Noachian Climatic Conditions on Mars Inferred from Valley Network Junction Angles ∗ Xuezhi Cang , Wei Luo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Stringent Upper Limit of 20 Pptv for Methane on Mars and Constraints on Its Dispersion Outside Gale Crater F
A&A 650, A140 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140389 & © F. Montmessin et al. 2021 Astrophysics A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater F. Montmessin1 , O. I. Korablev2 , A. Trokhimovskiy2 , F. Lefèvre3 , A. A. Fedorova2 , L. Baggio1 , A. Irbah1 , G. Lacombe1, K. S. Olsen4 , A. S. Braude1 , D. A. Belyaev2 , J. Alday4 , F. Forget5 , F. Daerden6, J. Pla-Garcia7,8 , S. Rafkin8 , C. F. Wilson4, A. Patrakeev2, A. Shakun2, and J. L. Bertaux1 1 LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France e-mail: [email protected] 2 Space Research Institute (IKI) RAS, Moscow, Russia 3 LATMOS/IPSL, Sorbonne Université, UVSQ Université Paris-Saclay, CNRS, Paris, France 4 AOPP, Oxford University, Oxford, UK 5 Laboratoire de Météorologie Dynamique, Sorbonne Université, Paris, France 6 BIRA-IASB, Bruxelles, Belgium 7 Centro de Astrobiología (CSIC?INTA), Torrejón de Ardoz, Spain 8 Southwest Research Institute, Boulder, CO, USA Received 20 January 2021 / Accepted 23 April 2021 ABSTRACT Context. Reports on the detection of methane in the Martian atmosphere have motivated numerous studies aiming to confirm or explain its presence on a planet where it might imply a biogenic or more likely a geophysical origin. Aims. Our intent is to complement and improve on the previously reported detection attempts by the Atmospheric Chemistry Suite (ACS) on board the ExoMars Trace Gas Orbiter (TGO). This latter study reported the results of a campaign that was a few months in length, and was significantly hindered by a dusty period that impaired detection performances. -
Drainage Network Development in the Keanakāko'i
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E08009, doi:10.1029/2012JE004074, 2012 Drainage network development in the Keanakāko‘i tephra, Kīlauea Volcano, Hawai‘i: Implications for fluvial erosion and valley network formation on early Mars Robert A. Craddock,1 Alan D. Howard,2 Rossman P. Irwin III,1 Stephen Tooth,3 Rebecca M. E. Williams,4 and Pao-Shin Chu5 Received 1 March 2012; revised 11 June 2012; accepted 4 July 2012; published 22 August 2012. [1] A number of studies have attempted to characterize Martian valley and channel networks. To date, however, little attention has been paid to the role of lithology, which could influence the rate of incision, morphology, and hydrology as well as the characteristics of transported materials. Here, we present an analysis of the physical and hydrologic characteristics of drainage networks (gullies and channels) that have incised the Keanakāko‘i tephra, a basaltic pyroclastic deposit that occurs mainly in the summit area of Kīlauea Volcano and in the adjoining Ka‘ū Desert, Hawai‘i. The Keanakāko‘i tephra is up to 10 m meters thick and largely devoid of vegetation, making it a good analog for the Martian surface. Although the scales are different, the Keanakāko‘i drainage networks suggest that several typical morphologic characteristics of Martian valley networks may be controlled by lithology in combination with ephemeral flood characteristics. Many gully headwalls and knickpoints within the drainage networks are amphitheater shaped, which results from strong-over-weak stratigraphy. Beds of fine ash, commonly bearing accretionary lapilli (pisolites), are more resistant to erosion than the interbedded, coarser weakly consolidated and friable tephra layers. -
General Index
General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Aurora Crater (Updated 2015)
Site Description Aurora Crater (Updated 2015) Geologic setting: The Aurora Crater geothermal area is located in western Mineral County, northeast of Mono Lake. The geothermal area sits within an area known as the Aurora-Bodie volcanic field. The Bodie Hills are located to the west while the Wassuk Range is located to the east. The rocks in this region are composed of Calc-alkaline andesite, dacite and trachyandesite lavas, breccias and ashflow tuffs, deposited between 15 and 8 million years ago. These units are overlain by a series of younger alkaline- calcic cinder cone deposits and flows. Aurora Crater, located approximately 6 km southwest of the Aurora Crater geothermal area, is a 250,000 year old breached crater surrounded by lava flows. This region has been abundantly cut by faults and covered in ash from more recent eruptions from the Mono Craters to the southwest (Geologic Points of Interest by Activity – Volcanic Activity). Gold and silver deposits found in Miocene volcanic rocks were mined in both Bodie (CA) and Aurora (NV) until the 1950s (Geologic Points of Interest by Activity – Volcanic Activity). The Aurora District was the most productive mining district in Mineral County. Between 1861 and 1869, nearly $29,500,000 in gold and silver were produced from the Aurora mines (Ross, 1961). Geothermal features: A blind geothermal anomaly is reported between Aurora Crater and the Borealis open-pit gold mine 12 km northeast (Richards and Blackwell, 2002). The Aurora prospect consists of 29,000 acres in an area of Quaternary basaltic volcanism. Seventeen temperature gradient wells indicate a large geothermal anomaly. -
Experience of 80 Cases with Fournier's Gangrene and “Trauma” As a Trigger
ORIGINAL ARTICLE Experience of 80 cases with Fournier’s gangrene and “trauma” as a trigger factor in the etiopathogenesis Teoman Eskitaşcıoğlu, M.D., İrfan Özyazgan, M.D., Atilla Coruh, M.D., Galip K Günay, M.D., Mehmet Altıparmak, M.D., Yalcin Yontar, M.D., Fatih Doğan, M.D.† Department of Plastic Reconstructive and Aesthetic Surgery, Erciyes University Faculty of Medicine, Kayseri †Current affiliation: Department of Plastic Reconstructive and Aesthetic Surgery, Adıyaman University Faculty of Medicine, Adıyaman ABSTRACT BACKGROUND: The purpose of the present study was to retrospectively analyze the patients’ data presented with Fournier’s gangrene (FG), to compare obtained data with the literature and to investigate the role of “trauma” in the etiopathogenesis. METHODS: A retrospective study was conducted on 126 patients with FG that consulted to our department. RESULTS: There were 76 male and four female patients. The mean age of the patients was 53.5±13.6 years. The most common presentation of patients was swelling (n=74). The scrotum has been shown to be the most commonly affected area in the patients (n=75). Diabetes mellitus was the leading predisposing factor and trauma was the leading responsible cause for FG. Escherichia coli was the most frequently identified microorganism (n=43, 53.75%). Primary closure was the most common technique used for all patients. Three patients exhibited a mortal course due to sepsis and multi-organ failure. CONCLUSION: FG still has a high mortality rate. Rapid and correct diagnosis of the disease can avoid inappropriate or delayed treatment and even death of the patient. The healthcare professionals should be aware that any trauma in the perineal region could lead to FG. -
Pacing Early Mars Fluvial Activity at Aeolis Dorsa: Implications for Mars
1 Pacing Early Mars fluvial activity at Aeolis Dorsa: Implications for Mars 2 Science Laboratory observations at Gale Crater and Aeolis Mons 3 4 Edwin S. Kitea ([email protected]), Antoine Lucasa, Caleb I. Fassettb 5 a Caltech, Division of Geological and Planetary Sciences, Pasadena, CA 91125 6 b Mount Holyoke College, Department of Astronomy, South Hadley, MA 01075 7 8 Abstract: The impactor flux early in Mars history was much higher than today, so sedimentary 9 sequences include many buried craters. In combination with models for the impactor flux, 10 observations of the number of buried craters can constrain sedimentation rates. Using the 11 frequency of crater-river interactions, we find net sedimentation rate ≲20-300 μm/yr at Aeolis 12 Dorsa. This sets a lower bound of 1-15 Myr on the total interval spanned by fluvial activity 13 around the Noachian-Hesperian transition. We predict that Gale Crater’s mound (Aeolis Mons) 14 took at least 10-100 Myr to accumulate, which is testable by the Mars Science Laboratory. 15 16 1. Introduction. 17 On Mars, many craters are embedded within sedimentary sequences, leading to the 18 recognition that the planet’s geological history is recorded in “cratered volumes”, rather than 19 just cratered surfaces (Edgett and Malin, 2002). For a given impact flux, the density of craters 20 interbedded within a geologic unit is inversely proportional to the deposition rate of that 21 geologic unit (Smith et al. 2008). To use embedded-crater statistics to constrain deposition 22 rate, it is necessary to distinguish the population of interbedded craters from a (usually much 23 more numerous) population of craters formed during and after exhumation. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1). -
FROM WET PLANET to RED PLANET Current and Future Exploration Is Shaping Our Understanding of How the Climate of Mars Changed
FROM WET PLANET TO RED PLANET Current and future exploration is shaping our understanding of how the climate of Mars changed. Joel Davis deciphers the planet’s ancient, drying climate 14 DECEMBER 2020 | WWW.GEOLSOC.ORG.UK/GEOSCIENTIST WWW.GEOLSOC.ORG.UK/GEOSCIENTIST | DECEMBER 2020 | 15 FEATURE GEOSCIENTIST t has been an exciting year for Mars exploration. 2020 saw three spacecraft launches to the Red Planet, each by diff erent space agencies—NASA, the Chinese INational Space Administration, and the United Arab Emirates (UAE) Space Agency. NASA’s latest rover, Perseverance, is the fi rst step in a decade-long campaign for the eventual return of samples from Mars, which has the potential to truly transform our understanding of the still scientifi cally elusive Red Planet. On this side of the Atlantic, UK, European and Russian scientists are also getting ready for the launch of the European Space Agency (ESA) and Roscosmos Rosalind Franklin rover mission in 2022. The last 20 years have been a golden era for Mars exploration, with ever increasing amounts of data being returned from a variety of landed and orbital spacecraft. Such data help planetary geologists like me to unravel the complicated yet fascinating history of our celestial neighbour. As planetary geologists, we can apply our understanding of Earth to decipher the geological history of Mars, which is key to guiding future exploration. But why is planetary exploration so focused on Mars in particular? Until recently, the mantra of Mars exploration has been to follow the water, which has played an important role in shaping the surface of Mars. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
A Noachian/Hesperian Hiatus and Erosive Reactivation of Martian Valley Networks
Lunar and Planetary Science XXXVI (2005) 2221.pdf A NOACHIAN/HESPERIAN HIATUS AND EROSIVE REACTIVATION OF MARTIAN VALLEY NETWORKS. R. P. Irwin III1,2, T. A. Maxwell1, A. D. Howard2, R. A. Craddock1, and J. M. Moore3, 1Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, MRC 315, 6th St. and Inde- pendence Ave. SW, Washington DC 20013-7012, [email protected], [email protected], [email protected]. 2Dept. of Environmental Sciences, P.O. Box 400123, University of Virginia, Charlottesville, VA 22904, [email protected]. 3NASA Ames Research Center, MS 245-3 Moffett Field, CA 94035-1000, [email protected]. Introduction: Despite new evidence for persistent rary in degraded craters of the southern equatorial lati- flow and sedimentation on early Mars [1−3], it remains tudes. All of these deposits likely formed during the unclear whether valley networks were active over long last stage of valley network activity, which appears to geologic timescales (105−108 yr), or if flows were per- have declined rapidly. sistent only during multiple discrete episodes [4] of Gale crater: Gale crater is an important strati- moderate (≈104 yr) to short (<10 yr) duration [5]. Un- graphic marker between discrete episodes of valley derstanding the long-term stability/variability of valley network activity. Gale retains most of the characteris- network hydrology would provide an important control tics of a fresh impact crater [15]: a rough ejecta blan- on paleoclimate and groundwater models. Here we ket, raised rim, hummocky interior walls, secondary describe geologic evidence for a hiatus in highland crater chains, and a (partially buried) central peak valley network activity while the fretted terrain (Figure 2). -
Science-Centric Sampling Approaches of Geo-Physical Environments for Realistic Robot Navigation
SCIENCE-CENTRIC SAMPLING APPROACHES OF GEO-PHYSICAL ENVIRONMENTS FOR REALISTIC ROBOT NAVIGATION A Thesis Presented to The Academic Faculty by Lonnie T. Parker, IV In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology August 2012 Copyright c 2012 by Lonnie T. Parker, IV SCIENCE-CENTRIC SAMPLING APPROACHES OF GEO-PHYSICAL ENVIRONMENTS FOR REALISTIC ROBOT NAVIGATION Approved by: Professor Ayanna M. Howard, Advisor Professor Jeff Shamma School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Fumin Zhang Professor Mike Stilman School of Electrical and Computer College of Computing Engineering Georgia Institute of Technology Georgia Institute of Technology Professor George Riley Date Approved: June 15, 2012 School of Electrical and Computer Engineering Georgia Institute of Technology DEDICATION Based upon the infallible word of God, I dedicate this work to Him, according to Proverbs 16:3. iii ACKNOWLEDGEMENTS Before anyone else, I want to acknowledge and thank my Lord and Savior, Jesus Christ, whom I am in and who lives within me. This degree and this experience would not be possible without His provision, favor, and grace. Especially in the moments when I did not believe it was possible to finish, my faith in Him pushed me forward. Next, to my wife, Andrea, who has been my constant encourager, supporter, and living reminder that I could complete this journey, thank you. Simply your presence in my life has made this walk all the more bearable. I love you.