondria in whole cells, hypothesized that tensions between the evolutionary ‘interests’ such as the incorporation of green fluorescent protein coupled of the eukaryotic host and its subservient organelles have led to with confocal microscopy, reveal that mitochondrial form can asymmetrical inheritance, so that mitochondria derive pre- not only reflect pathological states but may also be extremely dominantly from the female in most organisms (Hurst, 1992; diverse even within the same cell (Kanazawa et al., 1997). The Hurst et al., 1996). This has consequences that are only just be- basic design is a double membrane surrounding an inner mito- coming apparent. There is considerable interest in the potential chondrial matrix that contains one or more circular mtDNA role of mitochondria and cytoplasmic inheritance on growth molecules. The outer mitochondrial membrane is thought to and performance factors such as muscle development and milk represent the original invaginated host plasma membrane, production in domestic animals. As might be expected, the while the inner mitochondrial membrane represents the bac- maternally inherited mitochondrial genome has significant terial wall and contains the site of oxidative phosphorylation non-Mendelian effects on steroidogenesis and on respiratory- (OXPHOS) on its inner surface. The matrix also contains ribo- dependent functions such as growth, oxygen consumption and somes for local protein synthesis. lean:fat ratios, but not on anaerobic metabolism. Smith and The two membranes differ profoundly in composition. The Alcivar (1993) have reviewed this topic recently and compre- lipid:protein ratio of the outer membrane is about 50:50 and hensively; therefore, the focus of this article will be the role of it is permeable to molecules with molecular weights of up to mtDNA in the life cycle. 10 000 (Lodish et al., 1995). The inner membrane is relatively Mitochondria are semi-autonomous organelles found in all impermeable and is about 80% protein and is thrown up into eukaryotic cells (except mature red blood cells and some pro- infoldings – crystae – the sites of OXPHOS enzymes. Here the tozoans). It is generally accepted that mitochondria originated oxidation of metabolites generates ATP through a series of in ancestral eukaryotic cells through endosymbiosis of free- integral membrane multi-subunit protein complexes which living bacteria capable of metabolizing oxygen – a suggestion couple electron transport to ATP synthesis. These complexes first made over a century ago and noted by Ozawa in his review are unique in that they consist of proteins encoded by two (Ozawa, 1997a). Our ancestral eukaryotes thus exploited the separate yet cooperating genomes, that of the nucleus and that capacity of mitochondria to metabolise oxygen. This allowed of the mitochondrion (Poyton and McEwen, 1996; Shadel and them to flourish despite the increasing concentrations of this Clayton, 1997) There are separate translocase systems in the highly reactive and potentially poisonous element in the en- inner and outer membranes that coordinate the recognition, vironment. While most of the mitochondrial genes have moved import and assortment of essential proteins from the cytosol to the nucleus, mitochondria retain their bacterial facility for (Neupert, 1997). multiplying by simple fission – and even fusing – indepen- dently of the host cell cycle. Excess mitochondria are removed Mitochondrial DNA by autophagic lysosomal activity. These population control measures act in response to the energetic demands of different Most cells in the body contain between 103 and 104 copies of tissues. The mitochondrial genome also has idiosyncrasies in mtDNA. There are much higher copy numbers (about 105) in RNA processing and in its genetic code that differ from those of mature oocytes. This may be in preparation for the energetic nuclear DNA (for example UGA is normally a stop codon, but demands of embryogenesis (Pikó and Matsumoto, 1976) but © 1998 Journals of Reproduction and Fertility 1359-6004/98 $12.50 Downloaded from Bioscientifica.com at 10/02/2021 04:36:00PM via free access Mitochondrial DNA in the life cycle 173 Table 1. Fate of light and heavy chain transcripts from mitochondrial DNA Displaced heavy strand (D-loop) Light chain transcripts Heavy chain transcripts Heavy strand Nascent heavy origin strand 8 tRNAs 14 tRNAs 1 mRNA 12 mRNAS Heavy strand RNA primers for heavy chain replication 2 tRNAs promoter Transcription Modified from Shadel and Clayton, 1997 factor binding Light strand sites promoter an alternative explanation is that replication does not occur during early embryogenesis and that high copy numbers are needed to give a sufficient reservoir (see below). The DNA Light strand origin exists mainly as a circular molecule of approximately 16.6 kb, (stem-loop) encoding 13 proteins that are transcribed and translated in the mitochondrion (Table 1). These are essential subunits of the electron transport complexes on the inner mitochondrial mem- brane. The mitochondrial genome also encodes the RNA mol- ecules that are necessary for the translation of these proteins (Table 1) (Lodish et al., 1995; Shadel and Clayton, 1997). mtDNA structure Fig. 1. This diagram summarizes the major features of mtDNA re- ferred to in the text. (See Shadel and Clayton, 1997.) The separate strands of the mtDNA molecule differ in buoy- ant density; the heavier ‘H-strand’ has a higher G + T content than the light ‘L-strand’. Transcription occurs simultaneously and in opposite directions and many genes overlap. By con- Box 1 Major mitochondrial import proteins vention mtDNA is depicted as a circle (Fig. 1), but alternatives, such as dimer loops and catenated (chain-linked) circles, are Mitochondrial DNA and RNA polymerases known (Clayton, 1982). In some single-celled organisms (many Transcription, translation and transcription termination factors RNA processing enzymes pathogenic to mammals) aberrant linear mtDNA molecules Mitochondrial ribosomal proteins with telomere-like endings are also found (Nosek et al., 1998). Aminoacyl-tRNA synthetases There is a specialised, somewhat unstable and hypervariable region called the D-(displacement) loop, where there is a triplex DNA structure at the site of origin of the H strand (Fig. 1). This structure is formed by a short nascent H-strand that remains closely associated with the parental molecule. This region is crit- Neupert, 1997). Besides structural components of the mitochon- ical for the initiation of transcription and translation (see below). dria, these imports involve factors that regulate and specifically The mammalian mitochondrial genome is extremely com- recognize mtDNA and regulate gene expression (Box 1). pressed with no introns. Some genes even overlap. This con- trasts strikingly with, for example, yeast (five times larger at Nuclear–mitochondrial interactions 78 000 bp) or plants, in which there are multiple recombining molecules with enormous size variation even within a family. Any alterations that arise in the components of the mtDNA For example, sizes vary from 330 000 bp in watermelons to or RNA that recognize or bind to nuclear-encoded regulatory 2.5 + 106 bp in muskmelon (Lodish et al., 1995). Most of the 100 elements must be balanced by compensatory mutations in the or more genes controlling the synthesis of mammalian mito- nuclear genes, as the mitochondrial genome mutates much chondrial proteins have moved to the nucleus over the course more rapidly than the nuclear genome (see below). This mu- of evolution. tuality is thought to drive species specificity in nuclear– mitochondrial interaction (Kenyon and Moraes, 1997; Wallace, 1997), but surprisingly little is known about the coordination of Import–export mechanisms expression between the nuclear and mitochondrial genomes. Proteins are assembled on cytoplasmic ribosomes and trans- However, it is clearly a sensitive system. Nagao et al. (1998) ported into the mitochondrion through protein-lined channels, found decreased physical performance and growth rates in with the aid of cytoplasmic
Recommended publications
  • Identification and Characterization of a Selenoprotein Family Containing a Diselenide Bond in a Redox Motif
    Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif Valentina A. Shchedrina, Sergey V. Novoselov, Mikalai Yu. Malinouski, and Vadim N. Gladyshev* Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664 Edited by Arne Holmgren, Karolinska Institute, Stockholm, Sweden, and accepted by the Editorial Board July 13, 2007 (received for review April 16, 2007) Selenocysteine (Sec, U) insertion into proteins is directed by trans- notable exception. Vertebrate selenoprotein P (SelP) has 10–18 lational recoding of specific UGA codons located upstream of a Sec, whose insertion is governed by two SECIS elements (11). It is stem-loop structure known as Sec insertion sequence (SECIS) ele- thought that Sec residues in SelP (perhaps with the exception of the ment. Selenoproteins with known functions are oxidoreductases N-terminal Sec residue present in a UxxC motif) have no redox or containing a single redox-active Sec in their active sites. In this other catalytic functions. work, we identified a family of selenoproteins, designated SelL, Selenoproteins with known functions are oxidoreductases con- containing two Sec separated by two other residues to form a taining catalytic redox-active Sec (12). Their Cys mutants are UxxU motif. SelL proteins show an unusual occurrence, being typically 100–1,000 times less active (13). Although there are many present in diverse aquatic organisms, including fish, invertebrates, known selenoproteins, proteins containing diselenide bonds have and marine bacteria. Both eukaryotic and bacterial SelL genes use not been described. Theoretically, such proteins could exist, but the single SECIS elements for insertion of two Sec.
    [Show full text]
  • Sequence-Selective Recognition of Double-Stranded RNA And
    Downloaded from rnajournal.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Hnedzko et al. Sequence-Selective Recognition of Double-Stranded RNA and Enhanced Cellular Uptake of Cationic Nucleobase and Backbone- Modified Peptide Nucleic Acids Dziyana Hnedzko1,*, Dennis W. McGee,2 Yannis A. Karamitas1 and Eriks Rozners1,* Departments of 1 Chemistry and 2 Biological Sciences, Binghamton University, The State University of New York, Binghamton, New York 13902, United States. * To whom correspondence should be addressed. Tel: +1-607-777-2441; Fax: +1-607-777- 4478; Email: [email protected] and [email protected] Running Tittle: RNA recognition and cellular uptake of PNA 1 Downloaded from rnajournal.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Hnedzko et al. ABSTRACT Sequence-selective recognition of complex RNAs in live cells could find broad applications in biology, biomedical research and biotechnology. However, specific recognition of structured RNA is challenging and generally applicable and effective methods are lacking. Recently, we found that peptide nucleic acids (PNAs) were unusually well suited ligands for recognition of double-stranded RNAs. Herein, we report that 2-aminopyridine (M) modified PNAs and their conjugates with lysine and arginine tripeptides form strong (Ka = 9.4 to 17 × 107 M-1) and sequence-selective triple helices with RNA hairpins at physiological pH and salt concentration. The affinity of PNA-peptide conjugates for the matched RNA hairpins was unusually high compared to the much lower affinity for DNA hairpins of the same 7 -1 sequence (Ka = 0.05 to 0.11 × 10 M ). The binding of double-stranded RNA by M-modified 4 -1 -1 PNA-peptide conjugates was a relatively fast process (kon = 2.9 × 10 M s ) compared to 3 -1 -1 the notoriously slow triple helix formation by oligodeoxynucleotides (kon ~ 10 M s ).
    [Show full text]
  • Generation of Recombinant Mammalian Selenoproteins Through Ge- Netic Code Expansion with Photocaged Selenocysteine
    bioRxiv preprint doi: https://doi.org/10.1101/759662; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Generation of Recombinant Mammalian Selenoproteins through Ge- netic Code Expansion with Photocaged Selenocysteine. Jennifer C. Peeler, Rachel E. Kelemen, Masahiro Abo, Laura C. Edinger, Jingjia Chen, Abhishek Chat- terjee*, Eranthie Weerapana* Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States Supporting Information Placeholder ABSTRACT: Selenoproteins contain the amino acid sele- neurons susceptible to ferroptotic cell death due to nocysteine and are found in all domains of life. The func- overoxidation and inactivation of GPX4-Cys.4 This ob- tions of many selenoproteins are poorly understood, servation demonstrates a potential advantage conferred partly due to difficulties in producing recombinant sele- by the energetically expensive production of selenopro- noproteins for cell-biological evaluation. Endogenous teins. mammalian selenoproteins are produced through a non- Sec incorporation deviates from canonical protein canonical translation mechanism requiring suppression of translation, requiring suppression of the UGA stop codon. the UGA stop codon, and a selenocysteine insertion se- In eukaryotes, Sec biosynthesis occurs directly on the quence (SECIS) element in the 3’ untranslated region of suppressor tRNA (tRNA[Ser]Sec). Specifically, tRNA[Ser]Sec the mRNA. Here, recombinant selenoproteins are gener- is aminoacylated with serine by seryl-tRNA synthetase ated in mammalian cells through genetic code expansion, (SerS), followed by phosphorylation by phosphoseryl- circumventing the requirement for the SECIS element, tRNA kinase (PSTK), and subsequent Se incorporation and selenium availability.
    [Show full text]
  • Physiological Substrates of Mammalian Monogamy: the Prairie Vole Model
    Neuroscienceand BiobchavioralReviews, Vol. 19, No. 2, pp. 303-314, 1995 Copyright© 1995 ElsevierScience Lid Pergamon Printed in the USA. All rightsreserved 0149-7634/95 $9.50 + .00 0149-7634(94)00070-0 Physiological Substrates of Mammalian Monogamy: The Prairie Vole Model C. SUE CARTER, .1 A. COURTNEY DEVRIES,* AND LOWELL L. GETZt *DeFartment of Zoology, University of Maryland, College Park, MD 20742, and tDepartment of Ecology, Ethology, and Evolution, University of Illinois, Urbana, IL 61801 CARTER, C. S., A. C. DEVRIES AND L. L. GETZ. Physiological substrates of mammalian monogamy: The prairie vole model. NEUROSCI BIOBEHAV REV 19(2) 303-314, 1995.-Prairie voles (Microtus ochrogaster) are described here as a model system in which it is possible to examine, within the context of natural history, the proximate processes regulating the social and reproductive behaviors that characterize a monogamous social system. Neuropeptides, including oxytocin and vasopressin, and tihe adrenal glucocorticoid, corticosterone, have been implicated in the neural regulation of partner prefer- ences, and in the male, vasopressin has been implicated in the induction of selective aggression toward strangers. We hypothesize here that interactions among oxytocin, vasopressin and glucocorticoids could provide substrates for dynamic changes in social and agonistic behaviors, including those required in the development and expression of monogamy. Results from research with voles suggest that the behaviors characteristics of monogamy, including social attachments and biparental care, may be modified by hormones during development and may be regulated by different mechanisms in males and females. Prairie voles Social behavior Attachment Monogamy Oxytocin Vasopressin Adrenal steroids Corticosterone Sex differences MONOGAMY IN MAMMALS viduals within a family group (that remain with the family as "helpers").
    [Show full text]
  • Nuclear and Mitochondrial DNA Sequences from Two Denisovan Individuals
    Nuclear and mitochondrial DNA sequences from two Denisovan individuals Susanna Sawyera,1, Gabriel Renauda,1, Bence Violab,c,d, Jean-Jacques Hublinc, Marie-Theres Gansaugea, Michael V. Shunkovd,e, Anatoly P. Dereviankod,f, Kay Prüfera, Janet Kelsoa, and Svante Pääboa,2 aDepartment of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; bDepartment of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada; cDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; dInstitute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, RU-630090, Russia; eNovosibirsk National Research State University, Novosibirsk, RU-630090, Russia; and fAltai State University, Barnaul, RU-656049, Russia Contributed by Svante Pääbo, October 13, 2015 (sent for review April 16, 2015; reviewed by Hendrik N. Poinar, Fred H. Smith, and Chris B. Stringer) Denisovans, a sister group of Neandertals, have been described on DNA to the ancestors of present-day populations across Asia the basis of a nuclear genome sequence from a finger phalanx and Oceania suggests that in addition to the Altai Mountains, (Denisova 3) found in Denisova Cave in the Altai Mountains. The they may have lived in other parts of Asia. In addition to the only other Denisovan specimen described to date is a molar (Deni- finger phalanx, a molar (Denisova 4) was found in the cave in sova 4) found at the same site. This tooth carries a mtDNA se- 2000. Although less than 0.2% of the DNA in the tooth derives quence similar to that of Denisova 3. Here we present nuclear from a hominin source, the mtDNA was sequenced and differed DNA sequences from Denisova 4 and a morphological description, from the finger phalanx mtDNA at only two positions, suggesting as well as mitochondrial and nuclear DNA sequence data, from it too may be from a Denisovan (2, 3).
    [Show full text]
  • Hammerhead Ribozymes Against Virus and Viroid Rnas
    Hammerhead Ribozymes Against Virus and Viroid RNAs Alberto Carbonell, Ricardo Flores, and Selma Gago Contents 1 A Historical Overview: Hammerhead Ribozymes in Their Natural Context ................................................................... 412 2 Manipulating Cis-Acting Hammerheads to Act in Trans ................................. 414 3 A Critical Issue: Colocalization of Ribozyme and Substrate . .. .. ... .. .. .. .. .. ... .. .. .. .. 416 4 An Unanticipated Participant: Interactions Between Peripheral Loops of Natural Hammerheads Greatly Increase Their Self-Cleavage Activity ........................... 417 5 A New Generation of Trans-Acting Hammerheads Operating In Vitro and In Vivo at Physiological Concentrations of Magnesium . ...... 419 6 Trans-Cleavage In Vitro of Short RNA Substrates by Discontinuous and Extended Hammerheads ........................................... 420 7 Trans-Cleavage In Vitro of a Highly Structured RNA by Discontinuous and Extended Hammerheads ........................................... 421 8 Trans-Cleavage In Vivo of a Viroid RNA by an Extended PLMVd-Derived Hammerhead ........................................... 422 9 Concluding Remarks and Outlooks ........................................................ 424 References ....................................................................................... 425 Abstract The hammerhead ribozyme, a small catalytic motif that promotes self- cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically
    [Show full text]
  • Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal
    Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal intimately part of the endocrine responsibility of the ovary. Introduction If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major Oogenesis is an area that has long been of interest in medicine, hormones of the ovary. In the male this is not the case. as well as biology, economics, sociology, and public policy. Androgen production will proceed normally without a single Almost four centuries ago, the English physician William spermatozoa in the testes. Harvey (1578–1657) wrote ex ovo omnia —“all that is alive This chapter presents basic aspects of human ovarian comes from the egg.” follicle growth, oogenesis, and some of the regulatory mech- During a women’s reproductive life span only 300–400 of anisms involved [ 1 ] , as well as some of the basic structural the nearly 1–2 million oocytes present in her ovaries at birth morphology of the testes and the process of development to are ovulated. The process of oogenesis begins with migra- obtain mature spermatozoa. tory primordial germ cells (PGCs). It results in the produc- tion of meiotically competent oocytes containing the correct genetic material, proteins, mRNA transcripts, and organ- Structure of the Ovary elles that are necessary to create a viable embryo. This is a tightly controlled process involving not only ovarian para- The ovary, which contains the germ cells, is the main repro- crine factors but also signaling from gonadotropins secreted ductive organ in the female.
    [Show full text]
  • 13. Van Dyke, J.U. 2014. Cues for Reproduction In
    Cues for Reproduction in Squamate Reptiles 109 CHAPTER 5 Cues for Reproduction in Squamate Reptiles James U. Van Dyke 5.1 INTRODUCTION To maximize fitness, animals should initiate reproduction based on information from suites of cues that communicate three variables critical to reproductive success: 1) environmental conduciveness for successful reproduction, and survival of offspring and (usually) parents; 2) physiological capability of parents to reproduce; and 3) likelihood of successful mating. Squamates vary widely in reproductive mode (egg-laying, or oviparity vs. live birth, or viviparity), reproductive frequency (including reproducing only once, i.e., semelparity), and output (Tinkle et al. 1970; Dunham et al. 1988), all of which may alter the phenology of gametogenesis and embryonic development relative to season, physiological state (i.e., body condition), courtship, and mating. These phenomenological differences necessitate divergent reproductive decision-making approaches that may be informed by different suites of cues. In addition, specifi c components of reproduction, including gametogenesis and mating behavior, may not be stimulated by the same environmental or physiological cues. The purpose of this review is to discuss the current state of knowledge of the mechanisms squamates use as cues for the decision to reproduce. Here, the decision to reproduce is defi ned as analogous to a life-history allocation decision (e.g., Dunham et al. 1989), rather than as a result of conscious thought processes. The endocrine connections of the School of Biological Sciences, Heydon-Laurence Bldg A08, University of Sydney, New South Wales, 2006, Australia. 110 Reproductive Biology and Phylogeny of Lizards and Tuatara hypothalamic-pituitary-gonadal axis are briefl y reviewed because they are critical to communicating information from reproductive cues to the brain, gonads, and accessory reproductive organs.
    [Show full text]
  • Correlates of Reproductive Success in a Population of Nine-Banded Armadillos
    Color profile: Disabled Composite Default screen 1815 Correlates of reproductive success in a population of nine-banded armadillos W.J. Loughry, Paulo A. Prodöhl, Colleen M. McDonough, W.S. Nelson, and John C. Avise Abstract: We used microsatellite DNA markers to identify the putative parents of 69 litters of nine-banded armadillos (Dasypus novemcinctus) over 4 years. Male and female parents did not differ in any measure of body size in comparisons with nonparents. However, males observed paired with a female were significantly larger than unpaired males, although paired females were the same size as unpaired females. Females categorized as possibly lactating were significantly larger than females that were either definitely lactating or definitely not lactating. There was no evidence of assortative mating: body-size measurements of mothers were not significantly correlated with those of fathers. Nine- banded armadillos give birth to litters of genetically identical quadruplets. Mothers (but not fathers) of female litters were significantly larger than mothers of male litters, and maternal (but not paternal) body size was positively correlated with the number of surviving young within years, but not cumulatively. There were no differences in dates of birth between male and female litters, nor were there any significant relationships between birth date and maternal body size. Body size of either parent was not correlated with the body sizes of their offspring. Cumulative and yearly reproductive success did not differ between reproductively successful males and females. Average reproductive success (which included apparently unsuccessful individuals) also did not differ between males and females. The majority of adults in the population apparently failed to produce any surviving offspring, and even those that did usually did so in only 1 of the 4 years.
    [Show full text]
  • Selenium Vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase Michael Johnstone University of Central Florida Part of the Biotechnology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Johnstone, Michael, "Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase" (2019). Electronic Theses and Dissertations, 2004-2019. 6511. https://stars.library.ucf.edu/etd/6511 SELENIUM VS. SULFUR: INVESTIGATING THE SUBSTRATE SPECIFICITY OF A SELENOCYSTEINE LYASE by MICHAEL ALAN JOHNSTONE B.S. University of Central Florida, 2017 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2019 Major Professor: William T. Self © 2019 Michael Alan Johnstone ii ABSTRACT Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological “double-edged sword”. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood.
    [Show full text]
  • Modzelewski Et Al (2015)
    © 2015. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Dgcr8 and Dicer are essential for sex chromosome integrity in male meiosis Andrew J. Modzelewski1¶, Stephanie Hilz2¶, Elizabeth A. Crate1, Caterina T. H. Schweidenback2, Elizabeth A. Fogarty2, Jennifer K. Grenier1, 2, Raimundo Freire3, Paula E. Cohen1* and Andrew Grimson2* Departments of 1Biomedical Sciences and 2Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 3Unidad de Investigacion, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, La Laguna Tenerife 38320, Spain ¶These authors contributed equally to this manuscript *Corresponding Authors: [email protected]; [email protected] Journal of Cell Science Accepted manuscript JCS Advance Online Article. Posted on 1 May 2015 ABSTRACT Small RNAs play crucial roles in regulating gene expression during mammalian meiosis. To investigate the function of microRNAs and small-interfering RNAs in male meiosis, we generated germ cell-specific conditional deletions of Dgcr8 and Dicer in mice. Analysis of spermatocytes from both conditional knockout lines reveals frequent chromosomal fusions during meiosis, always involving one or both sex chromosomes. RNA sequencing indicates upregulation of Atm in spermatocytes from microRNA-deficient mice, and immunofluorescence imaging demonstrates an increased abundance of activated ATM kinase and mislocalization of phosphoMDC1, an ATM phosphorylation substrate. The Atm 3′UTR contains many potential microRNA target sites; notably, target sites for several miRNAs depleted in both conditional knockout mice are highly effective at promoting repression.
    [Show full text]
  • Ribozymes Targeted to the Mitochondria Using the 5S Ribosomal Rna
    RIBOZYMES TARGETED TO THE MITOCHONDRIA USING THE 5S RIBOSOMAL RNA By JENNIFER ANN BONGORNO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Jennifer Bongorno To my grandmother, Hazel Traster Miller, whose interest in genealogy sparked my interest in genetics, and without whose mitochondria I would not be here ACKNOWLEDGMENTS I would like to thank all the members of the Lewin lab; especially my mentor, Al Lewin. Al was always there for me with suggestions and keeping me motivated. He and the other members of the lab were like my second family; I would not have had an enjoyable experience without them. Diana Levinson and Elizabeth Bongorno worked with me on the fourth and third mouse transfections respectively. Joe Hartwich and Al Lewin tested some of the ribozymes in vitro and cloned some of the constructs I used. James Thomas also helped with cloning and was an invaluable lab manager. Verline Justilien worked on a related project and was a productive person with whom to bounce ideas back and forth. Lourdes Andino taught me how to use the new phosphorimager for my SYBR Green-stained gels. Alan White was there through it all, like the older brother I never had. Mary Ann Checkley was with me even longer than Alan, since we both came to Florida from Ohio Wesleyan, although she did manage to graduate before me. Jia Liu and Frederic Manfredsson were there when I needed a beer.
    [Show full text]