Attachment 6 Risk Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Attachment 6 Risk Assessment Attachment 6 Risk Assessment - Micronutrients1 Application A470– Formulated Beverages SUMMARY AND CONCLUSIONS ..................................................................................230 INTRODUCTION................................................................................................................236 HAZARD IDENTIFICATION AND CHARACTERISATION ..........................................................236 DIETARY INTAKE ASSESSMENT...........................................................................................238 VITAMINS AND MINERALS...........................................................................................239 VITAMIN A..........................................................................................................................239 Β-CAROTENE.......................................................................................................................245 THIAMIN .............................................................................................................................251 RIBOFLAVIN........................................................................................................................252 NIACIN................................................................................................................................254 FOLATE...............................................................................................................................260 VITAMIN B6 (PYRIDOXINE)..................................................................................................263 VITAMIN B12 .......................................................................................................................268 VITAMIN C..........................................................................................................................270 VITAMIN D..........................................................................................................................273 VITAMIN E..........................................................................................................................279 BIOTIN ................................................................................................................................285 PANTOTHENIC ACID ............................................................................................................288 CALCIUM ............................................................................................................................290 CHROMIUM .........................................................................................................................296 COPPER ...............................................................................................................................298 IODINE ................................................................................................................................305 IRON ...................................................................................................................................309 MAGNESIUM .......................................................................................................................314 MANGANESE.......................................................................................................................319 MOLYBDENUM....................................................................................................................322 PHOSPHORUS ......................................................................................................................327 SELENIUM ...........................................................................................................................331 ZINC....................................................................................................................................337 REFERENCES.....................................................................................................................343 1 For the purpose of this report, the term ‘micronutrients’ is used for vitamins and minerals. 229 Summary and Conclusions Risk Assessment – Micronutrients A risk assessment has been conducted in relation to the addition of certain vitamins and minerals to formulated beverages at a level of 25 % of the recommended dietary intake (RDI) per 600 ml serve. These include: vitamin A, β-carotene, thiamin, riboflavin, niacin, folate, vitamin B6, B12, D, E, biotin, pantothenic acid, calcium, chromium, copper, iodine, iron, magnesium, manganese, molybdenum, phosphorus, selenium and zinc. The applicant has requested vitamin C to be added at 100% of the RDI per 600 ml serve. The results of the risk assessment are provided below and are summarised in Table 1. Micronutrients without risk for the general population For the following micronutrients, it is concluded that addition to formulated beverages at a level of 25% of the RDI per 600 ml (100% of RDI per 600 ml for vitamin C) would raise no public health and safety concerns for any sector of the population: β-carotene, thiamin, riboflavin, niacin, folate, vitamin B6, B12, C, D, E, pantothenic acid, calcium, magnesium, phosphorus and selenium. Micronutrients with some risk for sensitive subpopulations For the following micronutrients, it is concluded that while the general population is without risk, there may be a risk for certain sectors of the population: Copper: Individuals with Wilson’s disease, Indian childhood cirrhosis or idiopathic copper toxicosis may respond adversely to copper in formulated beverages at a level of 0.75 mg per 600 ml. Iodine: Individuals with thyroid disorders or a long history of iodine deficiency may respond adversely to iodine in formulated beverages at a level of 37.5 µg per 600 ml. Iron: Individuals who are homozygous for hereditary haemochromatosis are susceptible to iron overload, even at normal dietary iron intakes, and are generally advised to avoid iron- supplements and highly iron fortified foods. As the majority of individuals with this condition are not diagnosed until sufficient iron has accumulated to produce adverse effects, the addition of iron to formulated beverages at a level of 3 mg per 600 ml serve may be a concern to these individuals. Micronutrients with some risk for specific age groups For the following micronutrients, there are potential risks for specific age groups if they were permitted to be added to formulated beverages: Vitamin A: The dietary modelling results suggest that young children consuming formulated beverages may have excess intakes of retinol for several years and therefore be at risk of hepatoxicity. For all other age groups and life-stages, there is no appreciable risk posed by excess intake of retinol. There are potential safety concerns for children up to the age of 3 years, and maybe up to 6 years, with the addition of retinol to formulated beverages at a level of 187.5 µg in a 600 ml serve. 230 Manganese: An upper level of intake (UL) could not be established because of limitations with the human data and considerable uncertainty with the animal toxicity studies. The available data suggests that the margin between the intake level producing adverse effects in humans and animals and the estimated intake from food is very small. Based on the severity of the potential adverse effect (neurotoxicity), additional oral exposure to manganese beyond the levels normally present in food and beverages could pose a public health and safety risk. Therefore, there are potential safety concerns with the addition of manganese to formulated beverages at a level of 1.25 mg in a 600 ml serve. Zinc: Dietary modelling indicated that children up to 8 years of age, who are consumers of a diet high in zinc, are predicted to exceed the UL for zinc. For adolescents up to the age of 18 years, who are consumers of a diet high in zinc, the intake is predicted to be 80% of the UL of zinc. Chronic zinc toxicity is associated with symptoms of copper deficiency. These adverse effects include anaemia, neutropaenia and impaired immune response. Furthermore, the potential contribution from other sources (e.g. dietary supplements) has not been taken into consideration in the dietary intake assessment. The intakes of zinc may therefore be underestimated for children and adolescents up to the age of 18 years and, for this group, formulated beverages at a level of 3 mg per 600 ml serve pose a public health and safety risk. Micronutrients with insufficient data to assess risk For the following micronutrients there was insufficient data to characterise the potential risk: Biotin and Chromium: Due to insufficient data on potential adverse effects and only limited food composition data it was not possible to establish an UL for biotin and chromium or to undertake a complete dietary intake assessment. In the absence of sufficient information, it is currently not possible to evaluate the safety of the addition of biotin and chromium to formulated beverages. Molybdenum: An UL has been established based on reproductive effects in rats. While some food composition data are available for molybdenum, it is insufficient to undertake a complete dietary intake assessment at this present time. In the absence of sufficient information, it is not currently possible to evaluate the safety of the addition of molybdenum to formulated beverages. Assessment of permitted forms For pantothenic acid, biotin, chromium, manganese, molybdenum and selenium, currently there are no forms permitted in Standard 1.1.1 – Preliminary
Recommended publications
  • Micronutrient Status and Dietary Intake of Iron, Vitamin A, Iodine
    nutrients Review Micronutrient Status and Dietary Intake of Iron, Vitamin A, Iodine, Folate and Zinc in Women of Reproductive Age and Pregnant Women in Ethiopia, Kenya, Nigeria and South Africa: A Systematic Review of Data from 2005 to 2015 Rajwinder Harika 1,*, Mieke Faber 2 ID , Folake Samuel 3, Judith Kimiywe 4, Afework Mulugeta 5 and Ans Eilander 1 1 Unilever Research & Development, Vlaardingen, 3130 AC, The Netherlands; [email protected] 2 Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town 19070, South Africa; [email protected] 3 Department of Human Nutrition, University of Ibadan, Ibadan 200284, Nigeria; [email protected] 4 School of Applied Human Sciences, Kenyatta University, Nairobi 43844-00100, Kenya; [email protected] 5 Department of Nutrition and Dietetics, Mekelle University, Mekelle 1871, Ethiopia; [email protected] * Correspondence: [email protected]; Tel.: +31-101-460-5190 Received: 10 August 2017; Accepted: 28 September 2017; Published: 5 October 2017 Abstract: A systematic review was conducted to evaluate the status and intake of iron, vitamin A, iodine, folate and zinc in women of reproductive age (WRA) (≥15–49 years) and pregnant women (PW) in Ethiopia, Kenya, Nigeria and South Africa. National and subnational data published between 2005 and 2015 were searched via Medline, Scopus and national public health websites. Per micronutrient, relevant data were pooled into an average prevalence of deficiency, weighted by sample size (WAVG). Inadequate intakes were estimated from mean (SD) intakes. This review included 65 surveys and studies from Ethiopia (21), Kenya (11), Nigeria (21) and South Africa (12).
    [Show full text]
  • Bartges – REACTIONS by CONSUMERS – ADVERSE FOOD
    REACTIONS B Y C O N S U M E R S - A D V E R S E F O O D R E A C T I O N S Joe Bartges, DVM, PhD, DACVIM, DACVN* Claudia Kirk, DVM, PhD, DACVIM, DACVN, Susan Lauten, PhD, Angela Lusby, DVM, Beth Hamper, DVM, Susan Wynn, DVM Veterinary Nutrition Center, Knoxville, IN 1. Introduction A. Although providing nutrition to companion animals should be relatively easy and safe, occasionally you will encounter situations where an adverse reaction to a diet or nutrient or exposure to a food hazard occurs 2. Food components. A. Hazardous food components encompass dietary components that are present in the food. These may be components that should be present, but are present in an unbalanced manner, or components that should not be present. B. Nutrient imbalances may occur when there is a problem in the formulation or manufacture of a diet, or if the owner supplements a complete and balanced diet with an incomplete and unbalanced food or supplements. a. Excesses (1) Hypervitaminosis A is uncommonly seen, but results in ankylosing spondylosis particularly of the cervical vertebrae in cats. Excessive vitamin A is supplemented to a cat in the form of raw liver or cod liver oil because liver contains high levels of fat-soluble vitamins. (2) Hypervitaminosis D also occurs uncommonly, but may occur with supplemental vitamin D. More commonly, hypervitaminosis D occurs due to ingestion of vitamin D containing rodenticides and causes an acute disease manifested as hypercalcemia, polyuria/polydipsia, muscle fasciculations, vomiting, diarrhea, anorexia, seizures, and possibly renal failure.
    [Show full text]
  • Large-Area Coating of Previtamin D3 Based on Roll-To-Roll Processing
    coatings Article Large-Area Coating of Previtamin D3 Based on Roll-to-Roll Processing 1, 1, 1 1 1 Janghoon Park y, Yoonki Min y, Jongsu Lee , Hakyung Jeong , Youngwook Noh , Kee-Hyun Shin 2 and Dongjin Lee 2,* 1 Department of Mechanical Design and Production Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; [email protected] (J.P.); [email protected] (Y.M.); [email protected] (J.L.); [email protected] (H.J.); [email protected] (Y.N.) 2 School of Mechanical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-450-0452 These authors contributed equally to this work. y Received: 22 August 2019; Accepted: 9 September 2019; Published: 11 September 2019 Abstract: We propose a roll-to-roll process for vitamin D3 patch production. A solution of 7-dehydrocholesterol is applied to a plastic film by roll-to-roll slot-die coating and dried by a far-infrared lamp. Upon exposure to ultraviolet B irradiation, these films are converted to previtamin D3 films. After heat-treating the previtamin D3 film, high-performance liquid chromatography measurements are performed using commercial vitamin D3 as a standard sample. The results confirm that vitamin D3 can be produced by large-area coating and post-treatment processes. Specifically, 3.16 0.746 mg of vitamin D is obtained through ultraviolet B irradiation and heat-treatment of ± 3 24.8 1.44 mg of coated 7-dehydrocholesterol. ± Keywords: slot-die coating; roll-to-roll (R2R); vitamin D3; ultraviolet B (UVB); high-performance liquid chromatography (HPLC) 1.
    [Show full text]
  • Is There an Ideal Diet to Protect Against Iodine Deficiency?
    nutrients Review Is There an Ideal Diet to Protect against Iodine Deficiency? Iwona Krela-Ka´zmierczak 1,† , Agata Czarnywojtek 2,3,†, Kinga Skoracka 1,* , Anna Maria Rychter 1 , Alicja Ewa Ratajczak 1 , Aleksandra Szymczak-Tomczak 1, Marek Ruchała 2 and Agnieszka Dobrowolska 1 1 Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Heliodor Swiecicki Hospital, 60-355 Poznan, Poland; [email protected] (I.K.-K.); [email protected] (A.M.R.); [email protected] (A.E.R.); [email protected] (A.S.-T.); [email protected] (A.D.) 2 Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (A.C.); [email protected] (M.R.) 3 Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland * Correspondence: [email protected]; Tel.: +48-665-557-356 or +48-8691-343; Fax: +48-8691-686 † These authors contributed equally to this work. Abstract: Iodine deficiency is a global issue and affects around 2 billion people worldwide, with preg- nant women as a high-risk group. Iodine-deficiency prevention began in the 20th century and started with global salt iodination programmes, which aimed to improve the iodine intake status globally. Although it resulted in the effective eradication of the endemic goitre, it seems that salt iodination did not resolve all the issues. Currently, it is recommended to limit the consumption of salt, which is the main source of iodine, as a preventive measure of non-communicable diseases, such as hypertension or cancer the prevalence of which is increasing.
    [Show full text]
  • Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry
    Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry Devon Victoria Riley A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2016 Committee: Andrew Hoofnagle Geoffrey Baird Dina Greene Program Authorized to Offer Degree: Laboratory Medicine ©Copyright 2016 Devon V. Riley ii University of Washington Abstract Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry Devon V. Riley Chair of the Supervisory Committee: Associate Professor Andrew Hoofnagle, MD, PhD Vitamin D has long been known to maintain bone health by regulating calcium and phosphorous homeostasis. In recent years, scientists have discovered additional physiological roles for vitamin D. The complex interaction between the active vitamin D hormone and its metabolic precursors continues to be a rich area of research. Fundamental to this research is the availability of accurate and precise assays. Few published assays for vitamins D2 and D3 have contained sufficient details on method validation or performance characteristics. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay developed for this thesis has undergone a rigorous validation and proven to yield a sensitive and specific method that exceeds the capabilities of all previously published methods. Developing and validating a novel assay is often complicated by the lack of established acceptability standards. This thesis explores this challenge, specifically for establishing meaningful interpretations and qualification standards of the lower limit of the measuring interval. Altogether, future research focused on vitamins D2, D3 and the Vitamin D pathway can benefit from this robust LC-MS/MS assay and the associated quality parameters outlined in this thesis.
    [Show full text]
  • An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery
    An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery Alan C. Spivey [email protected] 19th Oct 2019 Lessons in Synthesis - Azadirachtin • Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via steroid modification: O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid) – Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 1987. –1st total synthesis achieved in 2007 by Ley following 22 yrs of effort – ~40 researchers and over 100 person-years of research! – 64-step synthesis – Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) – Review ‘The azadirachtin story’ see: Veitch Angew. Chem. Int. Ed. 2008, 47, 9402 (DOI) Format & Scope of Presentation • Metabolism & Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & glycolysis → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the citric acid cycle → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes
    [Show full text]
  • Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells †
    toxics Article Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells † Anna Mittag 1,* , Christian Hoera 2, Alexander Kämpfe 2 , Martin Westermann 3, Jochen Kuckelkorn 4, Thomas Schneider 1 and Michael Glei 1 1 Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; [email protected] (T.S.); [email protected] (M.G.) 2 German Environment Agency, Swimming Pool Water, Chemical Analytics, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; [email protected] (C.H.); [email protected] (A.K.) 3 Electron Microscopy Centre, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743 Jena, Germany; [email protected] 4 German Environment Agency, Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; [email protected] * Correspondence: [email protected] † In respectful memory of Dr. Tamara Grummt. Abstract: Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12–1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Citation: Mittag, A.; Hoera, C.; Kämpfe, A.; Westermann, M.; Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of Kuckelkorn, J.; Schneider, T.; Glei, M.
    [Show full text]
  • Guidelines on Food Fortification with Micronutrients
    GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry.
    [Show full text]
  • The Effect of Vitamin Supplementation on Subclinical
    molecules Review The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Ovidiu Mitu 1,2,* , Ioana Alexandra Cirneala 1,*, Andrada Ioana Lupsan 3, Mircea Iurciuc 4 , 5 5 2, Ivona Mitu , Daniela Cristina Dimitriu , Alexandru Dan Costache y , Antoniu Octavian Petris 1,2 and Irina Iuliana Costache 1,2 1 Department of Cardiology, Clinical Emergency Hospital “Sf. Spiridon”, 700111 Iasi, Romania 2 1st Medical Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania 3 Department of Cardiology, University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania 4 Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania 5 2nd Morpho-Functional Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania * Correspondence: [email protected] (O.M.); [email protected] (I.A.C.); Tel.: +40-745-279-714 (O.M.) Medical Student, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania. y Academic Editors: Raluca Maria Pop, Ada Popolo and Stefan Cristian Vesa Received: 25 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Micronutrients, especially vitamins, play an important role in the evolution of cardiovascular diseases (CVD). It has been speculated that additional intake of vitamins may reduce the CVD burden by acting on the inflammatory and oxidative response starting from early stages of atherosclerosis, when the vascular impairment might still be reversible or, at least, slowed down. The current review assesses the role of major vitamins on subclinical atherosclerosis process and the potential clinical implications in patients without CVD.
    [Show full text]
  • Protective Effect of Melatonin Against Chromium-Induced Hepatotoxic and Genotoxic Effect in Albino Rats
    Global Veterinaria 16 (4): 323-329, 2016 ISSN 1992-6197 © IDOSI Publications, 2016 DOI: 10.5829/idosi.gv.2016.16.04.10332 Protective Effect of Melatonin Against Chromium-Induced Hepatotoxic and Genotoxic Effect in Albino Rats Emad A. Hashish and Shimaa A. Elgaml Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkyia, Egypt Abstract: Chromium is a widespread environmental waste. It is an industrial contaminant with teratogenic, mutagenic and carcinogenic effects on animals and human. This study was carried out to evaluate the potential protective effect of melatonin on the hepatotoxicity and genotoxicity generated by potassium dichromate (K2 Cr 27 O ) in albino rats. Rats were divided into four groups; control, melatonin (10 mg/kg b.wt.), melatonin pretreated with single S/C injection of K2 Cr 27 O (15 mg/kg b.wt.) and potassium dichromate treated group. Rats were sacrificed 24 h after K2 Cr 27 O treatment. K2 Cr 27 O treated rats showed significant (P<0.05) increase in the hepatic marker enzymes activity (aspartate aminotransferase-AST and alanine aminotransferase-ALT) and serum bilirubin (total and direct) was detected. Significant (P<0.05) decrease in the serum total protein and albumin was observed after K2 Cr 27 O treatment. Meanwhile, serum globulin, A/G ratio and indirect bilirubin showed no significant change. Hepatic DNA damage was observed using comet assay. The histological alterations confirmed the previous results. Melatonin pretreated rats showed an amelioration of the adverse effects of K2 Cr 27 O toxicity. An improvement in the serum hepatic enzymes (AST and ALT), proteinogram (total protein and albumin) and bilirubin (total and direct) was observed.
    [Show full text]
  • Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation
    sustainability Review Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation Dipali Srivastava 1,†, Madhu Tiwari 1,†, Prasanna Dutta 1,2, Puja Singh 1,2, Khushboo Chawda 1,2, Monica Kumari 1,2 and Debasis Chakrabarty 1,2,* 1 Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; [email protected] (D.S.); [email protected] (M.T.); [email protected] (P.D.); [email protected] (P.S.); [email protected] (K.C.); [email protected] (M.K.) 2 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Extensive industrial activities resulted in an increase in chromium (Cr) contamination in the environment. The toxicity of Cr severely affects plant growth and development. Cr is also recognized as a human carcinogen that enters the human body via inhalation or by consuming Cr-contaminated food products. Taking consideration of Cr enrichment in the environment and its toxic effects, US Environmental Protection Agency and Agency for Toxic Substances and Disease Registry listed Cr as a priority pollutant. In nature, Cr exists in various valence states, including Cr(III) and Cr(VI). Cr(VI) is the most toxic and persistent form in soil. Plants uptake Cr through various transporters such as phosphate and sulfate transporters. Cr exerts its effect by generating reactive oxygen species (ROS) and hampering various metabolic and physiological pathways. Studies Citation: Srivastava, D.; Tiwari, M.; on genetic and transcriptional regulation of plants have shown the various detoxification genes get Dutta, P.; Singh, P.; Chawda, K.; up-regulated and confer tolerance in plants under Cr stress.
    [Show full text]
  • Profiling of Serum Metabolites in Advanced Colon Cancer Using Liquid Chromatography‑Mass Spectrometry
    4002 ONCOLOGY LETTERS 19: 4002-4010, 2020 Profiling of serum metabolites in advanced colon cancer using liquid chromatography‑mass spectrometry YANG ZHANG, YECHAO DU, ZHEYU SONG, SUONING LIU, WEI LI, DAGUANG WANG and JIAN SUO The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China Received January 13, 2019; Accepted January 22, 2020 DOI: 10.3892/ol.2020.11510 Abstract. Lymph node metastasis remains a key factor that 51,000 deaths (1,2), accounting for >1,000,000 newly diag- affects the prognosis of patients with colon cancer. The nosed cases and up to 500,000 cancer-associated mortality aim of the present study was to identify and evaluate serum cases estimated per year between 2016 and 2019 world- metabolites as biomarkers for the detection of tumor lymph wide (3). Patients with early stage disease may present with no node metastasis and the prediction of patient survival. The specific symptoms or clinical manifestations; however, once present study analyzed the metabolites in the serum of symptoms occur, the disease may have already progressed to patients with advanced colon cancer both with and without an advanced stage (4). This delays the opportunity to provide lymph node metastasis. Blood samples from 104 patients the patient with curative surgery, and thereby increases the with stage T3 colon cancer were collected and analyzed risk of mortality (5). Early detection methods for colon cancer using liquid chromatography-mass spectrometry. The include the fecal occult blood test, the analysis of certain metabolites were structurally confirmed with data from the gastrointestinal tumor markers, such as CEA and CA19-9, Human Metabolome Database.
    [Show full text]