For These Geckos, Losing a Few Scales Is Worth It to Stay Alive by PBS Newshour, Adapted by Newsela Staff on 02.10.17 Word Count 432 Level 750L

Total Page:16

File Type:pdf, Size:1020Kb

For These Geckos, Losing a Few Scales Is Worth It to Stay Alive by PBS Newshour, Adapted by Newsela Staff on 02.10.17 Word Count 432 Level 750L For these geckos, losing a few scales is worth it to stay alive By PBS NewsHour, adapted by Newsela staff on 02.10.17 Word Count 432 Level 750L TOP: Geckolepis megalepis in its scaleless form. BOTTOM: The gecko on a tree branch. Photo by: Frank Glaw Have you ever tried to grab a Geckolepis megolepis gecko? If you have tried, it probably slipped from your hand, and you were left holding just the scales. This is a new kind of gecko, or lizard, that has been discovered. It is similar to some other geckos that scientists already know about, called fish-scaled geckos. They look like geckos but have skin like fish. On Tuesday, the science journal PeerJ wrote about the Geckolepis megolepis. Like other lizards, these geckos have a superpower. They can drop their tails after being caught by predators. In fact, they can even leave their skin behind if they have to escape. This article is available at 5 reading levels at https://newsela.com. "It is remarkably easy" to shed the skin, said Mark Scherz. He is a herpetologist, or reptile expert. "It is hard to catch these geckos without some scales coming off," he added. Predators Are Left With A Mouthful Of Scales To learn more, Scherz and other scientists went to Madagascar. This African island nation is where these geckos come from. There are four species of fish-scaled geckos in Madagascar. The scientists decided to try a gentler way of catching the geckos. They lured them into bags, without grabbing them. Even then, some scales came off. All fish-scaled geckos have tearaway skin. So do a few other gecko species. They lose their scales as a way to defend themselves. Aaron Bauer, another herpetologist, described it. "A predator grabs them, they spin, ripping their own skin off," he said. "Then this little naked pink gecko runs away while the predator is left chewing on these fishlike scales." They're left naked, but alive. The scales take a few weeks to grow back. Scientists are still learning how all this works. While it's happening, the geckos are soft and slimy. They also have less protection. Scherz said that the animals might find a dark, damp place to hide until they are back to normal. Regrowing Body Parts Takes A Lot Of Energy The trick works, but it is not easy. It takes a lot of energy to shed and regrow body parts. Most geckos have soft skin made of tiny scales. However, this species of gecko has larger scales than any other. The escape plan may be tough, but it's better than being eaten. Madagascar is home to many kinds of geckos. There are leaf-tailed geckos, fish-scaled geckos and others. Sadly, it is becoming harder to learn about these animals because their habitat is in danger. We find more and more interesting animals in Madagascar as they lose more and more of their habitats, Bauer said. This article is available at 5 reading levels at https://newsela.com..
Recommended publications
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]
  • A Fish-Scaled Gecko (Geckolepis Sp.) Escapes Predation by a Velvet Gecko (Blaesodactylus Sp.) Through Skin Shedding
    Herpetology Notes, volume 8: 479-481 (2015) (published online on 03 October 2015) A fish-scaled gecko (Geckolepis sp.) escapes predation by a velvet gecko (Blaesodactylus sp.) through skin shedding Charlie Gardner1,*, Louise Jasper2 Many reptiles have evolved the ability to shed part night walk as tourists within the Bekaraoka forest block of their body in response to predator attack. The most of Loky-Manambato new protected area (13°08’38’’ widespread form is caudal autotomy, the shedding of S, 49°42’25’’ E), near the town of Daraina in extreme all or part of the tail, which occurs in many lizards and north-east Madagascar. At 19:25 we were alerted by amphisbaenians as well as some snakes and the tuataras movement on a tree trunk about 3 m away, and in our (Arnold, 1984; Bateman and Fleming, 2009): breakable torchlight observed a large Blaesodactylus that had tails allow potential prey animals to avoid predation captured a smaller gecko in its jaws and was struggling by i) providing a distraction away from the animal’s with it (Fig. 1). The animals immediately disappeared vulnerable head and torso, and ii) allowing animals that behind the tree but reappeared after a few seconds, at have been grasped by the tail to break free and escape. which point there were several violent, jerky movements Members of the gecko genus Geckolepis Grandidier, accompanied by the slap of the prey animal against the 1867 have evolved an even more extreme adaptation, tree trunk; however, we cannot say whether these were and are able to autotomise all or most of their skin when attempts by the predator to subdue its prey, or the efforts grasped; their skin is covered with large, overlapping of the prey to escape.
    [Show full text]
  • Mechanics, Diversity, and Ecology of Gecko Adhesion
    MECHANICS, DIVERSITY, AND ECOLOGY OF GECKO ADHESION A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy with a Major in Biology in the College of Graduate Studies University of Idaho by Travis Jay Hagey August 2013 Major Professor: Luke. J. Harmon, Ph.D. ii AUTHORIZATION TO SUBMIT DISSERTATION This dissertation of Travis J. Hagey, submitted for the degree of Doctor of Philosophy with a major in Biology and titled “Mechanics, Diversity, and Ecology of Gecko Adhesion,” has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval. Major Professor ______________________________ Date _______________ Luke J. Harmon Committee ______________________________ Date _______________ Members Craig P. McGowan ______________________________ Date _______________ Jack M. Sullivan ______________________________ Date _______________ Kellar Autumn Department ______________________________ Date _______________ Administrator James J. Nagler College of Science ______________________________ Date _______________ Dean Paul Joyce Final Approval and Acceptance by the College of Graduate Studies ______________________________ Date _______________ Jie Chen iii Abstract The question of why animals are shaped the way they are has intrigued scientists for hundreds of years. Studies of ecological morphology (the relationship between an organism’s form, function, and environment) often bridge multiple disciplines including biomechanics, ecology, phylogenetics, and comparative methods. In this dissertation, I gathered data and tested hypotheses that considered the link between morphology and performance and the relationship between performance and ecology. I focused my research on the adhesive abilities of geckos. Geckos are an understudied, diverse group of lizards, well known for their adhesive toe pads.
    [Show full text]
  • Scale Gecko (Squamata: Gekkonidae: Geckolepis) with Exceptionally Large Scales
    Off the scale: a new species of fish- scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales Mark D. Scherz1, Juan D. Daza2, Jörn Köhler3, Miguel Vences4 and Frank Glaw1 1 Sektion Herpetologie, Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany 2 Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States 3 Hessisches Landesmuseum Darmstadt, Darmstadt, Germany 4 Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany ABSTRACT The gecko genus Geckolepis, endemic to Madagascar and the Comoro archipelago, is taxonomically challenging. One reason is its members ability to autotomize a large portion of their scales when grasped or touched, most likely to escape predation. Based on an integrative taxonomic approach including external morphology, morphometrics, genetics, pholidosis, and osteology, we here describe the first new species from this genus in 75 years: Geckolepis megalepis sp. nov. from the limestone karst of Ankarana in northern Madagascar. The new species has the largest known body scales of any gecko (both relatively and absolutely), which come off with exceptional ease. We provide a detailed description of the skeleton of the genus Geckolepis based on micro-Computed Tomography (micro-CT) analysis of the new species, the holotype of G. maculata, the recently resurrected G. humbloti, and a specimen belonging to an operational taxonomic unit (OTU) recently suggested to represent G. maculata. Geckolepis is characterized by highly mineralized, imbricated scales, paired frontals, and unfused subolfactory processes of the frontals, among other features. We identify diagnostic Submitted 26 October 2016 characters in the osteology of these geckos that help define our new species and show Accepted 3 January 2017 that the OTU assigned to G.
    [Show full text]
  • Resurrection of the Comoran Fish Scale Gecko Geckolepis Humbloti Vaillant, 1887 Reveals a Disjunct Distribution Caused by Natural Overseas Dispersal
    Resurrection of the Comoran fish scale gecko Geckolepis humbloti Vaillant, 1887 reveals a disjunct distribution caused by natural overseas dispersal Oliver Hawlitschek, Mark D. Scherz, Nicolas Straube & Frank Glaw Organisms Diversity & Evolution ISSN 1439-6092 Volume 16 Number 1 Org Divers Evol (2016) 16:289-298 DOI 10.1007/s13127-015-0255-1 1 23 Your article is protected by copyright and all rights are held exclusively by Gesellschaft für Biologische Systematik. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Org Divers Evol (2016) 16:289–298 DOI 10.1007/s13127-015-0255-1 ORIGINAL ARTICLE Resurrection of the Comoran fish scale gecko Geckolepis humbloti Vaillant, 1887 reveals a disjunct distribution caused by natural overseas dispersal Oliver Hawlitschek1,2 & Mark D. Scherz2 & Nicolas Straube2 & Frank Glaw2 Received: 23 March 2015 /Accepted: 30 November 2015 /Published online: 21 December 2015 # Gesellschaft für Biologische Systematik 2015 Abstract Fish scale geckos (Geckolepis) are taxonomically Geckolepis in our molecular phylogenetic analysis and is poorly resolved, mainly because of the difficulty of applying osteologically almost identical with a specimen from the type standard morphological characters to diagnose taxa.
    [Show full text]
  • Environmental DNA Metabarcoding As a Means of Estimating Species Diversity in an Urban Aquatic Ecosystem
    animals Article Environmental DNA Metabarcoding as a Means of Estimating Species Diversity in an Urban Aquatic Ecosystem Heather J. Webster 1, Arsalan Emami-Khoyi 1, Jacobus C. van Dyk 2, Peter R. Teske 1 and Bettine Jansen van Vuuren 1,* 1 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Gauteng 2006, South Africa; [email protected] (H.J.W.); [email protected] (A.E.-K.); [email protected] (P.R.T.) 2 Department of Zoology, University of Johannesburg, Auckland Park, Gauteng 2006, South Africa; [email protected] * Correspondence: [email protected] Received: 13 October 2020; Accepted: 5 November 2020; Published: 7 November 2020 Simple Summary: Cities are the fastest developing ecosystems on the planet. The rapid expansion of urban areas is typically seen as a threat to global biodiversity, yet the role of cities in protecting species that may be rare in the wild remains poorly explored. Here, we report the use of environmental DNA (eDNA) to document the species present in one of the largest urban green spaces in Johannesburg, South Africa. We document a surprisingly large number of taxonomic groups, including some rare and threatened species. Our results support the notion that urban green spaces can provide refuge to a large number of species, and the species inventory provides critical information that can be used by city parks managers to conserve green spaces. Abstract: Adaptation to environments that are changing as a result of human activities is critical to species’ survival. A large number of species are adapting to, and even thriving in, urban green spaces, but this diversity remains largely undocumented.
    [Show full text]
  • Integrative Review of Geckos of the Paroedura Bastardi Species Complex (Squamata, Gekkonidae)
    Vertebrate Zoology 71, 2021, 27–48 | DOI 10.3897/vz.71.e59495 27 Completing a taxonomic puzzle: integrative review of geckos of the Paroedura bastardi species complex (Squamata, Gekkonidae) Aurélien Miralles1, Teddy Bruy1, Angelica Crottini2, Andolalao Rakotoarison3, Fanomezana M. Ratsoavina3, Mark D. Scherz4, Robin Schmidt5, Jörn Köhler6, Frank Glaw4, Miguel Vences5 1 Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France 2 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Nº 7, 4485-661 Vairão, Portugal 3 Zoologie et Biodiversité Animale, Université d’Antananarivo, BP 906, Antananarivo, 101 Madagascar 4 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstraße 21, 81247 München, Germany 5 Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany 6 Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany http://zoobank.org/08BE0686-2B92-461D-8BB0-592CFB025133 Corresponding author: Aurélien Miralles ([email protected]) Academic editor Uwe Fritz | Received 25 September 2020 | Accepted 21 December 2020 | Published 26 February 2021 Citation: Miralles A, Bruy T, Crottini A, Rakotoarison A, Ratsoavina FM, Scherz MD, Schmidt R, Köhler J, Glaw F, Vences M (2021) Complet- ing a taxonomic puzzle: integrative review of geckos of the Paroedura bastardi species complex (Squamata, Gekkonidae). Vertebrate Zoology 71: 27–48. https://doi.org/10.3897/vz.71.e59495 Abstract The Paroedura bastardi clade, a subgroup of the Madagascan gecko genus Paroedura, currently comprises four nominal species: P. bastardi, supposedly widely distributed in southern and western Madagascar, P. ibityensis, a montane endemic, and P.
    [Show full text]
  • The Influence of Habitat Type and Structure on the Abundance of Phelsuma Madagascariensis Grandis (Gekkoninae) in Northern Madagascar
    Herpetological Conservation and Biology 4(1):55-61 Submitted: 19 August 2008; Accepted: 24 January 2009. THE INFLUENCE OF HABITAT TYPE AND STRUCTURE ON THE ABUNDANCE OF PHELSUMA MADAGASCARIENSIS GRANDIS (GEKKONINAE) IN NORTHERN MADAGASCAR 1,2 1 1 3 NEIL D'CRUZE , JEREMY SABEL , JEFFREY DAWSON , AND SUNIL KUMAR 1Frontier: The Society for Environmental Exploration, 50-52 Rivington Street, London, EC2A3QP, United Kingdom 2The World Society for the Protection of Animals, 89 Albert Embankment, London, WE1 7TP, United Kingdom, e-mail: [email protected] 3Natural Resource Ecology Laboratory, Colorado State University, 1499 Campus Delivery, Fort Collins, Colorado 80523-1499, USA, e-mail: [email protected] Abstract.—During a nine week period, we studied the abundance of the gecko Phelsuma madagascariensis grandis, using visual encounter surveys conducted along 75 transects within each of three habitat types in a semi-humid dry deciduous forest in the north of Madagascar. We observed 91 P. m. grandis during our study. Capture rates in village orchards were higher than in clear cut and forest areas. Structural habitat parameters on transects differed significantly between habitats. The orchards and the clear cut areas showed lower structural diversity than forests. Multiple regression analyses showed that the habitat parameters that we measured significantly influence the abundance of P. m. grandis. The best regression model explained 57% of the variation in the abundance of P. m. grandis. We conclude that high structural diversity is not important for this species. Our results suggest that abundance is positively influenced by higher numbers of trees (perch sites and associated cover) and increases in food resources within orchard habitats.
    [Show full text]
  • A Characterisation of the Integumentary Skeleton of Lizards (Reptilia: Squamata)
    A characterisation of the integumentary skeleton of lizards (Reptilia: Squamata) Alexander Charles Kirby DEPARTMENT OF MEDICAL PHYSICS UNIVERSITY COLLEGE LONDON (U.C.L.) A thesis submitted in accordance with the requirements for the partial fulfilment of the Doctor of Philosophy degree 21/06/2020 London, United Kingdom 1 Signed Declaration of Originality “I, Alexander Charles Kirby confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.” 2 Abstract Osteoderms (ODs) are present within the dermis of 14 families of squamates although snakes and Sphenodontidae lack ODs. The expression of ODs within squamates has been described as highly variable and diverse since they were first reported. Some examples of squamate OD expression are as compound structures, fused together into overlapping, imbricating plates (as in Scincidae); as distorted, bent cylinders, partially overlapping one another (as in Varanidae), or as discrete, regularly tessellated, non-overlapping, polygonal beads (as in Helodermatidae), but this is not an exhaustive list. Currently, our understanding of OD structure-to-function relationships, general anatomy and internal composition remains limited. In this study, using histological staining, computed tomography, polarised light microscopy and electron microscopy, the microstructure of materials comprising ODs from multiple families of lizards is revealed. The results show that ODs are comprised of different proportions of numerous biomaterials including osteodermine, a highly mineralised, dense capping tissue on the apical surface of the osteoderm; lamellar bone rich in secondary osteons (haversian bone tissue), Sharpey-fibred bone, woven bone and parallel-fibred bone.
    [Show full text]
  • AMPHIBIAN and REPTILE TRADE in TEXAS: CURRENT STATUS and TRENDS a Thesis by HEATHER LEE PRESTRIDGE Submitted to the Office of Gr
    AMPHIBIAN AND REPTILE TRADE IN TEXAS: CURRENT STATUS AND TRENDS A Thesis by HEATHER LEE PRESTRIDGE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Wildlife and Fisheries Sciences AMPHIBIAN AND REPTILE TRADE IN TEXAS: CURRENT STATUS AND TRENDS A Thesis by HEATHER LEE PRESTRIDGE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Lee A. Fitzgerald Committee Members, James R. Dixon Toby J. Hibbitts Ulrike Gretzel Head of Department, Thomas E. Lacher August 2009 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Amphibian and Reptile Trade in Texas: Current Status and Trends. (August 2009) Heather Lee Prestridge, B.S., Texas A&M University Chair of Advisory Committee: Dr. Lee A. Fitzgerald The non-game wildlife trade poses a risk to our natural landscape, natural heritage, economy, and security. Specifically, the trade in non-game reptiles and amphibians exploits native populations, and is likely not sustainable for many species. Exotic amphibian and reptile species pose risk of invasion and directly or indirectly alter the native landscape. The extent of non-game amphibian and reptile trade is not fully understood and is poorly documented. To quantitatively describe the trade in Texas, I solicited data from the United States Fish and Wildlife Service’s (USFWS) Law Enforcement Management Information System (LEMIS) and Texas Parks and Wildlife Department’s (TPWD) non-game dealer permits.
    [Show full text]
  • Hot Trade in Cool Creatures
    HOT TRADE IN COOL CREATURES A review of the live reptile trade in the European Union in the 1990s with a focus on Germany by MARK AULIYA A TRAFFIC EUROPE REPORT This report was published with the kind support of Published by TRAFFIC Europe, Brussels, Belgium. © 2003 TRAFFIC Europe All rights reserved. All material appearing in this publication is copyrighted and may be produced with permission. Any reproduction in full or in part of this publication must credit TRAFFIC Europe as the copyright owner. The views of the author expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Suggested citation: Auliya, Mark. (2003). Hot trade in cool creatures: A review of the live reptile trade in the European Union in the 1990s with a focus on Germany. TRAFFIC Europe, Brussels, Belgium ISBN 2 9600505 9 2 EAN code: 9782960050592 Front cover photograph: The Green-eyed Gecko Gekko smithii from southern Sumatra. Photograph credit: Mark Auliya Printed on recycled paper HOT TRADE IN COOL CREATURES A REVIEW OF THE LIVE REPTILE TRADE IN THE EUROPEAN UNION IN THE 1990s WITH A FOCUS ON GERMANY The Yellow Monitor Varanus melinus.
    [Show full text]