Chapter 4 Progress in Carp Genetics Research David J

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Progress in Carp Genetics Research David J Chapter 4 Progress in Carp Genetics Research David J. Penman1 4.1 Introduction been carried out on many of the cyprinid species of interest to aquaculture in Asia. Much of this Ten years ago, very little was known about the information, and equivalent information on genetics of most of the cyprinid species of interest other cyprinids (as well as other groups of fish), is to aquaculture in Asia, for example the Chinese summarized by Klinkhardt et al. (1995). It is carps, silver carp (Hypophthalmichthys molitrix), evident from a frequency distribution of diploid bighead carp (Aristichthys nobilis) and grass carp chromosome numbers for cyprinid species taken (Ctenopharyngodon idella); Indian major carps, from this database that 2n = 50 is by far the most catla (Catla catla), rohu (Labeo rohita) and mrigal common diploid chromosome number in (Cirrhinus cirrhosus); and the silver barb cyprinids, and also that polyploidisation (Barbonymus gonionotus). The exceptions to this (tetraploidy and hexaploidy) has occurred in would have been the common carp (Cyprinus several cyprinids (Fig. 4.1). Ancestrally tetraploid carpio) and the goldfish Carassius( auratus). Still species (approximately 100 chromosomes) are relatively little is known about the genetics of found in the genera Carassius, Cyprinus, Spinibarbus most of these species, but significant progress has and Tor, while Schizothorax taliensis and been made in the last decade. Valuable S. yunnanensis are ancestrally hexaploid (with 148 information about the genetic structure of wild chromosomes). In addition to being ancestrally and captive populations and traits of interest to tetraploid, C. auratus and C. gibelio also have aquaculture are now becoming available and our forms that are triploid (relative to the species’ knowledge of these areas should increase greatly ancestrally tetraploid chromosome complement, over the next decade, as should the applications i.e. they have approximately 150 chromosomes). of genetics to the aquaculture of cyprinids. Reddy (1999) described karyological studies on Indian cyprinid species in some detail. Griffith et This chapter reviews progress in genetics research al. (2003) demonstrated an increase in the that is relevant to aquaculture of cyprinid species lifespan of fish with larger genomes, from an in Asia. It begins with cytogenetic (4.2) and analysis of a wide range of species. Within molecular (4.3) techniques that can be used to individual orders such as the Cypriniformes the provide basic genetic descriptions of cyprinid relationship was positive but not significant, species and populations, as well as having possibly because of the limited number of applications in aquaculture genetics. Hybridiza- samples analyzed. tion studies, of which many have been carried out, are dealt with next (4.4). Quantitative Perhaps curiously, the number of fundamental genetics, the main focus of this publication (4.5), chromosome arms (NF) described by various is divided into four subsections (inbreeding and authors in the database of Klinkhardt et al. (1995) negative selection; current status; stock/strain showed much more intraspecific variation than comparisons; and selective breeding). Chromo- the diploid chromosome counts. It is not clear if some set manipulations (4.6), sex determination this reflects genuine polymorphism or differences and its manipulation (4.7), gene transfer (4.8) in interpretation by different authors. and finally applications of cryopreservation (4.9) and tissue culture (4.10) to aquaculture genetics Nucleolus organizer regions (NORs) have been research complete the review. studied in several species of Asian cyprinids (e.g. Carman et al. 1993; John et al. 1993; George et al. 4.2 Cytogenetics 1994; Anjum and Jankun 1998). George et al. (1994) showed that the NORs varied between Basic cytogenetics studies, describing Indian major carp species. Lakra and Krishna chromosome numbers and morphology, have (1996) reviewed chromosome banding 1 University of Stirling, U.K. 82 WorldFish Center | Carp Genetic Resources for Aquaculture in Asia CHAPTER 4 | Progress In Carp Genetics Research 83 Fig. 4.1. Frequency distribution of the diploid number of chromosomes in cyprinid species (worldwide). Source: Klinkhardt et al. (1995). Where more than one value is given per species in the database, the most common value is shown (in the case of a tie, the lower value is shown). The only cyprinid species in the database that is not shown is Ptychobarbus dipogon (2n = 446) techniques for fish and described G-banding for semi-automated erythrocyte cell volume the first time in Indian major carps. Luo (1998) quantification (Harrell et al. 1998). Such methods used trypsin digestion and Giemsa staining to are generally used in C. carpio due to the large produce chromosome-specific banding in the number of chromosomes in this species (Cherfas grass carp. This technique may go some way to et al.1993; Klinkhardt et al. 1995). overcoming some of the general difficulties in obtaining high resolution banding patterns in Chromosome counts are a good way of verifying fish chromosomes (Goodier and Davidson haploid controls in gynogenesis or androgenesis 1993). experiments, and are generally used in combination with morphological examination Chromosomes can be used as genetic markers in (haploid embryos show a typical “haploid studies on hybridization, induced polyploidy, syndrome”) and scoring survival rates (nearly all gynogenesis and androgenesis. While the haploid embryos die before diploid embryos techniques involved to prepare metaphase reach the first feeding stage). Restoration of spreads from large numbers of fish or embryos diploidy via temperature or pressure shocks given are fairly laborious, they are also well to the fertilized eggs following UV treatment of standardized. sperm or eggs can be verified by comparing the karyotypes of shocked batches (should be diploid) Distinguishing triploid and diploid fish using compared to the UV controls (should be haploid). metaphase spreads prepared from hatched However, to verify uniparental inheritance in embryos is fairly routine and allows analysis at an diploid gynogenetic or androgenetic fish and early stage (Kligerman and Bloom 1977). biparental inheritance in diploid controls, However, assessment of polyploidy may be more molecular genetic techniques such as DNA easily carried out using other methods such as fingerprinting are more informative. 82 WorldFish Center | Carp Genetic Resources for Aquaculture in Asia CHAPTER 4 | Progress In Carp Genetics Research 83 Interspecific hybridization may not produce the where the product of a gene rather than the DNA expected diploid animals with one haploid set of sequence itself is examined (polymorphism is chromosomes from each parental species detected in the form of bands in different (Chevassus 1983; see 4.4). Altered ploidy levels positions in an electrophoresis gel after staining in such hybridizations should be easily detected, for enzyme activity in the case of allozymes). but for parental species with similar karyotypes, With the development of a variety of techniques analyzing offspring metaphase spreads may not for working directly with DNA sequences, it is detect some of the more unusual outcomes of now possible to detect DNA polymorphisms interspecific fertilizations, such as gynogenetic or directly, both in the nuclear genome and the androgenetic progeny. In many situations, mitochondrial genome. allozyme or DNA markers, possibly in combination with karyotype analysis, may be Standard techniques can be used for isozymes, more powerful. multilocus DNA fingerprinting, RAPDs and mitochondrial DNA in different species with Chromosome polymorphisms have been found relatively little adaptation or prior knowledge of in population genetics studies in some species of the species, while other markers such as fish (e.g. variation in B chromosome frequency in microsatellite DNA loci may require considerable the characid Astyanax scabripinnis: Néo et al. 2000) preliminary research to isolate relevant DNA but are of limited general application. sequences and develop appropriate PCR primers (some microsatellite loci will, however, cross- Cyprinids are gonochoristic and several amplify in related species). aquaculture species have been shown genetically to have apparently fairly simple sex determination A variety of polymorphic genetic markers, systems (generally but not always XX/XY – see primarily allozymes and different types of DNA 4.7). However, in common with most other markers, can be used for such purposes as species of fish, heteromorphic sex chromosomes phylogenetics, species and hybrid discrimination, appear to be absent or very rare in cyprinids (e.g. population genetic analysis, comparison of levels Manna and Khuda-Bukhsh 1977; Buth et al. of genetic variation in hatchery and wild stocks, 1991). pedigree analysis in hatchery and experimental breeding, and gene mapping. Although studies of cyprinid karyotypes yielded some interesting information and applications – Knowledge of the genetic structure of wild for example insights into the role of populations can be important in conserving polyploidization in the evolution of this group, genetic resources and managing capture fisheries and chromosome counts can be used as markers and identifying potential source populations for in chromosome set manipulation experiments – the development of aquaculture brood stock. otherwise limited progress has generally been Allozyme analysis has been used to study made
Recommended publications
  • The Status of the Endangered Freshwater Fishes in China and the Analysis of the Endangered Causes Institute of Hydrobiology
    The status of the endangered freshwater fishes in China and The analysis of the endangered causes HE Shunping, CIIEN Yiyu Institute of Hydrobiology, CAS, Wuhan, ITubei Province, 430072 Abstract More than 800 species of freshwater fishes are precious biological resources in inland water system of China. Among them, there are a great number of endemic and precious group, and a lot of monotypic genera and species. Recently, owing to the synthetic effects of the natural and human-beings, many of these fishes gradually became endangered. The preliminary statistic result indicates that 92 species are endangered fishes and account for 10% of the total freshwater fishes in China. For the purpose of protection of the biodiversity of fishes, it is necessary to analyse these causes which have led the fishes to become endangered. This report could be used as a scientific reference for researching and saving the endemic precious freshwater fishes in China. Key words Endangered freshwater fishes, Endangered causes, China In the process of the evolution of living things, along with the origin of life, the extinction of life also existed. In the long_ life history, the speciation and the extinction of living things often keep a relative balance. As time goes on, especially after by the impact of human beings activity of production and life, the pattern of the biodiversity were changed or damaged, more or less. At last, in the modern society, human beings activity not only accelerate the progress of society and the development of economy, but also, as a special species, become the source of disturbing_ to other species.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • The Israeli Journal of Aquaculture – Bamidgeh Xx(X), 20Xx, X-Xx
    The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of HawaiɄɄɄi at Mānoa Library & Rina Chakrabarti Aqua Research Lab, Dept. of Zoology, University of HawaiɄɄɄi at Mānoa University of Delhi, India Aquaculture Program Angelo Colorni National Center for Mariculture, IOLR in association with Eilat, Israel AquacultureHub http://www.aquaculturehub.org Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Hillel Gordin Kibbutz Yotveta, Arava, Israel Sheenan Harpaz Agricultural Research Organization Beit Dagan, Gideon Hulata Agricultural Research Organization Beit Dagan, George Wm. Kissil National Center for Mariculture, IOLR, Eilat, Israel Ingrid Lupatsch Swansea University, Singleton Park, Swansea, UK Spencer Malecha Dept. of Human Nutrition, Food & Animal Sciences, CTAHR, University of Hawaii Constantinos Hellenic Center for Marine Research, ISSN 0792 - 156X Mylonas Crete, Greece Amos Tandler National Center for Mariculture, IOLR Israeli Journal of Aquaculture - BAMIGDEH.
    [Show full text]
  • Body Shape Change in Common Carp, Cyprinus Carpio Var. Sazan (Teleostei: Cyprinidae), During Early Development Using Geometric Morphometric Method
    Iran. J. Ichthyol. (September 2016), 3(3): 210–217 Received: May 7, 2016 © 2016 Iranian Society of Ichthyology Accepted: August 30, 2016 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2016.02.015 http://www.ijichthyol.org Body shape change in Common carp, Cyprinus carpio var. Sazan (Teleostei: Cyprinidae), during early development using geometric morphometric method Fatemeh MOSHAYEDI1, Soheil EAGDERI*1, Masoud IRI2 1Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, P.O. Box 4111, Iran. 2Fisheries Department, Agricultural and Natural Resources Faculty, Gonbad kavoos University, Gonbad kavoos, Iran. * . Email: [email protected] Abstract: This research was conducted to study the body shape changes in common carp, Cyprinus carpio var. Sazan during early developmental stages using landmark- based geometric morphometric method. For this purpose, a total number of 210 larvae from hatching time till 55 days post hatching (dph) were sampled. For extracting body shape data, the right side of specimens was photographed and nine landmark-points were defined and digitized on 2D pictures using tpsDig2 software. After GPA, the landmark data were analyzed using Relative Warp analysis, regression of shape on total length and cluster analysis. The results showed that change of body shape in common carp during early development includes (1) increase in the head depth, and trunk length from hatching up to 8 dph, (2) increase in the body depth, and the head and tail lengths from 8-20 dph, and (3) increase in the head length and depth from 20-55 dph. The cluster analysis was revealed that larval stages can be divided into four phases, including eleuthero-embryonic, larva, younger juvenile and juvenile.
    [Show full text]
  • 1 the Origin of Domesticated Breeds of Common Carp
    HYDROBIOLOGIE ET AQUACULTURE genetics and breeding of common carp VALENTIN S. KIRPITCHNIKOV revised by R. Billard, J. Repérant, J.P. Rio and R. Ward INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 147, rue de l'Université, 75338 Paris Cedex 07 HYDROBIOLOGIE ET AQUACULTURE Déjà parus dans la même collection : Le Brochet : Aquaculture of Cyprinids gestion dans le milieu naturel Evry (France), 2-5 septembre 1985 et élevage R. Billard, J. Marcel, éd. Grignon (France), 9-10 septembre 1982 1986, 502 p. R. Billard, éd. La truite. Biologie et élevage 1983, 374 p. J.L. Bagliniere, G. Maisse, éd. 1991, 303 p. L'Aquaculture du Bar et des Sparidés Les carpes. Sète (France), 15-16-17 mars 1983 Biologie et élevage G. Barnabe et R. Billard, éd. R. Billard, coord. 1984, 542 p. 1995, 388 p. Poissons de Guyane Caractérisation et essais Guide écologique de l'Approuague et de de restauration d'un écosystème la réserve des Nouragues dégradé : le lac de Nantua Boujard T., Pascal M.. Meunier J.F., J. Feuillade, éd. Le Bail P.Y, Galle J. 1985, 168 p. 1997, 262 p. Valentin S. KIRPITCHNIKOV (f) institute of Cytology Academy of Sciences of Russia Tikhoretsky Avenue 4 Leningrad 194064, Russia revised by R. BILLARD J.P. RIO Muséum National d'Histoire Naturelle Hôpital de La Salpêtrière Ichtyologie Générale et Appliquée INSERM U 106 43 rue Cuvier 47 bd de l'Hôpital 75231 Paris cedex 05 75651 Paris cedex 13 R. WARD J. REPERANT Neurogénétique Muséum National d'Histoire Naturelle Université du Québec Laboratoire d'Anatomie Comparée CP 500, Trois-Rivières 55 rue Buffon, 75005 Paris Québec, Canada G9A 5H7 ©INRA, Paris 1999 - ISBN : 2-7380-0869-0 - ISSN : 0763-1707 ©Le code de la propriété intellectuelle du 1er juillet 1992 interdit la photocopie à usage collectif sans autor- isation des ayants-droits.
    [Show full text]
  • Population Dynamics of the Naleh Fish Barbonymus Sp. (Pisces: Cyprinidae) in Nagan River Waters, Aceh Province, Indonesia
    Volume 12, Number 3,August 2019 ISSN 1995-6673 JJBS Pages 361 - 366 Jordan Journal of Biological Sciences Population Dynamics of the Naleh Fish Barbonymus sp. (Pisces: Cyprinidae) in Nagan River Waters, Aceh Province, Indonesia Agung S. Batubara2, Deni Efizon3, Roza Elvyra4 Syamsul Rizal1,2 and Zainal A. 1,2* Muchlisin 1Faculty of Marine and Fisheries; 2Doctoral Program in Mathematics and Sciences Application (DMAS), Graduate Program, Universitas Syiah Kuala, Banda Aceh; 3Faculty of Fisheries and Marine Sciences, 4Faculty of Sciences, Universitas Riau, Pekanbaru, Indonesia. Received September 14, 2018; Revised November 2, 2018; Accepted November 8, 2018 Abstract The Naleh fish Barbonymus sp. is among the popular commercial fresh water fishes found in Indonesia; however, the population has drastically declined over the past decade. Necessarily, a conservation program needs to be established to gather information on the population dynamics to overcome this problem. The objective of this study is to analyze the population dynamics of the Naleh fish in Nagan River. The survey was conducted from January to December, 2016. In totality, three sampling locations were selected based on information from local fishermen. The Naleh fish was sampled using gillnets (mesh size 0.5 and 1.0 inches) and casting nets (mesh size 1.5 and 2.0 inches). A total of 761 fish samples were collected for the study. The von Bertalanffy (von Bertalanffy growth function) growth parameters were utilized to analyse the population dynamics of Barbonymus sp., using FISAT II (FAO-ICLARM Stock Assessment Tools-II). The results show the following population dynamics: Asymptotic length (L∞) was 160.07mm, coefficient of growth (K) = 0.73 -1 -1 -1 year , growth performance index (Ø) = 4.27 year , time at which length equals zero (t0) = -0.022 year , growth and age (Lt) -1 -1 = 2.55 year , and optimum length of catch (Lopt ) = 89.9mm.
    [Show full text]
  • Parasitology Is a Tool for Identifying the Original Biotope of the Gibel Carp (Carassius Auratus Gibelio Berg, 1932) Parazitoló
    Pisces Hungarici 12 (2018) 87–94 Parasitology is a tool for identifying the original biotope of the gibel carp (Carassius auratus gibelio Berg, 1932) Parazitológiai bizonyítékok az ezüstkárász (Carassius auratus gibelio Berg, 1932) eredetéről Molnár K.1, Nyeste K.2, Székely Cs.1 1MTA ATK, Állatorvos‐tudományi Intézet, Budapest 2Debreceni Egyetem TTK, Hidrobiológiai Tanszék, Debrecen Keywords: original biotpe of Carassius spp., gibel carp, myxosporean infection, nomenclature Kulcsszavak: kárász eredeti biotópja, ezüstkárász, nyálkaspórás fertőzöttség, nevezéktani problémák Abstract At this time the occurrence of three Carassius taxa (C. carassius, C. auratus auratus and C. auratus gibelio) are known from Europe. Crucian carp [Carassius carassius (Linnaeus, 1758)] is a native fish species in European waters. The goldfish, a species of Chinese origin arrived to Europe long time ago, and at the time when Linnaeus in 1758 published his Systema Naturae he described two Carassius species, the crucian carp as Cyprinus carassius and the goldfish as Cyprinus auratus. During the last two centuries 13 other Carassius spp. were described which proved to be synonymous of C. carassius and 3‐3 species as synonymous of Carassius auratus auratus and C. auratus gibelio, respectively. The authors confute the European origin of Carassius gibelio Bloch, called as Prussian carp. They compared infections of the gibel carp and goldfish with myxosporeans in Europe and in the Far‐East and found that these fishes in the Far‐East have been infected by several host specific Myxobolus and Thelohanellus species, while in Europe of them only a single species is known. Great differences in the range of myxosporean spp. suggest that both gibel carp and goldfish are Far‐ East origin fishes which arrived to Europe in the historical times.
    [Show full text]
  • Monograph of the Cyprinid Fis~Hes of the Genus Garra Hamilton (173)
    MONOGRAPH OF THE CYPRINID FIS~HES OF THE GENUS GARRA HAMILTON By A. G. K. MENON, Zoologist, ,Zoological Surt1ey of India, Oalcutta. (With 1 Table, 29 Text-figs. and 6 Plates) CONTENTS Page I-Introduction 175 II-Purpose and general results 176 III-Methods and approaches 176 (a) The definition of Measurements 176 (b) The analysis of Intergradation 178 (c) The recognition of subspecies. 179 (d) Procedures in the paper 180 (e) Evaluation of systematic characters 181 (I) Abbreviations of names of Institutions 181 IV-Historical sketch 182 V-Definition of the genus 187 VI-Systematic section 188 (a) The variabilis group 188 (i) The variabilis Complex 188 1. G. variabilis 188 2. G. rossica 189 (b) The tibanica group 191 (i) The tibanica Complex 191 3. G. tibanica. 191 4. G. quadrimaculata 192 5. G. ignestii 195 6. G. ornata 196 7. G. trewavasi 198 8. G. makiensis 198 9. G. dembeensis 199 10. G. ethelwynnae 202 (ii) The rufa complex 203 11. G. rufa rufa 203 12. G. rufa obtusa 205 13. O. barteimiae 206 (iii) The lamta complex 208 14. G. lamta 208 15. G. mullya 212 16. G. 'ceylonensis ceylonensis 216 17. G. c. phillipsi 216 18. G. annandalei 217 (173) 174 page (iv) The lissorkynckus complex 219 19. G. lissorkynchus 219 20. G. rupecula 220 ~ (v) The taeniata complex 221 21. G. taeniata. 221 22" G. borneensis 224 (vi) The yunnanensis complex 224 23. G. yunnanensis 225 24. G. gracilis 229 25. G. naganensis 226 26. G. kempii 227 27. G. mcOlellandi 228 28. G.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Disease of Aquatic Organisms 105:163
    Vol. 105: 163–174, 2013 DISEASES OF AQUATIC ORGANISMS Published July 22 doi: 10.3354/dao02614 Dis Aquat Org FREEREE REVIEW ACCESSCCESS CyHV-3: the third cyprinid herpesvirus Michael Gotesman1, Julia Kattlun1, Sven M. Bergmann2, Mansour El-Matbouli1,* 1Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria 2Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Insel Riems, Germany ABSTRACT: Common carp (including ornamental koi carp) Cyprinus carpio L. are ecologically and economically important freshwater fish in Europe and Asia. C. carpio have recently been endangered by a third cyprinid herpesvirus, known as cyprinid herpesvirus-3 (CyHV-3), the etio- logical agent of koi herpesvirus disease (KHVD), which causes significant morbidity and mortality in koi and common carp. Clinical and pathological signs include epidermal abrasions, excess mucus production, necrosis of gill and internal organs, and lethargy. KHVD has decimated major carp populations in Israel, Indonesia, Taiwan, Japan, Germany, Canada, and the USA, and has been listed as a notifiable disease in Germany since 2005, and by the World Organisation for Ani- mal Health since 2007. KHVD is exacerbated in aquaculture because of the relatively high host stocking density, and CyHV-3 may be concentrated by filter-feeding aquatic organisms. CyHV-3 is taxonomically grouped within the family Alloherpesviridae, can be propagated in a number of cell lines, and is active at a temperature range of 15 to 28°C. Three isolates originating from Japan (KHV-J), USA (KHV-U), and Israel (KHV-I) have been sequenced. CyHV-3 has a 295 kb genome with 156 unique open reading frames and replicates in the cell nucleus, and mature viral particles are 170 to 200 nm in diameter.
    [Show full text]
  • (Edcs) on FRESHWATER FISH Cyprinus Carpio
    TOXICITY STUDY OF ENDOCRINE DISRUPTING CHEMICALS (EDCs) ON FRESHWATER FISH Cyprinus carpio Thesis Submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY by REKHA RAO DEPARTMENT OF CIVIL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA SURATHKAL, MANGALORE – 575025 December 2017 DECLARATION I hereby declare that the Research Thesis entitled TOXICITY STUDY OF ENDOCRINE DISRUPTING CHEMICALS (EDCs) ON FRESHWATER FISH Cyprinus carpio which is being submitted to the National Institute of Technology Karnataka, Surathkal in partial fulfilment of the requirements for the award of the Degree of Doctor of Philosophy in ENVIRONMENTAL ENGINEERING is a bonafide report of the research work carried out by me. The material contained in this Research Thesis has not been submitted to any University or Institution for the award of any degree. 123001CV12F06, REKHA RAO Department of Civil Engineering Place: NITK, Surathkal Date: 26/12/2017 2 CERTIFICATE This is to certify that the Research Thesis entitled TOXICITY STUDY OF ENDOCRINE DISRUPTING CHEMICALS (EDCs) ON FRESHWATER FISH Cyprinus carpio submitted by REKHA RAO, (Register Number: 123001CV12F06) as the record of the research work carried out by her, is accepted as the Research Thesis submission in Partial fulfilment of the requirements for the award of degree of Doctor of Philosophy. Dr. B. Manu Dr. Arun Kumar Thalla Research Guide(s) Chairman – DRPC 3 ACKNOWLEDGEMENTS I acknowledge my thanks to NITK, Surathkal for providing the fellowship and financial support necessary for the completion of my doctoral work. I would like to express my deep sense of gratitude to my research supervisors, Dr. B. Manu, Associate Professor and Dr.
    [Show full text]
  • Nursery Rearing of Thai Sarpunti, Barbonymus Gonionotus Larvae Using Three Different Supplementary Feeds
    J. Bangladesh Agril. Univ. 7(1): 139–144, 2009 ISSN 1810-3030 Nursery rearing of Thai sarpunti, Barbonymus gonionotus larvae using three different supplementary feeds A. K. S. Ahammad, M. M. R. Khan, M. A. Hossain1 and I. Parvez2 Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh 1Department of Biotechnology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh 2Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh Abstract Nursery rearing of silver barb, Puntius gonionotus (Bleeker, 1850) larvae was carried out with three different feeding treatments T1, T2 and T3 having three replications each in nine rectangular glass aquaria (45x25x24 cm) for a period of 28 days in laboratory condition. Live planktonic feed (5000 cells/L), plankton and rice bran having 14.14% protein, and plankton and Saudi-Bangla nursery feed having 30.20% protein were tested as T1, T2 and T3, respectively. Three days old larvae of B. gonionotus (average length 5.0±0.15 mm and weight 7.0±0.05 mg) were stocked at a stocking density of 4.1 larvae/L of water in each aquarium. The highest length at harvest (28.06±0.38 mm and weight 135.00±3.05 mg) and also highest SGR (18.79±0.80) were found in T3 followed by T2 and T1. The survival rate in all the treatments was high (92-90%) and treatment to treatment variation was not significant (P<0.05). The result implies that the application of supplemental feeds over control in nursery rearing of B.
    [Show full text]