Sorghum -- Sorgho

Total Page:16

File Type:pdf, Size:1020Kb

Sorghum -- Sorgho SORGHUM -- SORGHO Key to symbols used in the classification of varieties at end of this file --------- Explication des symboles utilisés dans la classification des variétés en fin de ce fichier Sorghum bicolor 102F US,857 Sorghum bicolor 114A US,339 Sorghum bicolor 120A MX,2887 Sorghum bicolor 128A MX,2887 Sorghum bicolor 12FS9004 b,IT,3127 Sorghum bicolor 12Fb0011 b,US,3133 Sp2774 US Spx35415 US Sorghum bicolor 12Fs0018 US,3133 Fs1605 US Sorghum bicolor 12Fs9009 US,3133 Spx904 US Sorghum bicolor 12Fs9011 b,US,3133 Green Giant US Sorghum bicolor 12Fs9013 US,3133 Spx903 US Sorghum bicolor 12Gs0106 b,US,3133 Sp 33S40 US Spx12614 US Sorghum bicolor 12Gs90009 b,US,3133 Nkx869 US Sorghum bicolor 12Gs9007 b,US,3133 Nk7633 US Nkx633 US Sorghum bicolor 12Gs9009 d,US,3133 Sorghum bicolor 12Gs9012 b,US,3133 Hopi W US Sontsedar US Sp3303 US Sorghum bicolor 12Gs9015 b,US,3133 Nk5418 US Nkx418 US Sorghum bicolor 12Gs9016 d,US,3133 Sorghum bicolor 12Gs9017 b,US,3133 Nkx684 US Sp6929 US Sorghum bicolor 12Gs9018 b,US,3133 K73-J6 US Nkx606 US Sorghum bicolor 12Gs9019 d,US,3133 Sorghum bicolor 12Gs9024 b,US,3133 Nkx867 US Sorghum bicolor 12Gs9030 US,3133 Nkxm217 US Xm217 US Sorghum bicolor 12Gs9032 b,US,3133 Nk8830 US Nkx830 US Sorghum bicolor 12Gs9037 b,US,3133 Nk8810 US Nkx810 US Sorghum bicolor 12Gs9050 b,US,3133 Nk8817 US Nkx817 US Sorghum bicolor 12Gs9051 d,US,3133 Sorghum bicolor 12SU9002 b,US,3133 G-7 US Nkx922 US SSG73 US Sordan Headless US Sorghum bicolor 12Sb9001 b,US,3133 Nkx942 US July 2021 Page SO1 juillet 2021 SORGHUM -- SORGHO Key to symbols used in the classification of varieties at end of this file --------- Explication des symboles utilisés dans la classification des variétés en fin de ce fichier Sordan Bmr US Sorghum bicolor 12Su0029 b,US,3133 Chief US Special Effort Iii US Sorghum bicolor 12Su9004 b,US,3133 Nkx920 US Sorghum bicolor 131A MX,2887 Sorghum bicolor 13GS0036 b,US,3133 Nk2212 US Nkx212 US Tzuni US Sorghum bicolor 13GS0037 b,IT,3132 Cleone US Sorghum bicolor 13GS0768 b,IT,3127 Sorghum bicolor 13Gs0768 b,US,3133 Spx15614 US Sorghum bicolor 13Sb0001 b,US,3133 Sp4105 US Sorghum bicolor 1410 US,3180 Sorghum bicolor 14Gs8007 b,US,3133 Arkanciel US Sorghum bicolor 14Gs8008 b,US,3133 Arsky US Sorghum bicolor 14Gs8010 b,US,3133 Balto Cs US Sorghum bicolor 14Sb0005 b,US,3133 Sorghum bicolor 155 A (H-155) MX,2887 Sorghum bicolor 155 A/B MX,2887 Sorghum bicolor 16Gs8003 b,US,3133 Es Mousson US Sorghum bicolor 174B MX,2887 Sorghum bicolor 19010 A/B MX,2887 Sorghum bicolor 1Z0241A1 d,PT,1755 Sorghum bicolor 1Z0241B d,PT,1755 Sorghum bicolor 1Z0244A1 b,PT,1755 Sorghum bicolor 1Z0244B d,PT,1755 Sorghum bicolor 1Z0246A1 d,PT,1755 Sorghum bicolor 1Z0246B d,PT,1755 Sorghum bicolor 1Z1602A1 d,PT,1755 Sorghum bicolor 1Z1602B d,PT,1755 Sorghum bicolor 1Z2245A1 d,PT,1755 Sorghum bicolor 1Z2245B d,PT,1755 Sorghum bicolor 201A MX,2887 Sorghum bicolor 202A MX,US,339,2887 Sorghum bicolor 2050Fs8001 US,3133 Es Athena US Sorghum bicolor 214A MX,US,339,2887 Sorghum bicolor 23012 US,42 Bianca US Sorghum bicolor 23462 US,42 Tonga US Sorghum bicolor 237A US,339 Sorghum bicolor 242A MX,2887 Sorghum bicolor 243A MX,2887 Sorghum bicolor 2505 US,3133 Sorghum bicolor 251 b,US,3133 Sorghum bicolor 252R MX,2887 Sorghum bicolor 257 R MX,2887 Sorghum bicolor 260A US,2092 Sorghum bicolor 2656 US,3133 Sorghum bicolor 265A MX,2887 Sorghum bicolor 2660 US,3133 Sorghum bicolor 266A MX,2887 Sorghum bicolor 2670 US,3133 Sorghum bicolor 26837 US,42 Zumba US Sorghum bicolor 270 A/B MX,2887 Sorghum bicolor 2888 US,3133 Sorghum bicolor 303R US,339 Sorghum bicolor 319X120 b,RO,2276 July 2021 Page SO2 juillet 2021 SORGHUM -- SORGHO Key to symbols used in the classification of varieties at end of this file --------- Explication des symboles utilisés dans la classification des variétés en fin de ce fichier Sorghum bicolor 38711 R MX,2887 Sorghum bicolor 38ANE MX,3312 Sorghum bicolor 3Z0040A1 d,PT,1755 Sorghum bicolor 3Z0040B d,PT,1755 Sorghum bicolor 3Z0242A1 d,PT,1755 Sorghum bicolor 3Z0243A1 b,PT,1755 Sorghum bicolor 3Z0243B d,PT,1755 Sorghum bicolor 3Z0245A1 b,PT,1755 Sorghum bicolor 3Z0245B d,PT,1755 Sorghum bicolor 3Z0247A1 d,PT,1755 Sorghum bicolor 3Z0247B d,PT,1755 Sorghum bicolor 3Z0248A1 d,PT,1755 Sorghum bicolor 3Z0248B d,PT,1755 Sorghum bicolor 3Z0251A1 d,PT,1755 Sorghum bicolor 3Z0251B d,PT,1755 Sorghum bicolor 3Z2525 d,PT,1755 Sorghum bicolor 3ZG001 d,PT,1755 Sorghum bicolor 3ZG004 d,PT,1755 Sorghum bicolor 402 A/B MX,2887 Sorghum bicolor 403 A (A2MX069R) MX,2887 Sorghum bicolor 405 A/B MX,2887 Sorghum bicolor 406 A/B MX,2887 Sorghum bicolor 415 A/B MX,2887 Sorghum bicolor 416 A/B MX,2887 Sorghum bicolor 417 A/B MX,2887 Sorghum bicolor 418 A/B MX,2887 Sorghum bicolor 419X124 b,RO,2276 Sorghum bicolor 430R MX,2887 Sorghum bicolor 439B MX,2887 Sorghum bicolor 442 B MX,2887 Sorghum bicolor 449B MX,2887 Sorghum bicolor 483 A MX,2887 Sorghum bicolor 484 A MX,2887 Sorghum bicolor 485 A MX,2887 Sorghum bicolor 5017R MX,2887 Sorghum bicolor 5026R MX,2887 Sorghum bicolor 5027R MX,2887 Sorghum bicolor 5041R MX,2887 Sorghum bicolor 5042R MX,2887 Sorghum bicolor 529R US,339 Sorghum bicolor 538CR MX,US,339,2887 Sorghum bicolor 548R MX,2887 Sorghum bicolor 5560 US,579 C5560 US Z425 US Sorghum bicolor 56R MX,2887 Sorghum bicolor 577R US,339 Sorghum bicolor 588R US,339 Sorghum bicolor 590R MX,2887 Sorghum bicolor 593 R MX,2887 Sorghum bicolor 594 R (1GM984-20-1-1) MX,2887 Sorghum bicolor 5Z2511 d,PT,1755 Sorghum bicolor 5Z2522 d,PT,1755 Sorghum bicolor 6 A/B MX,2887 Sorghum bicolor 601R MX,2887 Sorghum bicolor 612R MX,2887 Sorghum bicolor 618 R MX,2887 Sorghum bicolor 644 R MX,2887 Sorghum bicolor 70368 d,PT,41 Sorghum bicolor 71077 d,AU,21 Sorghum bicolor 71188/82085 AU,21 Sorghum bicolor 71188/82461 AU,21 Sorghum bicolor 71189 AU,21 Sorghum bicolor 71244 b,AU,21 Sorghum bicolor 71246 AU,21 Sorghum bicolor 71263 AU,21 Sorghum bicolor 72461 AU,21 Sorghum bicolor 72461/82085 AU,21 Sorghum bicolor 72510 x 82557 AU,21 Sorghum bicolor 72511/82516 AU,21 Sorghum bicolor 72532/82514 AU,21 Sorghum bicolor 72533/82536 AU,21 Sorghum bicolor 72M7 US,3180 Sorghum bicolor 7ROGER MX,3312 Sorghum bicolor 7Z1697 d,PT,1755 Sorghum bicolor 7Z1699 d,PT,1755 Sorghum bicolor 7Z1764 d,PT,1755 Sorghum bicolor 7Z1858 d,PT,1755 July 2021 Page SO3 juillet 2021 SORGHUM -- SORGHO Key to symbols used in the classification of varieties at end of this file --------- Explication des symboles utilisés dans la classification des variétés en fin de ce fichier Sorghum bicolor 7Z2502 d,PT,1755 Sorghum bicolor 7Z2504 d,PT,1755 Sorghum bicolor 7Z2506 d,PT,1755 Sorghum bicolor 7Z2507 d,PT,1755 Sorghum bicolor 7Z2508 d,PT,1755 Sorghum bicolor 7Z2510 d,PT,1755 Sorghum bicolor 7Z2512 d,PT,1755 Sorghum bicolor 7Z2514 d,PT,1755 Sorghum bicolor 7Z2520 d,PT,1755 Sorghum bicolor 7Z2523 d,PT,1755 Sorghum bicolor 7Z2524 d,PT,1755 Sorghum bicolor 8015A MX,2887 Sorghum bicolor 80368 d,PT,41 Sorghum bicolor 80T25 b,US,2478 Pr80t25 US Sorghum bicolor 811F b,US,2478 Pr811f US Sorghum bicolor 817F US,2478 Sorghum bicolor 81G29 b,AR,2437 Sorghum bicolor 81G67 b,MX,US,2468,2478 Pr81g67 US Sorghum bicolor 81T35 AR,2437 Sorghum bicolor 81T91 MX,2468 Sorghum bicolor 823F US,2478 Sorghum bicolor 8282 b,MX,2468 Sorghum bicolor 82G10 b,MX,US,2468,2478 Pr82g10 US Sorghum bicolor 82G55 US,2478 PR82G55 US XS255 US Sorghum bicolor 82G63 b,MX,2468 Sorghum bicolor 830F US,2478 Sorghum bicolor 8313 b,MX,2468 Sorghum bicolor 837 US,579 Cardenal NT Sorghum bicolor 83G15 b,MX,2468 Sorghum bicolor 83G19 b,MX,US,2468,2478 Pr83g19 US Sorghum bicolor 83G66 b,US,2478 PR83G66 US Sorghum bicolor 83G88 b,MX,2468 Sorghum bicolor 840 - F EG,2046 Sorghum bicolor 8418 b,MX,2468 Sorghum bicolor 8419 US,2478 Pr8419 US Xsb39 US Sorghum bicolor 8443 b,MX,2468 DC2010 MX Sorghum bicolor 845F US,2478 Pr845f US Sorghum bicolor 849F US,2478 Pr849f US Xsf12 US Sorghum bicolor 84G11 MX,2468 Sorghum bicolor 84G48 b,MX,2468 Sorghum bicolor 84G62 b,AR,US,2437,2478 PR84G62 US Sorghum bicolor 84G88 b,MX,2468 Sorghum bicolor 8500 US,2478 P8500 US Sorghum bicolor 8587/Vigorsol US,2478 Vigorsol US Sorghum bicolor 85G47 b,MX,2468 Sorghum bicolor 85P20 b,US,2478 Pr85p20 US Sorghum bicolor 8641 b,MX,2468 Sorghum bicolor 87G57 US,2478 PR87G57 US Sorghum bicolor 87P06 US,2478 July 2021 Page SO4 juillet 2021 SORGHUM -- SORGHO Key to symbols used in the classification of varieties at end of this file --------- Explication des symboles utilisés dans la classification des variétés en fin de ce fichier Pr87p06 US Sorghum bicolor 87Y31 b,US,2478 PR87Y31 US Sorghum bicolor 8875 US,2478 Sorghum bicolor 8875/Doricol US,2478 Doricol US Sorghum bicolor 88P68 b,US,2478 Pr88p68 US Sorghum bicolor 88Y20 US,2478 PR88Y20 US Sorghum bicolor 88Y41 US,2478 Cosmosol US Sorghum bicolor 88Y92 b,US,2478 PR88Y92 US Sorghum bicolor 8Z2521 d,PT,1755 Sorghum bicolor 90555 d,PT,41 Sorghum bicolor 9112 US,2638 Proton NT Sorghum bicolor 91419 d,AU,21 Sorghum bicolor 91624 AU,21 Sorghum bicolor 91665 AU,21 Sorghum bicolor 92057 AU,21 Sorghum bicolor 92471 AU,21 Sorghum bicolor 9322 US,2638 Pronto US Sorghum bicolor 94 A (H-94) MX,2887 Sorghum bicolor 95207 US,1218 XP-2017 US Sorghum bicolor 96275 US,42 Yankee US Sorghum bicolor 97524 US,42 Puma Star US Sorghum bicolor 98456 US,40 Jumbo Plus US Jumbo Star US Sorghum bicolor A d,PT,2639 Sorghum bicolor A 9815 RC b,BO,1583 Sorghum bicolor A 9829 R b,BO,1583 Sorghum bicolor A201 US,339 Sorghum bicolor A3 94 d,PT,41 Sorghum bicolor A341 US,2638 Sorghum bicolor A459 US,339 Sorghum bicolor A5 d,US,3016 Sorghum bicolor A504 US,2092 Sorghum bicolor A570 US,339
Recommended publications
  • Comparison of Intercropped Sorghum- Soybean Compared to Its Sole Cropping
    Volume 2- Issue 1 : 2018 DOI: 10.26717/BJSTR.2018.02.000701 Saberi AR. Biomed J Sci & Tech Res ISSN: 2574-1241 Research Article Open Access Comparison of Intercropped Sorghum- Soybean Compared to its Sole Cropping Saberi AR* Department of Agricultural & Natural Resources, Research & Education Centre of Golestan Province, Iran Received: January 17, 2018; Published: January 29, 2018 *Corresponding author: Saberi AR, Agricultural & Natural Resources Research & Education Centre of Golestan Province, Gorgan, Iran; Email: Abstract Glycine max L. Merill) with sorghum (Sorghum bicolor L.) intercropping, this research performed in Gorgan and Aliabaad. Experiment compared on three levels inform of pure sorghum with density of 250000 plant per hectare, intercroppingIn order to of find sorghum the best and planting soybean pattern with densityof soybean of 250000 ( and 400000 plant per hectare, respectively and intercropping of sorghum and soybean with density of 300000 and 480000 plant per hectare, respectively. The number of planting lines was 60 liens with length of 66.66 meters and 50cm interval. For measuring of plant height, number of tiller, stem diameter and number of node, 10 bushes randomly harvested by using quadrate. By the way total surface area based of project protocol also harvested. For the results analysis t-test applied. Fresh forage production at treatment of intercropping with 300000 and 480000 plant density for sorghum and soybean, respectively in Gorgan %33.33 and in Aliabad %34.32 had priority compared to check treatment (sole cropping of sorghum with density of 250000 plants per hectare). Mean comparison of dry forage also indicated %24.01 increasing in Gorgan and %26.12 in Aliabaad.
    [Show full text]
  • A Chromosome-Scale Assembly of Miscanthus Sinensis
    1/23/2018 A chromosome-scale assembly allows genome-scale analysis A Chromosome-Scale Assembly • Genome assembly and annotation update of Miscanthus sinensis • Andropogoneae relatedness Therese Mitros University of California Berkeley • Miscanthus-specific duplication and ancestry • Miscanthus ancestry and introgression Miscanthus genome assembly is chromosome scale • A doubled-haploid accession of Miscanthus sinensis was created by Katarzyna Glowacka • Illumina sequencing to 110X depth • Illumina mate-pairs of 2kb, 5kb, fosmid-end • Chicago and HiC libraries from Dovetail Genomics • 2.079 GB assembled (11% gap) with 91% of genome assembly bases in the known 19 Miscanthus chromosomes HiC contact map Dovetail assembly agrees with genetic map RADseq markers from 3 M. ) sinensis maps and one M. sinensis cM ( x M. sacchariflorus map (H. Dong) Of 6377 64-mer markers from these maps genetic map 4298 map well to the M. sinensis DH1 assembly and validate the Dovetail assembly combined Miscanthus Miscanthus sequence assembly 1 1/23/2018 Annotation summary • 67,789 Genes, 11,489 with alternate transcripts • 53,312 show expression over 50% of their lengths • RNA-seq libraries from stem, root, and leaves sampled over multiple growing seasons • Small RNA over same time points • Available at phytozome • https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Msinensis_er Miscanthus duplication and retention relative Small RNA to Sorghum miRNA putative_miRNA 0.84% 0.14% 369 clusters miRBase annotated miRNA 61 clusters phasiRNA 43 clusters 1.21%
    [Show full text]
  • Diapositiva 1
    CTA (Aerospace Technology Center) UID G.E.M.A. [Research And Development Unit - Applied Mechanics Testing Group] UID GFC [Research And Development Unit – Computational Fluid Dynamic Group] UID LaCLyFA [Research And Development Unit – Boundary Layer Laboratory] Departamento de Aeronáutica – Facultad de Ingeniería Universidad Nacional de La Plata Our Experience in Design, Analysis, Manufacturing, Integration and Tests of Satellites, Components, Instruments and Space Launchers Ing. Pablo L. Ringegni (UID GEMA Director) ITU Symposium and Workshop, Santiago de Chile, Chile, 7-9 Nov. 2016 CTA STRUCTURE UNIVERSIDAD NACIONAL DE LA PLATA Facultad de Ingeniería Departamento de Aeronáutica UID G.E.M.A. UID GFC UID LaClyFa Ing. Pablo L. Ringegni UID G.E.M.A. Research and Development Unit Applied Mechanics Testing Group (Since 1997 …..) WORKING TEAM (60 people) - Professors: Doctors, Masters, Specialists, Engineers - Professionals - Technicians - Students TYPE OF ACTIVITIES - Applied Research - Technical Development - Technical Assistance - Design, Analysis, Integration and Testing Ing. Pablo L. Ringegni UID GEMA STRUCTURE Professors Professionals Working Group Technicians Students Administratives Applied Research Technical Assistance Main Activities Testing On site Measurements - Design Structural - Analysis Mechanical - Simulation Working Areas Materials and Composites - Integration Thermal - Manufacturing - Testing Aeronautical Aerospace Industries Electric Automotive Ing. Pablo L. Ringegni CAPABILITIES Design, Simulation and Structural / Mechanical Analysis of componentes and systems. Design, Simulation and Thermal Analysis of componentes and systems. Development, manufacturing and integration (Structural y Thermal) of Aerospace Components. Structural, Mechanical and Thermal Testing over components, instruments and structures. Design and Analysis of Mechanical Ground Supports Equipment. Laboratory and on site strain, displacement, position, aceleration and temperature measurements on components, systems and structures Ing.
    [Show full text]
  • Grain Sorghum GRAIN SORGHUM
    68 Grain Sorghum GRAIN SORGHUM See page 22 for PRECAUTIONS on use of atrazine containing products near ground and surface water. See comments in the corn section for detailed information on each of the herbicides listed below such as application methods and crop rotation restrictions. Preemergence ATRAZINE 4L 1.6 to 2 qt/A or (atrazine 1.6 to 2 lb ai/A) AATREX NINE-O 1.8 to 2.2 lb/A Weeds Controlled: Black nightshade, cocklebur, common ragweed, giant ragweed, jimsonweed, lambsquarters, morningglories, pigweeds, prickly sida, smartweed, velvetleaf. Remarks: Apply at-planting prior to sorghum emergence or before sorghum exceeds 12 inches in height as a postemergence treatment. In case of crop failure, sorghum may be replanted into soil previously treated with ATRAZINE. Do not make a second ATRAZINE application or injury may occur. CALLISTO 6.0 to 6.4 fl. oz/A (mesotrione 0.18 to 0.20 lb ai/A) Weeds Controlled: Black nightshade, cocklebur, jimsonweed, lambsquarters, pigweeds, smartweed, velvetleaf. Remarks: Except for grain sorghum and sweet sorghum do not use CALLISTO in the production of other types of sorghums such as forage sorghums or sudangrass. Can be applied preemergence or as a pre- plant non-incorporated treatment up to 21 days before planting sorghum. Applying CALLISTO more than 7 days (but not more than 21 days) prior to planting will reduce the risk of crop injury. If emerged weeds are present at the time of the preemergence application, use a nonionic surfactant (NIS) at 0.25% v/v or crop oil concentrate (COC) at 1% v/v (UAN or AMS can also be added to the spray solution).
    [Show full text]
  • Seed Priming with Sorghum Water Extract Improves the Performance of Camelina (Camelina Sativa (L.) Crantz.) Under Salt Stress
    plants Article Seed Priming with Sorghum Water Extract Improves the Performance of Camelina (Camelina sativa (L.) Crantz.) under Salt Stress Ping Huang 1, Lili He 1, Adeel Abbas 1,*, Sadam Hussain 2 , Saddam Hussain 3 , Daolin Du 1,*, Muhammad Bilal Hafeez 2,3 , Sidra Balooch 4, Noreen Zahra 5, Xiaolong Ren 2, Muhammad Rafiq 6 and Muhammad Saqib 6 1 Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] (P.H.); [email protected] (L.H.) 2 College of Agronomy, Northwest A&F University, Yangling 712100, China; [email protected] or [email protected] (S.H.); [email protected] or [email protected] (M.B.H.); [email protected] or [email protected] (X.R.) 3 Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; [email protected] 4 Department of Botany, Ghazi University D.G, Khan 32200, Pakistan; [email protected] or [email protected] 5 Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan; [email protected] or [email protected] 6 Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan; [email protected] or rafi[email protected] (M.R.); [email protected] or [email protected] (M.S.) * Correspondence: [email protected] (A.A.); [email protected] (D.D.) Citation: Huang, P.; He, L.; Abbas, A.; Hussain, S.; Hussain, S.; Du, D.; Abstract: Seed priming with sorghum water extract (SWE) enhances crop tolerance to salinity stress; Hafeez, M.B.; Balooch, S.; Zahra, N.; however, the application of SWE under salinity for camelina crop has not been documented so far.
    [Show full text]
  • Sorghum and Millet Collaborative INTSORMIL Scientific Publications Research Support Program (INTSORMIL CRSP)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln International Sorghum and Millet Collaborative INTSORMIL Scientific Publications Research Support Program (INTSORMIL CRSP) 2010 Sorghum: An Ancient, Healthy and Nutritious Old World Cereal United Sorghum Checkoff Program John Lindsay INTSORMIL Follow this and additional works at: https://digitalcommons.unl.edu/intsormilpubs Part of the Agronomy and Crop Sciences Commons, and the Dietetics and Clinical Nutrition Commons United Sorghum Checkoff Program and Lindsay, John, "Sorghum: An Ancient, Healthy and Nutritious Old World Cereal" (2010). INTSORMIL Scientific Publications. 7. https://digitalcommons.unl.edu/intsormilpubs/7 This Article is brought to you for free and open access by the International Sorghum and Millet Collaborative Research Support Program (INTSORMIL CRSP) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in INTSORMIL Scientific Publications yb an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SORGHUM An Ancient, Healthy and Nutritious Old World Cereal 2010 Sorghum: An Ancient, Healthy and Nutritious Old World Cereal Table of Contents Introduction.....................................................................................................................3 Nutritional Contributions of Sorghum....................................................................4 Nutrient Values for Sorghum..........................................................................4 Micronutrients:
    [Show full text]
  • Gluten-Free Grains
    Gluten-Free Grains Amaranth Updated February 2021 Buckwheat The gluten-free diet requires total avoidance of the grains wheat, barley, rye and all varieties and hybrids of these grains, such as spelt. However, there are many wonderful gluten-free grains* to enjoy. Cornmeal, Amaranth Polenta, Grits, Once the sacred food of the Aztecs, amaranth is high in protein, calcium, iron, and fiber. Toasting this tiny grain before cooking brings out its nutty flavor. Hominy Makes a delicious, creamy hot breakfast cereal. Serve with fruit of choice on top and/or a touch of maple syrup. Millet Rice Rice comes in many varieties: short grain, long grain, jasmine and basmati to name a Oats few. Long grain rice tends to be fluffier while short grain rice is stickier. Rice also comes in various colors: black, purple, brown, and red. These colorful un-refined rices contribute more nutritional benefits than does refined white rice and have subtly unique flavors and Quinoa textures too. Wild rice is another different and delicious option. Versatile rice leftovers can go in many directions. Add to salads or sautéed vegetables; Rice make rice pancakes or rice pudding; season and use as filling for baked green peppers or winter squash. Sorghum Buckwheat Despite the name, buckwheat is a gluten-free member of the rhubarb family. Roasted buckwheat is called kasha. Buckwheat is high in B Vitamins, fiber, iron, magnesium, Teff phosphorous and zinc. Buckwheat has an earthy, nutty, slightly bitter taste. Experiment with using the cooked grain (buckwheat “groats”, or “kasha” which is the toasted version) as you would rice.
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • Redalyc.Status and Trends of Smallsats and Their Launch Vehicles
    Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Wekerle, Timo; Bezerra Pessoa Filho, José; Vergueiro Loures da Costa, Luís Eduardo; Gonzaga Trabasso, Luís Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Journal of Aerospace Technology and Management, vol. 9, núm. 3, julio-septiembre, 2017, pp. 269-286 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309452133001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v9i3.853 Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Timo Wekerle1, José Bezerra Pessoa Filho2, Luís Eduardo Vergueiro Loures da Costa1, Luís Gonzaga Trabasso1 ABSTRACT: This paper presents an analysis of the scenario of small satellites and its correspondent launch vehicles. The INTRODUCTION miniaturization of electronics, together with reliability and performance increase as well as reduction of cost, have During the past 30 years, electronic devices have experienced allowed the use of commercials-off-the-shelf in the space industry, fostering the Smallsat use. An analysis of the enormous advancements in terms of performance, reliability and launched Smallsats during the last 20 years is accomplished lower prices. In the mid-80s, a USD 36 million supercomputer and the main factors for the Smallsat (r)evolution, outlined.
    [Show full text]
  • Double-Cropping Sorghum for Biomass Production Ben Michael Goff Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Double-cropping sorghum for biomass production Ben Michael Goff Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agronomy and Crop Sciences Commons Recommended Citation Goff, Ben Michael, "Double-cropping sorghum for biomass production" (2010). Graduate Theses and Dissertations. 11421. https://lib.dr.iastate.edu/etd/11421 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Double-cropping sorghum for biomass production by Ben Michael Goff A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Crop Production and Physiology Program of Study Committee: Ken Moore, Co-Major Professor Steven Fales, Co-Major Professor Emily Heaton Basil Nikolau Iowa State University Ames, Iowa 2010 Copyright © Ben Michael Goff, 2010. All rights reserved. ii TABLE OF CONTENTS ABSTRACT iv CHAPTER I: GENERAL INTRODUCTION 1 References 4 CHAPTER II: LITERATURE REVIEW 7 Double-cropping Systems 7 Biomass Production Potential 7 Other Possible Benefits 9 Possible Limitations 10 Genotypic Variation in Double-cropping 11 Sorghum 12 General
    [Show full text]
  • Cereal Rye As a Winter Cover Crop, FSA2182
    DIVISION OF AGRICULTURE R E S E A R C H & E X T E N S I O N Uh\--University of Arkansas System Agriculture and Natural Resources FSA2182 Cereal Rye as a Winter Cover Crop Trenton Roberts Cereal rye (Secale cereale) is a Cereal rye is a huge biomass winter annual cereal crop that has producer (2,000 to 10,000 pounds of Associate Professor and garnered a lot of well-deserved biomass per acre) with little to no input Soil Fertility Extension Specialist attention in the cover crop world. costs (mainly seed cost). In many cases, Cereal rye is much different than large amounts of biomass can be Kelsey Hoegenauer annual ryegrass (Lolium multiflorum) achieved by planting cereal rye without or Italian ryegrass which should not the need for additional fertilizer inputs. Graduate Research Assistant be used as winter cover crops. As far However, cereal rye is also an excellent as cover crops go in the Mid-South scavenger of residual soil nutrients (N, Jeremy Ross U.S. region, cereal rye is a workhorse P, K, S, etc.) and unlike tillage radish that is hard to beat in terms of the (Raphanus sativus L), cereal rye is not Extension Agronomist - Soybeans benefits that can be gained for the prone to decompose quickly. Therefore, relatively low input cost required to most nutrients contained in the cereal Jason Norsworthy establish and manage it as a cover rye biomass are not available to the crop. In most cases, the name of the successive cash crop. This nutrient Professor - Weed Scientist game for cover crop success is biomass scavenging ability can be great for production.
    [Show full text]
  • Weed Suppression in Maize (Zea Mays
    Rashid et al.: Weed suppression in maize (Zea mays L.) through the allelopathic effects of sorghum [Sorghum bicolor (L.) Conard Moench.] sunflower (Helianthus annuus L.) and parthenium (Parthenium hysterophorus L.) plants - 5187 - WEED SUPPRESSION IN MAIZE (ZEA MAYS L.) THROUGH THE ALLELOPATHIC EFFECTS OF SORGHUM [SORGHUM BICOLOR (L.) CONARD MOENCH.] SUNFLOWER (HELIANTHUS ANNUUS L.) AND PARTHENIUM (PARTHENIUM HYSTEROPHORUS L.) PLANTS RASHID, H. U.1 – KHAN, A.1 – HASSAN, G.2 – KHAN, S. U.1 – SAEED, M.3 – KHAN, S. A.4 – KHAN, S. M.5 – HASHIM, S.2 1Department of Agronomy, The University of Haripur, Haripur, Pakistan 2Department of Weed Science, The University of Agriculture Peshawar, Peshawar, Pakistan 3Department of Agriculture, The University of Swabi, Swabi, Pakistan 4Department of PBG, The University of Haripur, Haripur, Pakistan 5Department of Horticulture, The University of Haripur, Haripur, Pakistan *Corresponding author e-mail: [email protected] (Received 19th Jan 2020; accepted 25th May 2020) Abstract. The present study was carried out at the Weed Science Research Laboratory, The University of Agriculture, Peshawar Pakistan (June-July 2013 and Sep-Oct 2013). To evaluate the most effective and economical treatment for weed management in maize (Zea mays L.), the pot experiment was performed using completely randomized design (CRD) with three replications. Allelopathic effects of Sorghum bicolor (L.) Conard Moench., Helianthus annuus L., Parthenium hysterophorus L, and the commercial herbicide (atrazine @ 18 g L-1) was used for comparison. The data were recorded on germination and seedling growth of test species (Zea mays, Trianthema portulacastrum and Lolium rigidum). The data showed that S. bicolor + H. annuus + P.
    [Show full text]