Assessment of Geothermal Resources of the United States-1975

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Geothermal Resources of the United States-1975 C.726 Assessment of Geothermal Resources of the United States-1975 GEOLOGICAL SURVEY CIRCULAR 726 Prepared in cooperation with the Energy Research and Development Administration Assessment of Geothermal Resources of the United States-1975 D. E. White and D. l. Williams, Editors G E 0 L 0 G I C A L S U R V E Y C I R C U L A R 726 Prepared in cooperation with the Energy Research and Development Administration 1975 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director Library of Congress catalog-card No. 75-600076 First printing 1975 Second printing 1975 Third printing 1976 Fourth printing 1979 Free on application to Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, Va. 22202 CONTENTS Page Introduction, by D. E. White and D. L. Williams ------------------------------- 1 Hydrothermal convection systems, by J. L. Renner, D. E. White, and D. L. Williams 5 Igneous-related geothermal systems, by R. L. Smith and H. R. Shaw ------------ 58 Temperatures 'and heat contents based on conductive transport of heat, by W. H. Diment, T. C. Urban, J. H. Sass, B. V. Marshall, R. J. Munroe, and A. H. Lachenbruch -------------------------------------------------------------- 84 Geothermal resources in hydrothermal convection systems and conduction-domi- nated areas, by Manuel Nathenson and L. J. P. Muffler --------------------- 104 Recoverability of geothermal energy directly from molten igneous systems, by D. L. Peck ---------------------------------------------------------------- 122 Assessment of onshore geopressured-geothermal resources in the northern Gulf of Mexico basin, by S. S. Papadopulos, R. H. Wallace, -Jr., .J. B. Wesselman, and R. E. Taylor --------------------------------------------------------- 125 Appendix, discussion of data used -------------------------------------- 141 Summary and conclusions, by D. E. White and D. L. Williams ------------------- 147 ILLUSTRATIONS Page FIGURE 1. Map showing 1ocation of hydrothermal convection systems in the conterminous United SU3 tes ~ith indicated subsurface telllpe~tures above 150°0 -------------------------------------- 22 2. Map showing location of hydrothermal conve~tion systems in Alaska and Hawaii· with indicated subsurface temperatures above 150°0 and between 90° and 150°0 ------------------------- 23 3. Map shoping location of hydrothermal conve~tion systems in the conterminous United Stztes ·with indicated subsurface temperatures between 90°0 and 150°0 --------------------------- 50 4. Graph of theoretical cooling time versus volume for magma bodies -------------------------- 74 5. Map showing identified volcanic systems in the conterminous United States ------------------- 77 6. Map showing identified volcanic systems and basaltic lava fields known to be less than 10,000 years old in Alaska and Hawaii ----------·------------------------------------------------- 79 7. Map showing basaltic lava fields known to be less than 10,000 years old in the contermin')US United States -----------------------------------------------~----------------------------- 80 8. Histogram of heat-generation values obtained in connection with q-A ------------------------ 89 9. Map of observed heat-flow (q) measurements in the United States -------------------------- 94 10. Map of reduced heat-flow ( q*) measurements in the United Sta.tes --------------------------- 96 11. Map showing probable extent of hot, normal, and cold crustal regions ------------------------ 98 12. Graph of temperature profiles for various types of provinces --------------------------------- 101 13. Maps showing locations of hydrothermal convection systems with temperatures above 90°0 and stored heat greater than or equal to 0.3 X 1018 cal ------------------------------------- 111 14. A, Graph showing electric power per well as a function of mass flow for various temperatrres of hot-water and vapor-dominated systems; B, Graph showing electric power per well as a function of value needed to pay for the well for v·arions well costs --------------------- 116 15. Location map showing the extent of the assessed geopressured zones and ·their division into subareas -------------------------------------------------------------------------------- 126 16. Graphs showing variation of well spacing with the ratio of flow rate to the 20-year formation drawdown for each of the conceptual reservoirs ----------------------------------------- 135 iii TABLES Page TABLE 1. Categories of geothermal resource base ------------------------------------------------------- 3 2. Metric units used in this volume ------------------------------------------------------------- 4 3. Identified v·apor-dominated systems of the United States with probable subsurface temperatures exceeding 200°0 -----------------------·------------------------------------------------- 8 4. Identified hot-water convection systems with indicated subsurface temperatures above 150°0 __ 10 5. Identified hot-water convection systems with indicated subsurface temperatures from 90° to 150°0 24 6. Summary of identified hydrothermal convection systems ------------------------------------ 55 7. Magnitudes and heat co~tents of identified volcanic systems ----------------------------------- 59 8. Basic volcanic fields probably less than 10,000 years old -------------------------------------- 81 9. Excess temperature below a low-conductivity layer ------------------------------------------ 87 10. Deficit of temperature below a high-conductivity layer ---------------------------------------- 88 11. Basic calculations: temperatures Tz at depths z for various assumed v-alues of q* and A. ------- 90 12. Heat stored in the depth intervals ~ km and 3-10 km -------------------------------------- 91 13. Heat stored beneath provinces in the depth intervals ~ km and 3-10 km --------------------- 92 14. Heat content above mean annual surface temperature CYf the continental crust ------------------ 93 15. Recovery factors ( er) for electrical power generation ---------------------------------------- 107 16. Estimated potential electric energy from identified high-temperature hydrothermal convection sys- tems ----------------------------------------------------------------------------------- 108 17. Typical values for electric energy produced per kilogram of reservoir fluid ( Wact) as a fpu.ction of source temperatures --------------------------------------------------------------------- 114 18. Drilling cost model -------------------------·------------------------------------------------- 114 19. Resources of hydrothermal convection systems for the generation of electrical power in megawatt centuries ------------------------------------------------------------------------------- 118 20. Intermediate-temperature hydrothermal convection systems wi-th stored heat greater thar or equal to 0.3 X lif8 cal -----------------------·------------------------------------------------- 119 21. Areal extent and average pressure, temperature, and salinity conditions in each subareB -------- 128 22. Assumed thickness ·and properties of sand and shale beds in idealized "conceptual :rese~oirs" -- 129 23.• Calculated aquifer parameters and water properties used in this study ------------------------- 131 24. Assessment of the "fluid resource base" -----·------------------------------------------------- 132 25. Assessment of "recoverable energy" under the assumed basic development plan, Plan 1 --------- 137 26. Estimated heat content of geothermal resource base of the United States ------------------------ 148 27. Geothermal resources of hydrothermal convection systems ------------------------------------ 150 28. Geothermal resources of geopressured sedimentary environments ----------------------------- 151 jy Assessment of Geothef'imal Resources of the United States-1975 Introduction By D. E. White and D. L. Williams Over the past 10 years, various individuals This assessment of geothermal resources differs and organizations have made estimates of the from previous resource statements in that it tabu­ geotherm·al resources of the United States (White, lates each identified system or subdivision of the t965; Grossling, 1972; Rex and Howell, 1973; major resource categories of table 1, listing the Hickel, 1973 ; N atl. Petrol. Council, 1973). These paran1eters assumed in calculating volumes, heat estimates have differed by several orders of mag­ contents, and recoverabilities. As technology, eco­ nitude. This wide variation has been due in part nomic conditions, and our know ledge of specific to lack of or differing assumptions regarding systems change, any of the variables nay be technology and economic conditions, but much of changed to arrive at updated assessments, the uncertainty has been caused by an inadequate Resource-related terms used in this circular are understanding of the nature and extent of the defined as follows : resources themselves. Geothermal resource base includes all of tho stored Although future technology and economic con­ heat above 15°C to 10 km depth in all 50 ditions continue to be difficult to predict, con­ states. siderable progress has been made during the past Geothermal resources are defined as storei heat, few years toward ·a better understanding of the both identified ·and undiscovered, that is re­ resources--enough to improve significantly the coverable using current or near-currert.. tech­ basis for a comprehensive assessment of the mag­ nology, regardless of cost. Geothennal re­ nitude, distribution,
Recommended publications
  • A Stringent Upper Limit of 20 Pptv for Methane on Mars and Constraints on Its Dispersion Outside Gale Crater F
    A&A 650, A140 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140389 & © F. Montmessin et al. 2021 Astrophysics A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater F. Montmessin1 , O. I. Korablev2 , A. Trokhimovskiy2 , F. Lefèvre3 , A. A. Fedorova2 , L. Baggio1 , A. Irbah1 , G. Lacombe1, K. S. Olsen4 , A. S. Braude1 , D. A. Belyaev2 , J. Alday4 , F. Forget5 , F. Daerden6, J. Pla-Garcia7,8 , S. Rafkin8 , C. F. Wilson4, A. Patrakeev2, A. Shakun2, and J. L. Bertaux1 1 LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France e-mail: [email protected] 2 Space Research Institute (IKI) RAS, Moscow, Russia 3 LATMOS/IPSL, Sorbonne Université, UVSQ Université Paris-Saclay, CNRS, Paris, France 4 AOPP, Oxford University, Oxford, UK 5 Laboratoire de Météorologie Dynamique, Sorbonne Université, Paris, France 6 BIRA-IASB, Bruxelles, Belgium 7 Centro de Astrobiología (CSIC?INTA), Torrejón de Ardoz, Spain 8 Southwest Research Institute, Boulder, CO, USA Received 20 January 2021 / Accepted 23 April 2021 ABSTRACT Context. Reports on the detection of methane in the Martian atmosphere have motivated numerous studies aiming to confirm or explain its presence on a planet where it might imply a biogenic or more likely a geophysical origin. Aims. Our intent is to complement and improve on the previously reported detection attempts by the Atmospheric Chemistry Suite (ACS) on board the ExoMars Trace Gas Orbiter (TGO). This latter study reported the results of a campaign that was a few months in length, and was significantly hindered by a dusty period that impaired detection performances.
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Aurora Crater (Updated 2015)
    Site Description Aurora Crater (Updated 2015) Geologic setting: The Aurora Crater geothermal area is located in western Mineral County, northeast of Mono Lake. The geothermal area sits within an area known as the Aurora-Bodie volcanic field. The Bodie Hills are located to the west while the Wassuk Range is located to the east. The rocks in this region are composed of Calc-alkaline andesite, dacite and trachyandesite lavas, breccias and ashflow tuffs, deposited between 15 and 8 million years ago. These units are overlain by a series of younger alkaline- calcic cinder cone deposits and flows. Aurora Crater, located approximately 6 km southwest of the Aurora Crater geothermal area, is a 250,000 year old breached crater surrounded by lava flows. This region has been abundantly cut by faults and covered in ash from more recent eruptions from the Mono Craters to the southwest (Geologic Points of Interest by Activity – Volcanic Activity). Gold and silver deposits found in Miocene volcanic rocks were mined in both Bodie (CA) and Aurora (NV) until the 1950s (Geologic Points of Interest by Activity – Volcanic Activity). The Aurora District was the most productive mining district in Mineral County. Between 1861 and 1869, nearly $29,500,000 in gold and silver were produced from the Aurora mines (Ross, 1961). Geothermal features: A blind geothermal anomaly is reported between Aurora Crater and the Borealis open-pit gold mine 12 km northeast (Richards and Blackwell, 2002). The Aurora prospect consists of 29,000 acres in an area of Quaternary basaltic volcanism. Seventeen temperature gradient wells indicate a large geothermal anomaly.
    [Show full text]
  • Experience of 80 Cases with Fournier's Gangrene and “Trauma” As a Trigger
    ORIGINAL ARTICLE Experience of 80 cases with Fournier’s gangrene and “trauma” as a trigger factor in the etiopathogenesis Teoman Eskitaşcıoğlu, M.D., İrfan Özyazgan, M.D., Atilla Coruh, M.D., Galip K Günay, M.D., Mehmet Altıparmak, M.D., Yalcin Yontar, M.D., Fatih Doğan, M.D.† Department of Plastic Reconstructive and Aesthetic Surgery, Erciyes University Faculty of Medicine, Kayseri †Current affiliation: Department of Plastic Reconstructive and Aesthetic Surgery, Adıyaman University Faculty of Medicine, Adıyaman ABSTRACT BACKGROUND: The purpose of the present study was to retrospectively analyze the patients’ data presented with Fournier’s gangrene (FG), to compare obtained data with the literature and to investigate the role of “trauma” in the etiopathogenesis. METHODS: A retrospective study was conducted on 126 patients with FG that consulted to our department. RESULTS: There were 76 male and four female patients. The mean age of the patients was 53.5±13.6 years. The most common presentation of patients was swelling (n=74). The scrotum has been shown to be the most commonly affected area in the patients (n=75). Diabetes mellitus was the leading predisposing factor and trauma was the leading responsible cause for FG. Escherichia coli was the most frequently identified microorganism (n=43, 53.75%). Primary closure was the most common technique used for all patients. Three patients exhibited a mortal course due to sepsis and multi-organ failure. CONCLUSION: FG still has a high mortality rate. Rapid and correct diagnosis of the disease can avoid inappropriate or delayed treatment and even death of the patient. The healthcare professionals should be aware that any trauma in the perineal region could lead to FG.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Science-Centric Sampling Approaches of Geo-Physical Environments for Realistic Robot Navigation
    SCIENCE-CENTRIC SAMPLING APPROACHES OF GEO-PHYSICAL ENVIRONMENTS FOR REALISTIC ROBOT NAVIGATION A Thesis Presented to The Academic Faculty by Lonnie T. Parker, IV In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology August 2012 Copyright c 2012 by Lonnie T. Parker, IV SCIENCE-CENTRIC SAMPLING APPROACHES OF GEO-PHYSICAL ENVIRONMENTS FOR REALISTIC ROBOT NAVIGATION Approved by: Professor Ayanna M. Howard, Advisor Professor Jeff Shamma School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Fumin Zhang Professor Mike Stilman School of Electrical and Computer College of Computing Engineering Georgia Institute of Technology Georgia Institute of Technology Professor George Riley Date Approved: June 15, 2012 School of Electrical and Computer Engineering Georgia Institute of Technology DEDICATION Based upon the infallible word of God, I dedicate this work to Him, according to Proverbs 16:3. iii ACKNOWLEDGEMENTS Before anyone else, I want to acknowledge and thank my Lord and Savior, Jesus Christ, whom I am in and who lives within me. This degree and this experience would not be possible without His provision, favor, and grace. Especially in the moments when I did not believe it was possible to finish, my faith in Him pushed me forward. Next, to my wife, Andrea, who has been my constant encourager, supporter, and living reminder that I could complete this journey, thank you. Simply your presence in my life has made this walk all the more bearable. I love you.
    [Show full text]
  • The Case for Rainfall on a Warm, Wet Early Mars Robert A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E11, 5111, doi:10.1029/2001JE001505, 2002 The case for rainfall on a warm, wet early Mars Robert A. Craddock Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, District of Columbia, USA Alan D. Howard Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA Received 11 April 2001; revised 10 April 2002; accepted 10 June 2002; published 23 November 2002. [1] Valley networks provide compelling evidence that past geologic processes on Mars were different than those seen today. The generally accepted paradigm is that these features formed from groundwater circulation, which may have been driven by differential heating induced by magmatic intrusions, impact melt, or a higher primordial heat flux. Although such mechanisms may not require climatic conditions any different than today’s, they fail to explain the large amount of recharge necessary for maintaining valley network systems, the spatial patterns of erosion, or how water became initially situated in the Martian regolith. In addition, there are no clear surface manifestations of any geothermal systems (e.g., mineral deposits or phreatic explosion craters). Finally, these models do not explain the style and amount of crater degradation. To the contrary, analyses of degraded crater morphometry indicate modification occurred from creep induced by rain splash combined with surface runoff and erosion; the former process appears to have continued late into Martian history. A critical analysis of the morphology and drainage density of valley networks based on Mars Global Surveyor data shows that these features are, in fact, entirely consistent with rainfall and surface runoff.
    [Show full text]
  • History of the 103Rd Infantry Frank Hume
    Bangor Public Library Bangor Community: Digital Commons@bpl World War Regimental Histories World War Collections 1919 History of the 103rd infantry Frank Hume Follow this and additional works at: http://digicom.bpl.lib.me.us/ww_reg_his Recommended Citation Hume, Frank, "History of the 103rd infantry" (1919). World War Regimental Histories. 19. http://digicom.bpl.lib.me.us/ww_reg_his/19 This Book is brought to you for free and open access by the World War Collections at Bangor Community: Digital Commons@bpl. It has been accepted for inclusion in World War Regimental Histories by an authorized administrator of Bangor Community: Digital Commons@bpl. For more information, please contact [email protected]. 1'' I \ ....... -. ' • • 'llC9)l17l ~ Il~l1<9) ' ~®~ IIDTIWli~TI@~9 £o~oWo . ·, I : YD YD · f . '.' ·, I HISTORY of.the 103RD INFANTRY . .' ,l}.,f . IN MEMORY OF THOSE f '. .. OFFICERS AND J}· ... 1917 MEN OF THE 103RD 1919 J, REGIMENT WHO GAVE . '~~ THEIR LIVES IN . FRANCE, . ' THIS STORY OF OUR REGIMENT . ·.. IS · ·~ HEREBY .. DEDICATED' Colonel Frank M. Hume, Commander YD ··!.'• YD •... j ·~.. -·.: Copyright, 1919, by 103rd U. S. INFANTRY -. \ • INDEX CHAPTER PAGE CHAPTER PAGE INTRODUCTION 3 VIII. THE LAST DAYS OF THE WAR . 26 REGIMENTAL PHOTOS- Col. Hume, Lt. Col. Shum­ IX. BETTER DAYS . 31 way, Lt. Col. Southard . 4 APPENDIX I. THE MOBILIZATION AND ORGANIZATION OF Historical Data Concerning the 26th Division 32 THE REGIMENT. 5 Individual Decorations Awarded . 33 II. OVERSEAS . 7 Roster of Commissioned Personnel, with Pro- motions 34 III. IN TRAINING. 8 Casualties 35 IV. SoissoNs-THE CHEMIN DES DAMES FRONT 10 RosTER OF OFFICERS 40-49 v.
    [Show full text]
  • 26. More Geological Reasons Noah's Flood Did Not Happen
    Published bimonthly by the OF National Center for Science Education EPORTS THE NATIONAL CENTER FOR SCIEncE EDUCATION REPORTS.NCSE.COM R ISSN 2159-9270 ARTICLE More Geological Reasons Noah’s Flood Did Not Happen Lorence G Collins and Barbara J Collins I NTRODUCTI ON Young-earth creationists believe that there was a worldwide flood covering the earth and that virtually all fossil-bearing sedimentary layers, up until the most recent, were deposited by that Flood in about one year (Genesis 7:11–24 to 8:1–13; Whitcomb and Morris 1961; Morris and Parker 1987). Although the time for deposition by a one-year flood of the nearly 3.75 kilometers of sedimentary rocks on top of the Precambrian strata (Figure 1) to the present seems impossibly short, Oard (2002) argues for Flood Geology nonetheless. His conclusions rest on the notion that the modern evidence cannot be used as a key to the past, as the uniformitarian principle is typically applied (Oard 2002). He writes uniformitarianism is a poor organizing principle and often invalid. For instance, sand- stones, which make up approximately 20% of the sedimentary rocks on the earth, are consistently different from modern sand deposits. As an example, pure quartzites (orthoquartzites) are common in the older record but none seem to be forming today. Quartzite is metamorphosed sandstone. (Oard 2002:8) Of course, even if uniformitarianism (as Oard [2002] has framed it) were completely false, it still would not make his alternative—a world-wide flood—true. He would need other evidence to support his model. So he goes on to say Furthermore, in the modern world sand generally accumulates in linear deposits while ancient sandstones form very large sheets: It is noteworthy that the most com- mon sites of sand accumulation in the modern world are linear (beaches and rivers); yet most sands of the past form extensive stratiform deposits (Pettijohn 1975).
    [Show full text]
  • A Stringent Upper Limit of 20 Pptv for Methane on Mars and Constraints on Its Dispersion Outside Gale Crater Franck Montmessin, Oleg Korablev, A
    A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater Franck Montmessin, Oleg Korablev, A. Yu. Trokhimovskiy, Franck Lefèvre, A. Fedorova, Lucio Baggio, Abdanour Irbah, Gaetan Lacombe, Kevin Olsen, Ashwin Braude, et al. To cite this version: Franck Montmessin, Oleg Korablev, A. Yu. Trokhimovskiy, Franck Lefèvre, A. Fedorova, et al.. A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater. Astronomy and Astrophysics - A&A, EDP Sciences, 2021, 650 (June), A140 (9p.). 10.1051/0004-6361/202140389. insu-03225669v2 HAL Id: insu-03225669 https://hal-insu.archives-ouvertes.fr/insu-03225669v2 Submitted on 24 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 650, A140 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140389 & © F. Montmessin et al. 2021 Astrophysics A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater F. Montmessin1 , O. I. Korablev2 , A. Trokhimovskiy2 , F. Lefèvre3 , A. A. Fedorova2 , L. Baggio1 , A. Irbah1 , G. Lacombe1, K. S. Olsen4 , A. S. Braude1 , D.
    [Show full text]