© 2015. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Dgcr8 and Dicer are essential for sex chromosome integrity in male meiosis Andrew J. Modzelewski1¶, Stephanie Hilz2¶, Elizabeth A. Crate1, Caterina T. H. Schweidenback2, Elizabeth A. Fogarty2, Jennifer K. Grenier1, 2, Raimundo Freire3, Paula E. Cohen1* and Andrew Grimson2* Departments of 1Biomedical Sciences and 2Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 3Unidad de Investigacion, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, La Laguna Tenerife 38320, Spain ¶These authors contributed equally to this manuscript *Corresponding Authors:
[email protected];
[email protected] Journal of Cell Science Accepted manuscript JCS Advance Online Article. Posted on 1 May 2015 ABSTRACT Small RNAs play crucial roles in regulating gene expression during mammalian meiosis. To investigate the function of microRNAs and small-interfering RNAs in male meiosis, we generated germ cell-specific conditional deletions of Dgcr8 and Dicer in mice. Analysis of spermatocytes from both conditional knockout lines reveals frequent chromosomal fusions during meiosis, always involving one or both sex chromosomes. RNA sequencing indicates upregulation of Atm in spermatocytes from microRNA-deficient mice, and immunofluorescence imaging demonstrates an increased abundance of activated ATM kinase and mislocalization of phosphoMDC1, an ATM phosphorylation substrate. The Atm 3′UTR contains many potential microRNA target sites; notably, target sites for several miRNAs depleted in both conditional knockout mice are highly effective at promoting repression.