Profile-Based Scanning of Eukaryotic Genome Sequences For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification and Characterization of a Selenoprotein Family Containing a Diselenide Bond in a Redox Motif
Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif Valentina A. Shchedrina, Sergey V. Novoselov, Mikalai Yu. Malinouski, and Vadim N. Gladyshev* Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664 Edited by Arne Holmgren, Karolinska Institute, Stockholm, Sweden, and accepted by the Editorial Board July 13, 2007 (received for review April 16, 2007) Selenocysteine (Sec, U) insertion into proteins is directed by trans- notable exception. Vertebrate selenoprotein P (SelP) has 10–18 lational recoding of specific UGA codons located upstream of a Sec, whose insertion is governed by two SECIS elements (11). It is stem-loop structure known as Sec insertion sequence (SECIS) ele- thought that Sec residues in SelP (perhaps with the exception of the ment. Selenoproteins with known functions are oxidoreductases N-terminal Sec residue present in a UxxC motif) have no redox or containing a single redox-active Sec in their active sites. In this other catalytic functions. work, we identified a family of selenoproteins, designated SelL, Selenoproteins with known functions are oxidoreductases con- containing two Sec separated by two other residues to form a taining catalytic redox-active Sec (12). Their Cys mutants are UxxU motif. SelL proteins show an unusual occurrence, being typically 100–1,000 times less active (13). Although there are many present in diverse aquatic organisms, including fish, invertebrates, known selenoproteins, proteins containing diselenide bonds have and marine bacteria. Both eukaryotic and bacterial SelL genes use not been described. Theoretically, such proteins could exist, but the single SECIS elements for insertion of two Sec. -
Generation of Recombinant Mammalian Selenoproteins Through Ge- Netic Code Expansion with Photocaged Selenocysteine
bioRxiv preprint doi: https://doi.org/10.1101/759662; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Generation of Recombinant Mammalian Selenoproteins through Ge- netic Code Expansion with Photocaged Selenocysteine. Jennifer C. Peeler, Rachel E. Kelemen, Masahiro Abo, Laura C. Edinger, Jingjia Chen, Abhishek Chat- terjee*, Eranthie Weerapana* Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States Supporting Information Placeholder ABSTRACT: Selenoproteins contain the amino acid sele- neurons susceptible to ferroptotic cell death due to nocysteine and are found in all domains of life. The func- overoxidation and inactivation of GPX4-Cys.4 This ob- tions of many selenoproteins are poorly understood, servation demonstrates a potential advantage conferred partly due to difficulties in producing recombinant sele- by the energetically expensive production of selenopro- noproteins for cell-biological evaluation. Endogenous teins. mammalian selenoproteins are produced through a non- Sec incorporation deviates from canonical protein canonical translation mechanism requiring suppression of translation, requiring suppression of the UGA stop codon. the UGA stop codon, and a selenocysteine insertion se- In eukaryotes, Sec biosynthesis occurs directly on the quence (SECIS) element in the 3’ untranslated region of suppressor tRNA (tRNA[Ser]Sec). Specifically, tRNA[Ser]Sec the mRNA. Here, recombinant selenoproteins are gener- is aminoacylated with serine by seryl-tRNA synthetase ated in mammalian cells through genetic code expansion, (SerS), followed by phosphorylation by phosphoseryl- circumventing the requirement for the SECIS element, tRNA kinase (PSTK), and subsequent Se incorporation and selenium availability. -
Selenium Vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase Michael Johnstone University of Central Florida Part of the Biotechnology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Johnstone, Michael, "Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase" (2019). Electronic Theses and Dissertations, 2004-2019. 6511. https://stars.library.ucf.edu/etd/6511 SELENIUM VS. SULFUR: INVESTIGATING THE SUBSTRATE SPECIFICITY OF A SELENOCYSTEINE LYASE by MICHAEL ALAN JOHNSTONE B.S. University of Central Florida, 2017 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2019 Major Professor: William T. Self © 2019 Michael Alan Johnstone ii ABSTRACT Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological “double-edged sword”. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. -
Why Nature Chose Selenium Hans J
Reviews pubs.acs.org/acschemicalbiology Why Nature Chose Selenium Hans J. Reich*, ‡ and Robert J. Hondal*,† † University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, Vermont 05405, United States ‡ University of WisconsinMadison, Department of Chemistry, 1101 University Avenue, Madison, Wisconsin 53706, United States ABSTRACT: The authors were asked by the Editors of ACS Chemical Biology to write an article titled “Why Nature Chose Selenium” for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173−1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se−O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. -
Characterization and Quantification of Selenoprotein P
International Journal of Molecular Sciences Review Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry Jérémy Lamarche 1,* , Luisa Ronga 1, Joanna Szpunar 1 and Ryszard Lobinski 1,2,3 1 IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; [email protected] (L.R.); [email protected] (J.S.); [email protected] (R.L.) 2 World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia 3 Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland * Correspondence: [email protected] Abstract: Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recom- binant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. -
An Insight Into the Functional Role of Thioredoxin Reductase, A
The University of Southern Mississippi The Aquila Digital Community Faculty Publications 10-2015 An Insight Into the Functional Role of Thioredoxin Reductase, a Selenoprotein, in Maintaining Normal Native Microbiota in the Gult Coast tick (Ambylomma maculatum) Khemraj Budachetri University of Southern Mississippi Shahid Karim University of Southern Mississippi, [email protected] Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Biology Commons Recommended Citation Budachetri, K., Karim, S. (2015). An Insight Into the Functional Role of Thioredoxin Reductase, a Selenoprotein, in Maintaining Normal Native Microbiota in the Gult Coast tick (Ambylomma maculatum). Insect Molecular Biology, 24(5), 570-581. Available at: https://aquila.usm.edu/fac_pubs/15549 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. HHS Public Access Author manuscript Author Manuscript Author ManuscriptInsect Mol Author Manuscript Biol. Author Author Manuscript manuscript; available in PMC 2016 October 01. Published in final edited form as: Insect Mol Biol. 2015 October ; 24(5): 570–581. doi:10.1111/imb.12184. An insight into the functional role of Thioredoxin reductase, a selenoprotein, in maintaining normal native microbiota in the Gulf-Coast tick (Amblyomma maculatum) Khemraj Budachetri and Shahid Karim Department of Biological Sciences, The University of Southern Mississippi, 118 College, Drive # 5018, Hattiesburg, MS 39406, USA Abstract Tick selenoproteins have been associated with antioxidant activity in ticks. Thioredoxin reductase (TrxR), also a selenoprotein, belongs to the pyridine nucleotide-disulfide oxidoreductase family of proteins and is an important antioxidant protein. -
Towards the Characterization of the Eukaryotic Selenoproteome: A
Towards the characterization of the eukaryotic selenoproteome a computational approach Sergi Castellano Hereza Ph.D. dissertation Barcelona, May 2004 Departament de Ciencies` Experimentals i de la Salut Universitat Pompeu Fabra Towards the characterization of the eukaryotic selenoproteome a computational approach Sergi Castellano Hereza Memoria` presentada per optar al grau de Doctor en Biologia per la Universitat Pompeu Fabra. Aquesta Tesi Doctoral ha estat realitzada sota la direccio´ del Dr. Roderic Guigo´ Serra al Departament de Ciencies` Experimentals i de la Salut de la Universitat Pompeu Fabra Roderic Guigo Serra Sergi Castellano Hereza Barcelona, May 2004 To my parents To my brother and sister Dipòsit legal: B.49649-2004 ISBN: 84-689-0206-3 Preface The election of selenoprotein genes as the subject of a PhD within the area of gene prediction is, and no effort is made here to deny that, a rare case. Not only because it focus on particular type of genes scarcely present in the genome, but because these genes subvert some biological rules we all trust and carefully implement in our gene finding schemas. However, this dissertation and, in general this line of research on selenoproteins, is not the result of a random turn or a crazy night promise1. On the contrary, it is originally rooted on a very specific question posed by previous experimental results on selenoproteins in the fly model system and, not negligible, on the belief that the study of exceptions, if so, can provide great insight into biology. These works in Drosophila were initiated by Montserrat Corominas and Florenci Serras at the Uni- versitat de Barcelona. -
Effects of Se-Depletion on Glutathione Peroxidase and Selenoprotein W
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS Letters 579 (2005) 792–796 FEBS 29196 Effects of Se-depletion on glutathione peroxidase and selenoprotein W gene expression in the colon Vasileios Pagmantidisa, Giovanna Bermanob, Stephane Villettea, Iain Broomb, John Arthurc, John Hesketha,* a School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, NE1 7RU, UK b School of Life Sciences, The Robert Gordon University, Aberdeen AB25 1HG, UK c Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, UK Received 3 September 2004; revised 22 November 2004; accepted 9 December 2004 Available online 27 December 2004 Edited by Lukas Huber tant in determining the level of anti-oxidant protection and Abstract Selenium (Se)-containing proteins have important roles in protecting cells from oxidative damage. This work inves- inflammatory responses in the colon [8]. In addition, supple- tigated the effects of Se-depletion on the expression of the genes mentation with Se above normal intake reduces mortality from encoding selenoproteins in colonic mucosa from rats fed diets of cancer of the colon [2,3], as well as that of lung and prostate. different Se content and in human intestinal Caco-2 cells grown These observations indicate that selenoproteins such as the in Se-adequate or Se-depleted culture medium. Se-depletion pro- GPXs are critical for colon function. However, little is known duced statistically significant (P < 0.05) falls in glutathione per- of how selenoprotein gene expression in colonic cells, particu- oxidase (GPX) 1 mRNA (60–83%) and selenoprotein W mRNA larly in vivo, is regulated by Se availability. -
Selenoprotein Expression Is Regulated at Multiple Levels in Prostate Cells
npg Selenoproteins in prostate cells 940 Cell Research (2006) 16:940-948 npg © 2006 IBCB, SIBS, CAS All rights reserved 1001-0602/06 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr Selenoprotein expression is regulated at multiple levels in prostate cells Cheryl M Rebsch1, Frank J Penna III1, Paul R Copeland1,2 1Department of Molecular Genetics, Microbiology and Immunology; 2The Cancer Institute of New Jersey, UMDNJ - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA Selenium supplementation in a population with low basal blood selenium levels has been reported to decrease the incidence of several cancers including prostate cancer. Based on the clinical findings, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect, although low molecular weight seleno-compounds have also been posited to selectively induce apoptosis in transformed cells. To address the effects of selenium supplementation on selenoprotein expression in prostate cells, we have undertaken an analysis of antioxidant selenoprotein expression as well as selenium toxicity in non-tumorigenic prostate epithelial cells (RWPE-1) and prostate cancer cells (LNCaP and PC-3). Our results show that two of the glutathione peroxidase family members (GPX1 and GPX4) are highly induced by supplemental selenium in prostate cancer cells but only slightly induced in RWPE-1 cells. In addition, GPX1 levels are dramatically lower in PC-3 cells as compared to RWPE-1 or LNCaP cells. GPX2 protein and mRNA, however, are only detectable in RWPE-1 cells. Of the three selenium compounds tested (sodium selenite, sodium selenate and selenomethionine), only sodium selenite shows toxicity in a physiological range of selenium concentrations. -
Selenocysteine: the 21St Amino Acid
Selenocysteine: The 21st Amino Acid CO2H H2N C H CH2 SeH Sec, U Amanda L. Garner October 5, 2007 CO2H H2N C H CH2 Selenocysteine - Discovery SeH Sec, U Chronology: – Selenium (Se) initially believed to be toxic (more reactive than sulfur) – 1954: First report of Se requirement for function of bacterial formate dehydrogenase – 1959: First paper addressing selenocysteine (Sec) – 1972: First biochemical studies on role of Se at enzyme level – 1986: Key study implicating UGA as codon for Sec Se currently regarded as essential nutrient in humans and mammals (development, immune function, male reproduction, aging process) Pinsent, J. Biochem. J. 1954 , 57 , 10. Shum, A. C.; Murphy, J. C. J. Bacteriol. 1972 , 110 , 447. Bock, A. PNAS 1986 , 83 , 4650. Translational Chain Elongation - Other 20 Amino Acids ATP R H2N CO2H O O 2 P H N i 2 A OH O P O O R O tRNA OHOH GTP O H N AMP 2 O EF-Tu elongation R tRNA factor Aminoacyl tRNA Enters A-site for addition into nascent polypeptide with release of Pi Molecular Biology of the Cell Requirements for Sec Insertion into Protein 1. Sec tRNA [Ser]Sec 2. UGA Codon 3. Selenocysteine Insertion Sequence (SECIS) elements 4. SECIS-binding protein 2 (SBP2) 5. Sec-specific elongation factor (EFsec) Hatfield, D. L.; Gladyshev, V. N. Mol. Cell. Biol. 2002 , 22 , 3565. Sec tRNA [Ser]Sec 3' Sec tRNA only known tRNA that 5' Acceptor stem governs entire class of proteins (9/7 bp) sel C gene product Two known structures: 9/4 and 7/5 D-stem T-stem cloverleaf (6 bp) (4/5 bp) 90 nt long (longest tRNA known) 1 extra nt in acceptor and T- Variable Arm stems; 2 extra nt in D-stem; longest variable arm Anticodon Highly conserved vs. -
Mitochondrial DNA in Mammalian Reproduction
Reviews of Reproduction (1998) 3, 172–182 Mitochondrial DNA in mammalian reproduction Jim Cummins Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia Mitochondrial DNA (mtDNA) forms a semi-autonomous asexually reproducing genome in eukaryotic organisms. It plays an essential role in the life cycle through the control of energy production, by the inherently dangerous process of oxidative phosphorylation. The asym- metric nature of its inheritance – almost exclusively through the female – imposes different evolutionary constraints on males and females, and may lie at the heart of anisogamy. This review examines the implications of recent findings on the biology of mtDNA for reproduction and inheritance in mammals. Although the existence of mitochondria has been known since encodes for tryptophan in mammalian mitochondria). The in- the last century, mitochondrial DNA (mtDNA) has been studied heritance of mitochondria through the female lineage remains most extensively in the past two decades. Mitochondria have one of the central enigmas of reproductive biology. a profound role to play in mammalian tissue bioenergetics, in Mitochondria have certain tissue-specific configurations that growth, in ageing and in apoptosis, and yet they descend from presumably reflect local energetic requirements (Fawcett, 1981). an asexually reproducing independent life form. It has been New techniques for visualizing mitochondria in whole cells, hypothesized that tensions between the evolutionary ‘interests’ such as the incorporation of green fluorescent protein coupled of the eukaryotic host and its subservient organelles have led to with confocal microscopy, reveal that mitochondrial form can asymmetrical inheritance, so that mitochondria derive pre- not only reflect pathological states but may also be extremely dominantly from the female in most organisms (Hurst, 1992; diverse even within the same cell (Kanazawa et al., 1997). -
Use of Selenocysteine, the 21St Amino Acid, in the Fungal Kingdom
bioRxiv preprint doi: https://doi.org/10.1101/314781; this version posted May 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Use of selenocysteine, the 21st amino acid, in the fungal kingdom Marco Mariotti1,*, Gustavo Salinas2,3, Toni Gabaldón4,5,6 and Vadim N. Gladyshev1,* 1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA 2 Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay 3 Worm Biology Laboratory, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay 4 Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, 08003, Spain 5 Universitat Pompeu Fabra (UPF); and Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Catalonia, 08003, Spain 6 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, 08010, Spain * To whom correspondence should be addressed. Tel: +1 617-525-5122; Fax: +1 617-525-5147; Email: [email protected] Correspondence may also be addressed to: Tel: +1 617-525-5161; Fax: +1 617-525-5147; Email: [email protected] ABSTRACT Selenoproteins are a diverse class of proteins containing selenocysteine (Sec), the 21st amino acid, incorporated into proteins during translation through a unique recoding mechanism. Selenoproteins fulfil essential roles in several lineages, including vertebrates; yet, they are not ubiquitous across the tree of life. In particular, the fungal kingdom was thought to lack selenoproteins, a paradigm that we defy here.