Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells †
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bartges – REACTIONS by CONSUMERS – ADVERSE FOOD
REACTIONS B Y C O N S U M E R S - A D V E R S E F O O D R E A C T I O N S Joe Bartges, DVM, PhD, DACVIM, DACVN* Claudia Kirk, DVM, PhD, DACVIM, DACVN, Susan Lauten, PhD, Angela Lusby, DVM, Beth Hamper, DVM, Susan Wynn, DVM Veterinary Nutrition Center, Knoxville, IN 1. Introduction A. Although providing nutrition to companion animals should be relatively easy and safe, occasionally you will encounter situations where an adverse reaction to a diet or nutrient or exposure to a food hazard occurs 2. Food components. A. Hazardous food components encompass dietary components that are present in the food. These may be components that should be present, but are present in an unbalanced manner, or components that should not be present. B. Nutrient imbalances may occur when there is a problem in the formulation or manufacture of a diet, or if the owner supplements a complete and balanced diet with an incomplete and unbalanced food or supplements. a. Excesses (1) Hypervitaminosis A is uncommonly seen, but results in ankylosing spondylosis particularly of the cervical vertebrae in cats. Excessive vitamin A is supplemented to a cat in the form of raw liver or cod liver oil because liver contains high levels of fat-soluble vitamins. (2) Hypervitaminosis D also occurs uncommonly, but may occur with supplemental vitamin D. More commonly, hypervitaminosis D occurs due to ingestion of vitamin D containing rodenticides and causes an acute disease manifested as hypercalcemia, polyuria/polydipsia, muscle fasciculations, vomiting, diarrhea, anorexia, seizures, and possibly renal failure. -
United States Patent (19) 11 Patent Number: 4,496,778 Myers Et Al
United States Patent (19) 11 Patent Number: 4,496,778 Myers et al. (45) Date of Patent: Jan. 29, 1985 (54) PROCESS FOR THE HYDROXYLATION OF 56 References Cited OLEFINS USING MOLECULAR OXYGEN, U.S. PATENT DOCUMENTS ANOSMIUM CONTAINING CATALYST, A COPPER CO-CATALYST, AND AN 2,773, 101 12/1956 Smith et al. ......................... 568/860 AROMATIC AMINE BASED PROMOTER 3,317,592 5/1967 Maclean et al. ... 568/860 3,337,635 8/1967 Norton et al. ....... 568/860 75 Inventors: Richard S. Myers, Fairlawn; Robert 4,390,739 6/1983 Michaelson et al. .... ..., 568/860 C. Michaelson, Waldwick; Richard FOREIGN PATENT DOCUMENTS G. Austin, Ridgewood, all of N.J. 32522 8/1974 Japan ................................... 568/860 73) Assignee: Exxon Research & Engineering Co., Primary Examiner-J. E. Evans Florham Park, N.J. Attorney, Agent, or Firm-Robert A. Maggio 21 Appl. No.: 538,190 57 ABSTRACT A process directed to the hydroxylation of olefins by 22 Filed: Oct. 3, 1983 reacting said olefins in the presence of oxygen, water, and a catalyst composition comprising (i) a catalytically 51 Int. Cl. ...................... C07C 29/04; CO7C 31/18; active osmium containing compound, (ii) a Co-catalyst C07C 31/22; CO7C 31/42 I comprising a copper containing compound such as 52 U.S.C. ................................. 568/860; 260/.397.2; CuBr2, and (iii) a Co-catalyst II capable of increasing 560/186; 562/587; 568/811; 568/821; 568/833; the rate and/or selectivity of the hydroxylation reac 568/838; 568/847 tion, such as pyridine is disclosed. 58 Field of Search .............. -
Zinc and Manganese Inhibition of Biological Hematite Reduction
ENVIRONMENTAL ENGINEERING SCIENCE Volume 23, Number 5, 2006 © Mary Ann Liebert, Inc. Zinc and Manganese Inhibition of Biological Hematite Reduction James J. Stone,1* William D. Burgos,2 Richard A. Royer,3 and Brian A. Dempsey2 1Department of Civil and Environmental Engineering Rapid City, SD 57701 2Department of Civil and Environmental Engineering The Pennsylvania State University University Park, PA 16802 3Environmental Technology Laboratory General Electric Company Niskayuna, NY 12309 ABSTRACT The effects of zinc and manganese on the reductive dissolution of hematite by the dissimilatory metal-re- ducing bacterium (DMRB) Shewanella putrefaciens CN32 were studied in batch culture. Experiments Ϫ1 were conducted with hematite (2.0 g L ) in 10 mM PIPES (pH 6.8), and H2 as the electron donor un- der nongrowth conditions (108 cell mLϪ1), spiked with zinc (0.02–0.23 mM) or manganese (0.02–1.8 mM) and incubated for 5 days. Zinc inhibition was calculated based on the 5-day extent of hematite biore- duction in the absence and presence of zinc. Zinc inhibition of hematite bioreduction increased with an- thraquinone-2,6-disulfonate (AQDS), a soluble electron shuttling agent, and ferrozine, a strong Fe(II) com- plexant. Both amendments would otherwise stimulate hematite bioreduction. These amendments did not significantly increase zinc sorption, but may have increased zinc toxicity by some unknown mechanism. At equal total Me(II) concentrations, zinc inhibited hematite reduction more than manganese and caused greater cell death. At equal sorbed Me(II) concentrations, manganese inhibited hematite reduction more than zinc and caused greater cell death. Results support the interpretation that Me(II) toxicity was more important than Me(II) sorption/surface blockage in inhibiting hematite reduction. -
The Two Faces of Titanium Dioxide Nanoparticles Bio-Camouflage in 3D
www.nature.com/scientificreports OPEN The two faces of titanium dioxide nanoparticles bio-camoufage in 3D bone spheroids Received: 23 October 2018 W. Souza1,2,3, S. G. Piperni3,4, P. Laviola1,3,5, A. L. Rossi4, Maria Isabel D. Rossi6, Accepted: 11 June 2019 Bráulio S. Archanjo7, P. E. Leite 1,2,8, M. H. Fernandes9,12, L. A. Rocha3,10, J. M. Granjeiro1,2,3,11 Published: xx xx xxxx & A. R. Ribeiro 2,3,5 Titanium (Ti) and its alloys are widely used in dental implants and hip-prostheses due to their excellent biocompatibility. Growing evidence support that surface degradation due to corrosion and wear processes, contribute to implant failure, since the release of metallic ions and wear particles generate local tissue reactions (peri-implant infammatory reactions). The generated ions and wear debris (particles at the micron and nanoscale) stay, in a frst moment, at the interface implant-bone. However, depending on their size, they can enter blood circulation possibly contributing to systemic reactions and toxicities. Most of the nanotoxicological studies with titanium dioxide nanoparticles (TiO2 NPs) use conventional two-dimensional cell culture monolayers to explore macrophage and monocyte activation, where limited information regarding bone cells is available. Recently three- dimensional models have been gaining prominence since they present a greater anatomical and physiological relevance. Taking this into consideration, in this work we developed a human osteoblast- like spheroid model, which closely mimics bone cell-cell interactions, providing a more realistic scenario for nanotoxicological studies. The treatment of spheroids with diferent concentrations of TiO2 NPs during 72 h did not change their viability signifcantly. -
Estimation of Elemental Concentrations of Ethiopia Coffee Arabica on Different Coffee Bean Varieties (Subspecies) Using Energy Dispersive X-Ray Florescence
International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 149 ISSN 2229-5518 Estimation of elemental concentrations of Ethiopia Coffee Arabica on different coffee bean Varieties (Subspecies) Using Energy Dispersive X-ray Florescence H. Masresha Feleke1*, Srinivasulu A1, K. Surendra1, B. Aruna1, Jaganmoy Biswas2, M. Sudershan2, A. D. P. Rao1, P. V. Lakshmi Narayana1 1. Dept. of Nuclear Physics, Andhra University, Visakhapatnam -530003, INDIA. 2. UGC-DAE Consortium for Scientific Research, Trace element lab, Salt Lake, Kolkata 700 098, India Abstract: Using Energy Dispersive X-ray Florescence (EDXRF) Elemental analysis, Coffee cherry of Arabica subspecies produced in crop years of 2015/2016 in nine different parts of coffee growing Area in Ethiopa were analyzed and has been found four major elements P, K, Ca, S and eight minor elements Mn, Fe, Cu, Zn, Se, Sr, Rb, Br from Twenty coffee Arabica subspecies. The Samples were washed; dried; Grinding with mortar and finally pelletized. EDXRF analysis were carried the energies of the X-rays emitted by the sample are measured using a Si- semiconductor detector and are processed by a pulse height analyzer. Computer analysis of this data yields an energy spectrum which defines the elemental composition of the sample. The system detection calibration and accuracy check was performed through different countries reported values and analysis of NIST certified reference materials SRM 1515 (Apple leaves). Most of coffee beans sample were found to be a good agreements towards NIST standards and different countries reported values. Meanwhile discussed the elemental concentration and their biological effects on human physiology. Keywords: Coffee Cherry,IJSER Subspecies coffee, Elemental Concentration and EDXRF 1. -
United States Patent Office Attented Oct
3,536,479 United States Patent Office attented Oct. 27, 1970 2 a hydrogen pressure of at least about 15 pounds per 3,536,479 square inch gauge (p.S.i.g.). METHOD FOR THE PRODUCTION OF HIGH PURTY (OSMUM The concentrated osmium-containing solution can ad Alexander Ellis, Clarkson, Ontario, and Alan Manson, vantageously be prepared from a dilute osmium-contain Oakville, Ontario, Canada, assignors to The Interna 5 ing solution as described hereinafter. However, most gen tional Nicke Company, Inc., New York, N.Y., a cor erally the concentrated solution will be prepared by poration of Delaware scrubbing gases containing osmium tetroxide with a Solu No Drawing. Filled Dec. 13, 1967, Ser. No. 690,083 tion containing, by weight, about 5% to 40% sodium hy Claims priority, application Canada, Feb. 21, 1967, droxide to produce a sodium perosmate solution which 983,421 10 contains about 5 grams per liter (gp.l.) to about 100 nt. C. C22b 7/00, 11/04 g.p.l. of osmium, e.g., about 60 g.p.l. of osmium. Gen U.S. C. 75-108 29 Claims erally at this stage only minor amounts of ruthenium, i.e., less than about 0.5 g.p.l. of ruthenium, accompany the osmium and can be precipitated with only minor ABSTRACT OF THE DISCLOSURE 5 amounts of osmium occluded therein from the concen Metallic osmium is recovered from a slurry of an trated osmium-containing solution by adding a Water osmium-containing material to which sufficient hydro soluble, mild organic reducing agent such as methyl al chloric acid has been added to assure a final pH value cohol and ethyl alcohol. -
Deposition of Osmium Tetroxide on Reactive Surfaces
Deposition of osmium tetroxide on reactive surfaces A. von Zweidorf1,2, R. Angert1, W. Brüchle1, E. Jäger1, J.V. Kratz2, G. Langrock2, M. Mendel2, A. Nähler2, M. Schädel1, B. Schausten1, E. Schimpf1, E. Stiel1, N. Trautmann2, G. Wirth1 1Gesellschaft für Schwerionenforschung, Darmstadt, 2Institut für Kernchemie, Johannes Gutenberg-Universität Mainz The recent study of the chemistry of element 108, hassium [1], cis-1,4-polybutadiene is more reactive than etched surfaces of leads to the conclusion, that it forms a volatile oxide, as zinc and lead, on which almost nothing is deposited. expected for a member of group 8 of the periodic table [2]. So This leads to the implication, that alternative materials for the far, no chemical reaction of this oxide is known. To learn more deposition of OsO4 are needed. about the chemical behaviour of hassium, one would like to If alkaline materials are suitable for our purposes, an alkaline investigate the chemistry of hassium oxide, the only known surface would be most efficient. Unfortunately, it is hardly compound of hassium. Presumably, it is chemically similar to possible to reproducibly prepare thin layers of an alkali OsO4 and RuO4, which have an acidic character and are able to hydroxide without a substrate. Nevertheless, is it possible to form salts with alkaline materials. coat an inert material with a smooth layer of alkali hydroxide. For that reason, a Continuously Working Arrangement For We choosed at first graphite as inert substrate and coated it with Clusterless Transport Of In-situ Produced Volatile Oxides, a thin layer of KOH, using the solubility of KOH in C2H5OH CALLISTO, was developed and successfully used to deposit the and preparing the layer from an ethanolic solution. -
Particularly Hazardous Substances
Particularly Hazardous Substances In its Laboratory Standard, OSHA requires the establishment of additional protections for persons working with "Particularly Hazardous Substances" (PHS). OSHA defines these materials as "select" carcinogens, reproductive toxins and acutely toxic materials. Should you wish to add: explosive, violently reactive, pyrophoric and water-reactve materials to this category, the information is included. Carbon nanotubes have also been added due to their suspected carcinogenic properties. This table is designed to assist the laboratory in the identification of PHS, although it is not definitively conclusive or entirely comprehensive. *Notes on the proper use of this table appear on page 12. 1 6 5 2 3 4 Substance CAS National Toxicity National Program Carcinogen Toxin Acute Regulated OSHA Carcinogen Group IARC Carcinogen Toxin Reproductive Violently Reactive/ Explosive/Peroxide Forming/Pyrophoric A-a-C(2-Amino-9H-pyrido[2,3,b]indole) 2648-68-5 2B Acetal 105-57-7 yes Acetaldehyde 75-07-0 NTP AT 2B Acrolein (2-Propenal) 107-02-8 AT Acetamide 126850-14-4 2B 2-Acetylaminofluorene 53-96-3 NTP ORC Acrylamide 79-06-6 NTP 2B Acrylyl Chloride 814-68-6 AT Acrylonitrile 107-13-1 NTP ORC 2B Adriamycin 23214-92-8 NTP 2A Aflatoxins 1402-68-2 NTP 1 Allylamine 107-11-9 AT Alkylaluminums varies AT Allyl Chloride 107-05-1 AT ortho-Aminoazotoluene 97-56-3 NTP 2B para-aminoazobenzene 60-09-3 2B 4-Aminobiphenyl 92-67-1 NTP ORC 1 1-Amino-2-Methylanthraquinone 82-28-0 NTP (2-Amino-6-methyldipyrido[1,2-a:3’,2’-d]imidazole) 67730-11-4 2B -
Toxic Manifestations of Osmium Tetroxide
Br J Ind Med: first published as 10.1136/oem.3.3.183 on 1 July 1946. Downloaded from TOXIC MANIFESTATIONS OF OSMIUM TETROXIDE BY A. I. G. McLAUGHLIN, R. MILTON and KENNETH M. A. PERRY From the University of Sheffield and Factory Department, Ministry of Labour and National Service, and the Department for Research in Industrial Medicine (Medical Research Council), the London Hospital Osmium is one of the precious metals and was the vapours of osmic acid gave rise to a capillary discovered in 1803 by Tenant. It occurs naturally bronchitis from which he died. Necropsy revealed in close association with iridium. Osmiridium is a confluent broncho-pneumonia with a tendency to an exceptionally hard alloy with a high melting- suppuration and gangrene; there was also a fatty point (2700° C.) and for this reason it is used degeneration of the epithelium of the renal tubules. extensively for tipping fountain-pen nibs. It is Bardieux (1898) showed that the subcutaneous and also used for electrical contacts, as a catalyst in the intramuscular injection of a 1 per cent. solution of preparation of synthetic ammonia, and for measur- osmic acid produced no serious effect in animals ing the rapidity of explosion of gun-cotton. Before but that small quantities injected into the lungs the introduction of tungsten, electric lamp filaments were immediately fatal. Attempts have been made were sometimes made with it. Osmium is also to make use of the solution in treating diseases such used in the taking of finger-prints, and osmic acid as tuberculosis (Walbum, 1926), syphilis (Levaditi, which is a watery solution of osmium tetroxide is 1927; and Jahnel, 1937) and cancer (Kraus, 1931) used for activating solutions of chlorate of potas- but without success, though Fischl (1933) showed it sium; hardening and colouring certain prepara- possessed some spirochaetocidal properties in tions and in histology for the fixing and staining of experimentally infected mice Coca (1908) studied nerves and fat. -
Toxicological Profile for Zinc
TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486). -
Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-Species
Molecules 2014, 19, 6534-6582; doi:10.3390/molecules19056534 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-species Vincenzo Piccialli Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ―Federico II‖, Via Cintia 4, 80126, Napoli, Italy; E-Mail: [email protected]; Tel.: +39-081-674111; Fax: +39-081-674393 Received: 24 February 2014; in revised form: 14 May 2014 / Accepted: 16 May 2014 / Published: 21 May 2014 Abstract: In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C–C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII) oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP) has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO) for the mild oxidation of primary and secondary alcohols to carbonyl compounds. -
Material Safety Data Sheet Product No. 18466 Osmium Tetroxide, 2% Aqueous Issue Date (06-05-12) Review Date (06-05-12)
Material Safety Data Sheet Product No. 18466 Osmium Tetroxide, 2% Aqueous Issue Date (06-05-12) Review Date (06-05-12) Section 1: Product and Company Identification Product Name: Osmium Tetroxide, 2% Aqueous Synonym: Osmium Tetroxide, Osmic Acid Solution, Osmium (VIII) Oxide Chemical Family: Platinum Group Metal Salts Company Name Ted Pella, Inc. P.O. Box 492477, Redding, CA 96049-2477 Domestic Phone (800) 237-3526 (Mon-Thu. 6:00AM to 4:30PM PST; Fri 6:00AM to 4:00PM PST) International Phone (01) (530) 243-2200 (Mon-Thu. 6:00AM to 4:30PM PST; Fri 6:00AM to 4:00PM PST) Chemtrec Emergency Number 1-800-424-9300 24 hrs a day. Section 2: Composition / Information on Ingredients % Principle Hazardous OSHA ACGIH ACGIH OSHA Component(s) PEL TLV TLV- NTP IARC (chemical and common name(s)) regulated (Cas. No) mg/m3 mg/m3 STEL ppm Osmium Tetroxide/Osmium 2 0.002 0.0006 0.002 No No No Oxide (20816-12-0) Water (7732-18-5) 98 NE NE NE No No No Section 3: Hazard Identification Emergency overview Appearance: Colorless to pale yellow solution. Immediate effects: This substance can be absorbed into the body by inhalation of its vapors, by inhalation of its aerosol and by ingestion. May cause sensitization by inhalation and skin contact. Target Organs: Eyes and Central Nervous System. Potential health effects Primary Routes of entry: Eyes: Likely; Inhalation: Highly; Skin: Likely; Ingestion: Likely Signs and Symptoms of Overexposure: ND Eyes: Irritation, lacrimation, visual disturbance, conjunctivitis, headache, potential damage to cornea. If eyes are exposed to vapor over a short period of time, night vision will be affected for about one evening.