Biomass Sorghum and Sweet Sorghum Data Gathering Report

Total Page:16

File Type:pdf, Size:1020Kb

Biomass Sorghum and Sweet Sorghum Data Gathering Report Biomass Sorghum and Sweet Sorghum Biomass Sorghum and Sweet Sorghum Data Gathering Report Order Number: D15PX00044 Submitted to: USDA-RMA COTR: Jaime Padget 6501 Beacon Drive Kansas City, Missouri 64133-6205 (816) 926-8466 Submitted by: Watts and Associates, Inc. 4331 Hillcrest Road Billings, Montana59101 (406) 252-7776 [email protected] Due Date: April 6, 2015 This document includes data that shall not be disclosed outside of the Government and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose. The Government shall have the right to duplicate, use, or disclose the data to the extent provided in Order No D15PX00044. All pages of this document are subject to this restriction. Biomass Sorghum and Sweet Sorghum Table of Contents I. Introduction ................................................................................................................................. 1 II. Biomass Sorghum and Sweet Sorghum Description.................................................................. 3 III. Maketing Description.............................................................................................................. 10 IV. Review of Current Programs .................................................................................................. 14 V. Data Collection ........................................................................................................................ 24 VI. Stakeholder Input .................................................................................................................... 28 VII. Risk Analysis ......................................................................................................................... 35 VIII. Feasibility Assessment ......................................................................................................... 41 IX. Recommendations................................................................................................................... 46 List of Tables Table 1. Sorghum Total Acres Planted by State, 2014 Crop Year ................................................. 7 Table 2. Grain Sorghum Production by State, 2013 Crop Year ..................................................... 8 Table 3. Silage Sorghum Production by State, 2014 Crop Year .................................................... 8 List of Appendices Appendix A. 2014 NASS Survey Grain Sorghum Production by County Appendix B. 2012 NASS Census of Agriculture Grain Sorghum, Silage Sorghum, and Sorghum Syrup Production Data by County Appendix C. U.S. Biofuel Support Programs Status Appendix D. Federal and State Bioenergy Laws and Incentives Appendix E. Listening Session Agenda Appendix F. Biomass Sorghum and Sweet Sorghum Listening Session Press Release Appendix G. Production of Biofuel Crops in Florida: Sweet Sorghum and Forage Sorghum (Sorghum bicolor): Overview and Management Use or disclosure of information or data i Risk Management Agency contained on this sheet is subject to the Order No: D15PX00044 restrictions on the title page of this report. Biomass Sorghum and Sweet Sorghum Executive Summary This report addresses issues regarding crop insurance development opportunities and challenges for biomass and sweet sorghum grown as a feedstock for energy production and biobased products.1 Section 1522(c)(17)(A) of the Federal Crop Insurance Act as amended by the 2014 Farm Bill (Public Law 113-79) authorizes the contract for the study under which this report was prepared. Section 1522(c)(17)(A) states: “The Corporation shall offer to enter into 1 [one] or more contracts with qualified entities to carry out development regarding ̶ (i) a policy to insure biomass sorghum that is grown expressly for the purpose of producing a feedstock for renewable biofuel, renewable electricity, or biobased products; and (ii) a policy to insure sweet sorghum that is grown for a purpose described in clause (i).” This data gathering report is required by contract to provide information and analysis “to aid in the development of a crop insurance program [for biomass and sweet sorghum grown as an energy or biobased product feedstock] and identify issues related to potentially providing coverage.”2 The Secretary of the United States Department of Agriculture (USDA) was authorized by the 2002 Farm Bill (the Farm Security and Rural Investment Act of 2002, Public Law 107-171) to identify products as biobased if they are a commercial or industrial product other than food or feed composed (in whole or in significant part) of biological products, renewable domestic agricultural materials, forestry materials, or an intermediate feedstock derived from these products or materials. Consequently, sorghum grown for food or feed is not addressed, except incidentally, as the subject of this study. While the focus of the Contractor’s research effort was gathering information about biomass sorghum and sweet sorghum and the feasibility of developing an insurance program, the contract specifies: “RMA [the USDA Risk Management Agency] is not looking for a complete feasibility study, but is looking for specific aspects needed to understand and determine what type of crop insurance program will work best for these crops, producers, and for the specific data needed to create a crop insurance program that covers producers with an optimal program.”3 Therefore, the analysis of feasibility was focused on approaches to develop an insurance product and the barriers those approaches introduce rather than on reasons such a development effort might be unfeasible. The contract further identifies areas of research that supported the preparation of the report. The findings related to these topics are summarized below in the order presented in the contract. Listening Sessions: The Contractor shall analyze, summarize and interpret the data gathered. The Contractor contacted producers, insurance providers, bioenergy representatives, and leaders representing producers at the state and national levels to determine the level of interest held by the industry in an insurance program for biomass and sweet sorghum produced as a feedstock for energy and biobased products. These efforts culminated in listening sessions in California, Florida, Kansas, and Louisiana. The sessions were poorly attended. Participants included two 1 The government is inconsistent in its use of a hyphen in the term “biobased products.” As the official definition excludes the hyphen, that is the convention that will be used in this report. 2 United States Department of Interior (DOI), Order D15PX00044, page 23 of 35. 3 Solicitation Number D14PS00630-A2, page 50 of 73. Use or disclosure of information or data i Risk Management Agency contained on this sheet is subject to the Order No: D15PX00044 restrictions on the title page of this report. Biomass Sorghum and Sweet Sorghum producers, three producer organization representatives, three insurance industry representatives, and three biobased products industry representatives. The Contractor also communicated with an additional 43 stakeholders by email or in individual conversations in person or by telephone. The strongest interest in crop insurance for biomass and sweet sorghum as a feedstock for renewable biofuel, renewable electricity, or biobased products came from the end users of the crop. These stakeholders believed having a dependable supply of sorghum as a feedstock was dependent on the availability of crop insurance for the producers of that feedstock sorghum. In contrast, many of the producers who communicated with the Contractor seemed to consider the sorghum as a catch crop. Based on testimony from stakeholders, the limited demand for biomass and sweet sorghum, and especially for these crops as a feedstock for energy and biobased products, was influenced by a decrease in federal support for production of biofuels and a drastic decline in the price of petroleum. Description of the Crop: The Contractor shall present data relative to the crop’s economic importance, adaptation, agronomic and botanical classifications, important varieties and their characteristics… Sorghum is a member of the family Poaceae, i.e., a grass. An annual crop, sorghum is planted in the late spring or early fall. In tropical and subtropical climates, more than one planting and harvest is possible in a single crop year. Sorghum grain is harvested at the end of the growing season, generally about 90 to 130 days after planting. While sorghum grain is used as a food outside the United States, in the United States sorghum grain is used primarily as a component in livestock feed. Producers in the United States grow many different varieties of sorghum. These varieties have remarkably different growth patterns depending on the variety and environmental conditions. Some of the sorghum varieties have high soluble sugar content (sweet sorghums). Sweet sorghum contains readily fermentable sugars as well as large amounts of carbohydrate biomass in the form of starch, cellulose, or hemicellulose. Some varieties of sorghum produce tall plants with substantial amounts of complex carbohydrates (biomass sorghums and high-biomass sorghums). Ceres, a biotechnology company, reports production of high biomass sorghum plants as tall as 18 feet under favorable conditions.4 The biomass sorghums are characterized by accumulations of cellulose, hemicellulose, and lignin. These are less easily converted to fuel by fermentation but may be burned directly or refined to produce energy products other than ethanol.
Recommended publications
  • Comparison of Intercropped Sorghum- Soybean Compared to Its Sole Cropping
    Volume 2- Issue 1 : 2018 DOI: 10.26717/BJSTR.2018.02.000701 Saberi AR. Biomed J Sci & Tech Res ISSN: 2574-1241 Research Article Open Access Comparison of Intercropped Sorghum- Soybean Compared to its Sole Cropping Saberi AR* Department of Agricultural & Natural Resources, Research & Education Centre of Golestan Province, Iran Received: January 17, 2018; Published: January 29, 2018 *Corresponding author: Saberi AR, Agricultural & Natural Resources Research & Education Centre of Golestan Province, Gorgan, Iran; Email: Abstract Glycine max L. Merill) with sorghum (Sorghum bicolor L.) intercropping, this research performed in Gorgan and Aliabaad. Experiment compared on three levels inform of pure sorghum with density of 250000 plant per hectare, intercroppingIn order to of find sorghum the best and planting soybean pattern with densityof soybean of 250000 ( and 400000 plant per hectare, respectively and intercropping of sorghum and soybean with density of 300000 and 480000 plant per hectare, respectively. The number of planting lines was 60 liens with length of 66.66 meters and 50cm interval. For measuring of plant height, number of tiller, stem diameter and number of node, 10 bushes randomly harvested by using quadrate. By the way total surface area based of project protocol also harvested. For the results analysis t-test applied. Fresh forage production at treatment of intercropping with 300000 and 480000 plant density for sorghum and soybean, respectively in Gorgan %33.33 and in Aliabad %34.32 had priority compared to check treatment (sole cropping of sorghum with density of 250000 plants per hectare). Mean comparison of dry forage also indicated %24.01 increasing in Gorgan and %26.12 in Aliabaad.
    [Show full text]
  • A Chromosome-Scale Assembly of Miscanthus Sinensis
    1/23/2018 A chromosome-scale assembly allows genome-scale analysis A Chromosome-Scale Assembly • Genome assembly and annotation update of Miscanthus sinensis • Andropogoneae relatedness Therese Mitros University of California Berkeley • Miscanthus-specific duplication and ancestry • Miscanthus ancestry and introgression Miscanthus genome assembly is chromosome scale • A doubled-haploid accession of Miscanthus sinensis was created by Katarzyna Glowacka • Illumina sequencing to 110X depth • Illumina mate-pairs of 2kb, 5kb, fosmid-end • Chicago and HiC libraries from Dovetail Genomics • 2.079 GB assembled (11% gap) with 91% of genome assembly bases in the known 19 Miscanthus chromosomes HiC contact map Dovetail assembly agrees with genetic map RADseq markers from 3 M. ) sinensis maps and one M. sinensis cM ( x M. sacchariflorus map (H. Dong) Of 6377 64-mer markers from these maps genetic map 4298 map well to the M. sinensis DH1 assembly and validate the Dovetail assembly combined Miscanthus Miscanthus sequence assembly 1 1/23/2018 Annotation summary • 67,789 Genes, 11,489 with alternate transcripts • 53,312 show expression over 50% of their lengths • RNA-seq libraries from stem, root, and leaves sampled over multiple growing seasons • Small RNA over same time points • Available at phytozome • https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Msinensis_er Miscanthus duplication and retention relative Small RNA to Sorghum miRNA putative_miRNA 0.84% 0.14% 369 clusters miRBase annotated miRNA 61 clusters phasiRNA 43 clusters 1.21%
    [Show full text]
  • The Economics of Processing Ethanol at Louisiana Sugar Mills
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 The economics of processing ethanol at Louisiana sugar mills: a three part economic analysis of feedstocks, risk, business strategies, and uncertainty Paul Michael Darby Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Agricultural Economics Commons Recommended Citation Darby, Paul Michael, "The ce onomics of processing ethanol at Louisiana sugar mills: a three part economic analysis of feedstocks, risk, business strategies, and uncertainty" (2011). LSU Doctoral Dissertations. 2290. https://digitalcommons.lsu.edu/gradschool_dissertations/2290 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE ECONOMICS OF PROCESSING ETHANOL AT LOUISIANA SUGAR MILLS: A THREE PART ECONOMIC ANALYSIS OF FEEDSTOCKS, RISK, BUSINESS STRATEGIES, AND UNCERTAINTY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Agricultural Economics & Agribusiness by Paul M. Darby B.S., University of Louisiana at Lafayette, 2005 December 2011 ACKNOWLEDGEMENTS I would like to thank everyone who has stood beside me in my pursuit of a Ph.D. I would especially like to thank my fiancée, my daughter, my parents, and the rest of my immediate family for all their love and support.
    [Show full text]
  • Seed Priming with Sorghum Water Extract Improves the Performance of Camelina (Camelina Sativa (L.) Crantz.) Under Salt Stress
    plants Article Seed Priming with Sorghum Water Extract Improves the Performance of Camelina (Camelina sativa (L.) Crantz.) under Salt Stress Ping Huang 1, Lili He 1, Adeel Abbas 1,*, Sadam Hussain 2 , Saddam Hussain 3 , Daolin Du 1,*, Muhammad Bilal Hafeez 2,3 , Sidra Balooch 4, Noreen Zahra 5, Xiaolong Ren 2, Muhammad Rafiq 6 and Muhammad Saqib 6 1 Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] (P.H.); [email protected] (L.H.) 2 College of Agronomy, Northwest A&F University, Yangling 712100, China; [email protected] or [email protected] (S.H.); [email protected] or [email protected] (M.B.H.); [email protected] or [email protected] (X.R.) 3 Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; [email protected] 4 Department of Botany, Ghazi University D.G, Khan 32200, Pakistan; [email protected] or [email protected] 5 Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan; [email protected] or [email protected] 6 Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan; [email protected] or rafi[email protected] (M.R.); [email protected] or [email protected] (M.S.) * Correspondence: [email protected] (A.A.); [email protected] (D.D.) Citation: Huang, P.; He, L.; Abbas, A.; Hussain, S.; Hussain, S.; Du, D.; Abstract: Seed priming with sorghum water extract (SWE) enhances crop tolerance to salinity stress; Hafeez, M.B.; Balooch, S.; Zahra, N.; however, the application of SWE under salinity for camelina crop has not been documented so far.
    [Show full text]
  • Sorghum -- Sorgho
    SORGHUM -- SORGHO Key to symbols used in the classification of varieties at end of this file --------- Explication des symboles utilisés dans la classification des variétés en fin de ce fichier Sorghum bicolor 102F US,857 Sorghum bicolor 114A US,339 Sorghum bicolor 120A MX,2887 Sorghum bicolor 128A MX,2887 Sorghum bicolor 12FS9004 b,IT,3127 Sorghum bicolor 12Fb0011 b,US,3133 Sp2774 US Spx35415 US Sorghum bicolor 12Fs0018 US,3133 Fs1605 US Sorghum bicolor 12Fs9009 US,3133 Spx904 US Sorghum bicolor 12Fs9011 b,US,3133 Green Giant US Sorghum bicolor 12Fs9013 US,3133 Spx903 US Sorghum bicolor 12Gs0106 b,US,3133 Sp 33S40 US Spx12614 US Sorghum bicolor 12Gs90009 b,US,3133 Nkx869 US Sorghum bicolor 12Gs9007 b,US,3133 Nk7633 US Nkx633 US Sorghum bicolor 12Gs9009 d,US,3133 Sorghum bicolor 12Gs9012 b,US,3133 Hopi W US Sontsedar US Sp3303 US Sorghum bicolor 12Gs9015 b,US,3133 Nk5418 US Nkx418 US Sorghum bicolor 12Gs9016 d,US,3133 Sorghum bicolor 12Gs9017 b,US,3133 Nkx684 US Sp6929 US Sorghum bicolor 12Gs9018 b,US,3133 K73-J6 US Nkx606 US Sorghum bicolor 12Gs9019 d,US,3133 Sorghum bicolor 12Gs9024 b,US,3133 Nkx867 US Sorghum bicolor 12Gs9030 US,3133 Nkxm217 US Xm217 US Sorghum bicolor 12Gs9032 b,US,3133 Nk8830 US Nkx830 US Sorghum bicolor 12Gs9037 b,US,3133 Nk8810 US Nkx810 US Sorghum bicolor 12Gs9050 b,US,3133 Nk8817 US Nkx817 US Sorghum bicolor 12Gs9051 d,US,3133 Sorghum bicolor 12SU9002 b,US,3133 G-7 US Nkx922 US SSG73 US Sordan Headless US Sorghum bicolor 12Sb9001 b,US,3133 Nkx942 US July 2021 Page SO1 juillet 2021 SORGHUM -- SORGHO Key to symbols
    [Show full text]
  • Kansas Crops
    Kansas Crops Unit 4) Kansas Crops The state of Kansas is often called the "Wheat State" or the "When tillage begins, other acts follow. The farmers, therefore, are the "Sunflower State." Year after year, the state of Kansas leads the founders of human civilization." nation in the production of wheat and grain sorghum and ranks Daniel Webster, American statesman and orator among the top ten states in the production of sunflowers, alfalfa, When Kansas became a state, corn, and soybeans. Kansas farmers also plant and harvest a variety most of the people in the United of other crops to meet the need for food, feed, fuel, fiber, and other States were farmers. According to consumer and industrial products. the U.S. Department of Agricul- ture, the food and fiber produced by the average farmworker at that Introduction time supported fewer than five Wheat people. Farming methods, which – Wheat uses Credit: Louise Ehmke had not changed significantly – Wheat history for several decades, were passed down from one generation to the Corn next. The Homestead Act of 1862 promoted the idea that anyone – Corn uses could become a farmer but people soon realized that once they went – Corn history beyond the eastern edge of Kansas, survival depended on changing Grain Sorghum those traditional farming methods. – Grain sorghum uses Out of necessity, Kansas adopted an attitude of innovation and – Grain sorghum history experimentation. Since 1863, faculty at the Kansas State Agricul- Soybeans tural College (KSAC) and the KSAC Agricultural Experiment – Soybean uses Station have assisted Kansas farmers in meeting crop production – Soybean history challenges.
    [Show full text]
  • Weed Suppression in Maize (Zea Mays
    Rashid et al.: Weed suppression in maize (Zea mays L.) through the allelopathic effects of sorghum [Sorghum bicolor (L.) Conard Moench.] sunflower (Helianthus annuus L.) and parthenium (Parthenium hysterophorus L.) plants - 5187 - WEED SUPPRESSION IN MAIZE (ZEA MAYS L.) THROUGH THE ALLELOPATHIC EFFECTS OF SORGHUM [SORGHUM BICOLOR (L.) CONARD MOENCH.] SUNFLOWER (HELIANTHUS ANNUUS L.) AND PARTHENIUM (PARTHENIUM HYSTEROPHORUS L.) PLANTS RASHID, H. U.1 – KHAN, A.1 – HASSAN, G.2 – KHAN, S. U.1 – SAEED, M.3 – KHAN, S. A.4 – KHAN, S. M.5 – HASHIM, S.2 1Department of Agronomy, The University of Haripur, Haripur, Pakistan 2Department of Weed Science, The University of Agriculture Peshawar, Peshawar, Pakistan 3Department of Agriculture, The University of Swabi, Swabi, Pakistan 4Department of PBG, The University of Haripur, Haripur, Pakistan 5Department of Horticulture, The University of Haripur, Haripur, Pakistan *Corresponding author e-mail: [email protected] (Received 19th Jan 2020; accepted 25th May 2020) Abstract. The present study was carried out at the Weed Science Research Laboratory, The University of Agriculture, Peshawar Pakistan (June-July 2013 and Sep-Oct 2013). To evaluate the most effective and economical treatment for weed management in maize (Zea mays L.), the pot experiment was performed using completely randomized design (CRD) with three replications. Allelopathic effects of Sorghum bicolor (L.) Conard Moench., Helianthus annuus L., Parthenium hysterophorus L, and the commercial herbicide (atrazine @ 18 g L-1) was used for comparison. The data were recorded on germination and seedling growth of test species (Zea mays, Trianthema portulacastrum and Lolium rigidum). The data showed that S. bicolor + H. annuus + P.
    [Show full text]
  • Sweet Sorghum: a Water Saving Bioenergy Crop
    Sweet sorghum: A Water Saving Bio­Energy Crop Belum V S Reddy, A Ashok Kumar and S Ramesh International Crops Research Institute for the Semi­Arid Tropics Patancheru ­502 324. Andhra Pradesh, India The United Nations (UN) eight­millennium development goals (MDGs) provide a blueprint for improving livelihoods, and preserving natural resources and the environment with 2015 as target date. The UN member states and the world’s leading development institutions agreed upon the MDGs. None of them however, have a specific reference to energy security considering that energy is the fuel of economic prosperity and hence assist to mitigating poverty. Nonetheless, diversification of the crop uses, identifying and introducing bio­fuel crops may lead to farmers’ incomes, thereby contributing to eradicating extreme poverty (MDG 1) in rural areas helping 75% of the world’s 2.5 billion poor (who live on <US$ 2 per day), and contributing to their energy needs. The energy is required for consumptive uses (cooking, lighting, heating, entertainment), for social needs (education and health care services), public transport (road, rail and air), industries, and agriculture and allied sectors. Agriculture practices in many developing countries continue to be based to a large extent on animal and human energy. Providing easy access to energy services (such as conventional fossil fuels renewable sources like solar, wind and bio­fuels) to the agriculture sector is essential to improve farm productivity and hence income of the peasants. However, access to fossil fuels is not a sustainable solution, as it will not provide social, economic and environment benefits considering very high price of fossil fuels and environment pollution associated with their use.
    [Show full text]
  • Towards Sustainable Sorghum Production, Utilization, and Commercialization in West and Central Africa
    Towards Sustainable Sorghum Production, Utilization, and Commercialization in West and Central Africa Vers une production, utilisation et commercialisation durables du sorgho en Afrique occidentale et centrale WCASRN/ROCARS West and Central Africa Sorghum Research Network Réseau ouest et centre africain de recherche sur le sorgho ICRISAT, BP 320 Bamako, Mali ICRISAT International Crops Research Institute for the Semi-Arid Tropics West and Central Africa Sorghum Research Network Institut international de recherche sur les cultures des zones tropicales semi-arides Réseau ouest et centre africain de recherche sur le sorgho Patancheru 502 324, Andhra Pradesh, India/Inde International Crops Research Institute for the Semi-Arid Tropics Institut international de recherche sur les cultures des zones tropicales semi-arides ISBN 92–9066–433–9 CPE 131 263–2001 Citation: Akintayo, I. and Sedgo, J. (ed.). 2001. Towards sustainable sorghum production, utilization, and About ROCARS commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, 19-22 April 1999, Lome, Togo. Bamako, BP 320, Mali: West and Sorghum is one of the most important cereal crops in the semi-arid countries of West and Central Central Africa Sorghum Research Network; and Patancheru 502 324, Andhra Pradesh, India: International Africa (WCA). The first Regional Sorghum Research Network was created in 1984 and became Crops Research Institute for the Semi-Arid Tropics. 000 pages. ISBN 92-9066-4330-9. Order code CPE operational in 1986 for a 5-year term, with financial support from the United States Agency for 131. International Development (USAID) through the Semi-Arid Food Grain Research and Development (SAFGRAD).
    [Show full text]
  • A Co-Opted Steroid Synthesis Gene, Maintained in Sorghum but Not Maize, Is Associated with a Divergence in Leaf Wax Chemistry
    A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry Lucas Bustaa,b,1,2,3, Elizabeth Schmitza,b,1, Dylan K. Kosmac, James C. Schnableb,d, and Edgar B. Cahoona,b,3 aDepartment of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE 68588; bCenter for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, NE 68588; cDepartment of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557; and dDepartment of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583 Edited by Julian I. Schroeder, University of California San Diego, La Jolla, CA, and approved February 1, 2021 (received for review November 17, 2020) Virtually all land plants are coated in a cuticle, a waxy polyester Though plants deploy diverse mechanisms to protect them- that prevents nonstomatal water loss and is important for heat selves against drought and heat, one of the most widespread and drought tolerance. Here, we describe a likely genetic basis for (found in essentially all land plants), is a hydrophobic, aerial a divergence in cuticular wax chemistry between Sorghum bicolor, surface coating called the cuticle. This structure is composed of a a drought tolerant crop widely cultivated in hot climates, and its fatty acid-derived polyester scaffold called cutin, inside and on close relative Zea mays (maize). Combining chemical analyses, het- top of which accumulates wax, a mixture of hydrophobic com- erologous expression, and comparative genomics,
    [Show full text]
  • C I N I a Nd the 2 Conference on Innovation and Industrial Applications (CINIA 2016)
    C I N I A nd The 2 Conference on Innovation and Industrial Applications (CINIA 2016) The Utilization of Cassava and Sorghum Flours as A Staple Food in Indonesia Setiyo Gunawan1, Nur Istianah2, Hakun Wirawasista Aparamarta1, Raden Darmawan1, Lailatul Qadariyah1, and Kuswandi1 1Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 Indonesia 2Agricultural Products Technology, Brawijaya University, Malang 65145, Indonesia [email protected] Abstrak Indonesia has high a demand level of wheat flour for both the industrial and households sectors, such as bread industry. Wheat flour is the dominant composition of bread, however it is the source of gluten which may promote celiac disease (CD). The lifetime obedience to the gluten-free diet is the only treatment for this disease. The finding of a new material in order to obtain gluten-free product is an important topic. Furthermore, Indonesia is a tropical region that is rich in natural resources, such as cassava (Manihot esculenta) and Sorghum (Sorghum-bicolor (L) Moech). Fermentation was used to improve nutritional content of sorghum flour and cassava flour, resulting modified cassava flour (mocaf) and modified sorghum flour (mosof), respectively. A strategy for utilization of cassava in production of mocaf was demonstrated. Mocaf flour can be produced by fermentation use L. plantarum, S. cereviseae, and R. oryzae that are cheap and non pathogenic to increase the levels of protein and decrease the levels of cyanide acid in the mocaf flour. This work has also shown that lactid acid is produced as by-product during the fermentation. Keyword: cassava, celiac disease, fermentation, sorghum, wheat 1 INTRODUCTION Recently, bread is one of common food that are also become a stuff food in Indonesia.
    [Show full text]
  • Fall 2015 Issue
    Providing for Food-Grade Southern those in need p. 8 Sorghum Q&A p. 22 spirits p. 30 Fall 2015 A n t i o x i n i d h e n g i t s H R Unique Southern s i t c n h e i n t r i N u Ancient Pet Food Digestability L Food Aid ow ex VERSATILE Glycemic Ind MERS FAR CAN ERI AM MADE BY ro S. G wer U. s Feeding the World IDENTITY PRESERVED Also Inside AUSTIN, TX 78744 TX AUSTIN, Permit NO. 1718 NO. Permit U.S. POSTAGE PAID POSTAGE U.S. Sorghum Checkoff Newsletter NONPROFIT ORG. ORG. NONPROFIT NATIONAL SORGHUM PRODUCERS, 4201 N INTERSTATE 27, LUBBOCK, TX 79403 TX LUBBOCK, 27, INTERSTATE N 4201 PRODUCERS, SORGHUM NATIONAL DEKALB.com PERFORMANCE STARTS HERE. DEKALB® Sorghum can deliver the standability, threshability and staygreen you demand for your operation, with seed treatments destined to perform against the most persistent insects and diseases. WORK WITH YOUR EXPERT DEKALB DEALER TO FIND THE RIGHT SORGHUM PRODUCT FOR YOUR FARM, or visit DEKALB.com/agSeedSelect Individual results may vary. DEKALB and Design® and DEKALB® are registered trademarks of Monsanto Technology LLC. ©2014 Monsanto Company. TABLE of Contents Features 8 Providing for Those in Need Sorghum is the second largest U.S. SORGHUM commodity used for international food aid in countries around the world. Fall 2015 22 Food Grade Q&A Learn what makes food-grade sorghum food grade from NuLife Market’s Earl Roemer. 30 Southern Spirits Cra distillers stand out with sorghum.
    [Show full text]