Hydrogen-Deficient Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Variable Stars and Blue Horizontal Branch of the Metal-Rich Globular Cluster NGC 6441
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Variable Stars and Blue Horizontal Branch of the Metal-Rich Globular Cluster NGC 6441 Andrew C. Layden1;2 Physics & Astronomy Dept., Bowling Green State Univ., Bowling Green, OH 43403, U.S.A. Laura A. Ritter Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1090, U.S.A. Douglas L. Welch1,TracyM.A.Webb1 Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada ABSTRACT We present time-series VI photometry of the metal-rich ([Fe=H]= 0:53) globular − cluster NGC 6441. Our color-magnitude diagram shows that the extended blue horizontal branch seen in Hubble Space Telescope data exists in the outermost reaches of the cluster. About 17% of the horizontal branch stars lie blueward and brightward of the red clump. The red clump itself slopes nearly parallel to the reddening vector. A component of this slope is due to differential reddening, but part is intrinsic. The blue horizontal branch stars are more centrally concentrated than the red clump stars, suggesting mass segregation and a possible binary origin for the blue horizontal branch stars. We have discovered 50 new variable stars near NGC 6441, among ∼ them eight or more RR Lyrae stars which are highly-probable cluster members. Comprehensive period searches over the range 0.2–1.0 days yielded unusually long periods (0.5–0.9 days) for the fundamental pulsators compared with field RR Lyrae of the same metallicity. Three similar long-period RR Lyrae are known in other metal-rich globulars. -
Hypervelocity Stars Ejected from the Galactic Center
Hypervelocity Stars Ejected from the Galactic Center The Milky Way Halo Conference May 31, 2007 Warren R. Brown Smithsonian Astrophysical Observatory Collaborators: Margaret Geller, Scott Kenyon, Michael Kurtz Hypervelocity stars (HVSs) are stars traveling with such extreme speeds that they are no longer bound to the Galaxy. Hypervelocity stars are interesting because they must be ejected by a massive black hole. As a result, hypervelocity stars give us tools to understand the history stellar interactions with the massive black hole and environment of stars around it. 1 The Milky Way Kaufmann If this is a picture of the Milky Way, the hypervelocity stars we are finding are deep in the halo, at distances of 50 – 100 kpc. The hypervelocity stars we are finding are also B-type stars. B-type stars are stars that are more massive and much more luminous than the Sun. Because B stars burn their fuel very rapidly, they have relatively short lifetimes of order 100 million years. In 1947, Humanson and Zwicky first reported B-type stars at high Galactic latitudes. Because B stars are born in the disk and live only a short time, you wouldn’t expect to find B stars very deep in the halo. Spectroscopic surveys show that the high- latitude B stars are a mix of evolved (horizontal branch) stars that belong to the halo and some main sequence, so-called “run-away B stars.” These run-away B stars all have travel times constant with a disk origin. Run-away stars are explained by two mechanisms: ejections from stellar binary encounters in young star clusters, or when a former binary companion goes supernova. -
(GK 1; Pr 1.1, 1.2; Po 1) What Is a Star?
1) Observed properties of stars. (GK 1; Pr 1.1, 1.2; Po 1) What is a star? Why study stars? The sun Age of the sun Nearby stars and distribution in the galaxy Populations of stars Clusters of stars Distances and characterization of stars Luminosity and flux Magnitudes Parallax Standard candles Cepheid variables SN Ia 2) The HR diagram and stellar masses (GK 2; Pr 1.4; Po 1) Colors of stars B-V Blackbody emission HR Diagram Interpretation of HR diagram stellar radii kinds of stars red giants white dwarfs planetary nebulae AGB stars Cepheids Horizontal branch evolutionary sequence turn off mass and ages Masses from binaries Circular orbits solution General solution Spectroscopic binaries Eclipsing spectroscopic binaries Empirical mass luminosity relation 3) Spectroscopy and abundances (GK 1; Pr 2) Stellar spectra OBFGKM Atomic physics H atom others Spectral types Temperature and spectra Boltzmann equation for levels Saha equation for ionization ionization stages Rotation Stellar Abundances More about ionization stages, e.g. Ca and H Meteorite abundances Standard solar set Abundances in other stars and metallicity 4) Hydrostatic balance, Virial theorem, and time scales (GK 3,4; Pr 1.3, 2; Po 2,8) Assumptions - most of the time Fully ionized gas except very near surface where partially ionized Spherical symmetry Broken by e.g., convection, rotation, magnetic fields, explosion, instabilities, etc Makes equations a lot easier Limits on rotation and magnetic fields Homogeneous composition at birth Isolation (drop this later in course) Thermal -
Download This Article in PDF Format
A&A 601, A29 (2017) Astronomy DOI: 10.1051/0004-6361/201629685 & c ESO 2017 Astrophysics Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction E. Zapartas1, S. E. de Mink1, R. G. Izzard2, S.-C. Yoon3, C. Badenes4, Y. Götberg1, A. de Koter1; 5, C. J. Neijssel1, M. Renzo1, A. Schootemeijer6, and T. S. Shrotriya6 1 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands e-mail: [E.Zapartas;S.E.deMink]@uva.nl 2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 3 Astronomy Program, Department of Physics and Astronomy, Seoul National University, 151–747 Seoul, Korea 4 Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA 5 Institute of Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium 6 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Received 11 September 2016 / Accepted 1 January 2017 ABSTRACT Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that +9 a significant fraction, 15−8%, of core-collapse supernovae are “late”, that is, they occur 50–200 Myr after birth, when all massive single stars have already exploded. -
A Stripped Helium Star in the Potential Black Hole Binary LB-1 A
A&A 633, L5 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937343 & c ESO 2020 Astrophysics LETTER TO THE EDITOR A stripped helium star in the potential black hole binary LB-1 A. Irrgang1, S. Geier2, S. Kreuzer1, I. Pelisoli2, and U. Heber1 1 Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany e-mail: [email protected] 2 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Received 18 December 2019 / Accepted 1 January 2020 ABSTRACT +11 Context. The recently claimed discovery of a massive (MBH = 68−13 M ) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution. Aims. A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LS V+22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass. Methods. To this end, we study the spectral energy distribution of LS V+22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe. Results. Our analysis clearly shows that LS V+22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O. -
The Deaths of Stars
The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula, and what does it have to do with planets? 4. What is a white dwarf star? 5. Why do high-mass stars go through more evolutionary stages than low-mass stars? 6. What happens within a high-mass star to turn it into a supernova? 7. Why was SN 1987A an unusual supernova? 8. What was learned by detecting neutrinos from SN 1987A? 9. How can a white dwarf star give rise to a type of supernova? 10.What remains after a supernova explosion? 2 Pathways of Stellar Evolution GOOD TO KNOW 3 Low-mass stars go through two distinct red-giant stages • A low-mass star becomes – a red giant when shell hydrogen fusion begins – a horizontal-branch star when core helium fusion begins – an asymptotic giant branch (AGB) star when the helium in the core is exhausted and shell helium fusion begins 4 5 6 7 Bringing the products of nuclear fusion to a giant star’s surface • As a low-mass star ages, convection occurs over a larger portion of its volume • This takes heavy elements formed in the star’s interior and distributes them throughout the star 8 9 Low-mass stars die by gently ejecting their outer layers, creating planetary nebulae • Helium shell flashes in an old, low-mass star produce thermal pulses during which more than half the star’s mass may be ejected into space • This exposes the hot carbon-oxygen core of the star • Ultraviolet radiation from the exposed -
White Dwarfs in Globular Clusters 3 Received Additional Support from the Theoretical Investigations of [94, 95, 96]
White Dwarfs in Globular Clusters S. Moehler1 and G. Bono1,2,3 1 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany, [email protected] 2 Dept. of Physics, Univ. of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy, [email protected] 3 INAF-Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Italy We review empirical and theoretical findings concerning white dwarfs in Galactic globular clusters. Since their detection is a critical issue we describe in detail the various efforts to find white dwarfs in globular clusters. We then outline the advantages of using cluster white dwarfs to investigate the forma- tion and evolution of white dwarfs and concentrate on evolutionary channels that appear to be unique to globular clusters. We also discuss the usefulness of globular cluster white dwarfs to provide independent information on the distances and ages of globular clusters, information that is very important far beyond the immediate field of white dwarf research. Finally, we mention pos- sible future avenues concerning globular cluster white dwarfs, like the study of strange quark matter or plasma neutrinos. 1 Introduction During the last few years white dwarfs have been the topic of several thorough review papers focused on rather different aspects. The interested reader is referred to [85] and to [86] for a comprehensive discussion concerning the use of white dwarfs as stellar tracers of Galactic stellar populations and the physics of cool white dwarfs. The advanced evolutionary phases and their impact on the dynamical evolution of open and globular clusters have been reviewed by [116], while [4] provide a comprehensive discussion of the use of arXiv:0806.4456v3 [astro-ph] 30 Jun 2011 white dwarfs to constrain stellar and cosmological parameters together with a detailed analysis of the physical mechanisms driving their evolutionary and pulsation properties. -
White Dwarf and Hot Subdwarf Binaries As Possible Progenitors of Type I A
White dwarf and hot sub dwarf binaries as p ossible progenitors of type I a Sup ernovae Christian Karl July White dwarf and hot sub dwarf binaries as p ossible progenitors of type I a Sup ernovae Den Naturwissenschaftlichen Fakultaten der FriedrichAlexanderUniversitatErlangenN urnberg zur Erlangung des Doktorgrades vorgelegt von Christian Karl aus Bamberg Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultaten der UniversitatErlangenN urnberg Tag der m undlichen Pr ufung Aug Vositzender der Promotionskommission Prof Dr L Dahlenburg Erstb erichterstatter Prof Dr U Heb er Zweitberichterstatter Prof Dr K Werner Contents The SPY pro ject Selection of DB white dwarfs Color criteria Absorption line criteria Summary of the DB selection The UV Visual Echelle Sp ectrograph Instrumental setup UVES data reduction ESO pip elin e vs semiautomated pip eline Derivation of system parameters Denition of samples Radial velocity curves Followup observations Radial velocity measurements Power sp ectra and RV curves Gravitational redshift Quantitative sp ectroscopic analysis Stellar parameters of singleline d systems -
(NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9. -
Announcements
Announcements • Next Session – Stellar evolution • Low-mass stars • Binaries • High-mass stars – Supernovae – Synthesis of the elements • Note: Thursday Nov 11 is a campus holiday Red Giant 8 100Ro 10 years L 10 3Ro, 10 years Temperature Red Giant Hydrogen fusion shell Contracting helium core Electron Degeneracy • Pauli Exclusion Principle says that you can only have two electrons per unit 6-D phase- space volume in a gas. DxDyDzDpxDpyDpz † Red Giants • RG Helium core is support against gravity by electron degeneracy • Electron-degenerate gases do not expand with increasing temperature (no thermostat) • As the Temperature gets to 100 x 106K the “triple-alpha” process (Helium fusion to Carbon) can happen. Helium fusion/flash Helium fusion requires two steps: He4 + He4 -> Be8 Be8 + He4 -> C12 The Berylium falls apart in 10-6 seconds so you need not only high enough T to overcome the electric forces, you also need very high density. Helium Flash • The Temp and Density get high enough for the triple-alpha reaction as a star approaches the tip of the RGB. • Because the core is supported by electron degeneracy (with no temperature dependence) when the triple-alpha starts, there is no corresponding expansion of the core. So the temperature skyrockets and the fusion rate grows tremendously in the `helium flash’. Helium Flash • The big increase in the core temperature adds momentum phase space and within a couple of hours of the onset of the helium flash, the electrons gas is no longer degenerate and the core settles down into `normal’ helium fusion. • There is little outward sign of the helium flash, but the rearrangment of the core stops the trip up the RGB and the star settles onto the horizontal branch. -
Evolution of Stars
Evolution of Stars (Part I: Solar-type stars) 1 Death of the Sun Parts I and II 2 Learning goals: Be able to …. ! summarize the future of the Sun on a rough timescale; ! apply the basics of the conservation of energy and the battle between gravity and outward pressure to what “drives” a star to evolve at each major stage of evolution; ! explain what is meant by main sequence, subgiant, red giant branch, electron degeneracy, helium flash, horizontal branch, asymptotic giant branch, planetary nebula, white dwarf. 3 Be able to summarize the future of the Sun in a rough timescale. Apply the basics of the conservation of energy and the battle between gravely and pressure to what “drives” a star to evolve at each major stage of evolution. Explain what is meant by red giant branch, electron degeneracy, helium flash, horizontal branch, planetary nebula, white dwarf 4 5 http://chandra.harvard.edu/xray_sources/browndwarf_fg.html Brown Dwarf "In between a star and a planet "Jupiter < BD mass < 0.08 Sun "Radiates in infrared due to low temperature. "Mass too low to start fusion in core. "Slowly cools over trillions of years. 6 7 Core producing energy--Fusing H to He 8 A review of what we know the Sun is doing as a main-sequence star 9 Number of particles in core is decreasing. NET RESULT IN: 6 H OUT: 1 He + 2 H FUSION RATE MUST INCREASE TO OFFSET DECREASE IN PARTICLE PRESSURE! Sun is slowly becoming more and more luminous. 10 Explain how the Sun maintains a constant balance in its interior (solar thermostat) Part of the pressure depends on the number of particles Pressure decreases, core shrinks slightly, pressure evens out, fusion rate must increase to offset the smaller pressure provided by the number of particles present. -
The Story of AA Doradus As Revealed by Its Cool Companion
A&A 586, A146 (2016) Astronomy DOI: 10.1051/0004-6361/201526552 & c ESO 2016 Astrophysics Looking on the bright side: The story of AA Doradus as revealed by its cool companion M. Vuckoviˇ c´1,5, R. H. Østensen2, P. Németh2,3, S. Bloemen2,4, and P. I. Pápics2 1 Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, 2360102 Valparaíso, Chile e-mail: [email protected] 2 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 3 Dr. Karl-Remeis-Observatory & ECAP, Astronomical Institute, F.-A.-U. Erlangen-Nürnberg, 96049 Bamberg, Germany 4 Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands 5 Astronomical Observatory of Belgrade, Volgina 7, 11060 Belgrade, Serbia Received 18 May 2015 / Accepted 1 October 2015 ABSTRACT The effects of irradiation on the secondary stars of close binary systems are crucial for reliably determining the system parameters and for understanding the close binary evolution. They affect the stellar structure of the irradiated star and are reflected in the appearance of characteristic features in the spectroscopic and photometric data of these systems. We aim to study the light that originates from the irradiated side of the low-mass component of a close binary eclipsing system, which comprises a hot subdwarf primary and a low mass companion, to precisely interpret their high precision photometric and spectroscopic data, and accurately determine their system and surface parameters. We reanalyse the archival high-resolution time-resolved VLT/UVES spectra of AA Dor system, where irradiation features have already been detected.