Environmental DNA Metabarcoding As a Means of Estimating Species Diversity in an Urban Aquatic Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DNA Metabarcoding of Microbial Communities for Healthcare I
Reviews ISSN 1993-6842 (on-line); ISSN 0233-7657 (print) Biopolymers and Cell. 2016. Vol. 32. N 1. P 3–8 doi: http://dx.doi.org/10.7124/bc.000906 UDC 577.25 + 579.61 DNA metabarcoding of microbial communities for healthcare I. Ye. Zaets1, O. V. Podolich1, O. N. Reva2, N. O. Kozyrovska1 1 Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 2 Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria Lynnwood road, Hillcrest, Pretoria, South Africa, 0002 [email protected], [email protected], [email protected] High-throughput sequencing allows obtaining DNA barcodes of multiple species of microorganisms from a single environmental sample. Next Generation Sequencing (NGS)-based profiling provides new opportunities to evaluate the human health effect of microbial community members affiliated to probiotics. DNA metabar- coding may serve as a quality control of microbial communities, comprising complex probiotics and other fermented foods. A detailed inventory of complex communities is a pre-requisite of understanding their func- tionality as whole entities that makes it possible to design more effective bio-products by precise replacement of one community member by others. The present paper illustrates how the NGS-based DNA metabarcoding allows profiling of both wild and hybrid multi-microbial communities with the example of a kombucha probi- otic beverage fermented by yeast-bacterial partners. Keywords: DNA metabarcoding, microbial communities, healthcare, -
A New Species of the Huntsman Spider Genus Pseudopoda Jäger (Araneae: Sparassidae) from the Eastern Himalayas, India
ISSN 0973-1555(Print) ISSN 2348-7372(Online) HALTERES, Volume 9, 170-175, 2018 © JOHN T.D. CALEB, KRISHNENDU MONDAL AND VIKAS KUMAR doi: 10.5281/zenodo.1462247 A new species of the huntsman spider genus Pseudopoda Jäger (Araneae: Sparassidae) from the Eastern Himalayas, India John T.D. Caleb, Krishnendu Mondal & Vikas Kumar* Centre for DNA Taxonomy, Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata - 700053, West Bengal, India. (Email: [email protected]) Abstract A new species of the genus Pseudopoda Jäger, 2000, P. cheppe sp. n. is described from the Indian Himalayas. Detailed description and illustrations are provided. Keywords: Arunachal Pradesh, diagnosis, description, taxonomy. Received: 2 February 2018; Revised: 9 October 2018; Online: 15 October 2018. Introduction were prepared with the GNU Image The genus Pseudopoda was established Manipulation Program (GIMP) (Montesanto, by Jäger (2000) with Pseudopoda prompta (O. 2015). Leg measurements are given as: total Pickard-Cambridge, 1885) as its type. It is the length (femur, patella, tibia, metatarsus, tarsus). third largest genus of the family Sparassidae All measurements are in millimeters. Spine Bertkau, 1872 with 124 described species , of description is as follows: prolateral, dorsal, which, twelve species are known from India – retrolateral and ventral. The types have been Pseudopoda abnormis Jäger, 2001, P. akashi deposited in the National Zoological (Sethi & Tikader, 1988), P. ashcharya Jäger & Collections, Zoological Survey of India (ZSI), Kulkarni, 2016, P. fabularis Jäger, 2008, P. Kolkata. Abbreviations: ALE = anterior lateral hingstoni Jäger, 2001, P. minor Jäger, 2001, P. eyes; AME = anterior median eyes; CH = perplexa Jäger, 2001, P. prompta (O. -
Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens
microorganisms Review Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens Edoardo Piombo 1,2 , Ahmed Abdelfattah 3,4 , Samir Droby 5, Michael Wisniewski 6,7, Davide Spadaro 1,8,* and Leonardo Schena 9 1 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco, Italy; [email protected] 2 Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden 3 Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria; [email protected] 4 Department of Ecology, Environment and Plant Sciences, University of Stockholm, Svante Arrhenius väg 20A, 11418 Stockholm, Sweden 5 Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7505101, Israel; [email protected] 6 U.S. Department of Agriculture—Agricultural Research Service (USDA-ARS), Kearneysville, WV 25430, USA; [email protected] 7 Department of Biological Sciences, Virginia Technical University, Blacksburg, VA 24061, USA 8 AGROINNOVA—Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, 10095 Grugliasco, Italy 9 Department of Agriculture, Università Mediterranea, 89122 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0116708942 Abstract: Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegeta- bles, with a corresponding increase in economic losses caused by the introduction of transboundary Citation: Piombo, E.; Abdelfattah, A.; plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance Droby, S.; Wisniewski, M.; Spadaro, protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding D.; Schena, L. -
Evaluation of Seasonal Dynamics of Fungal DNA Assemblages in a Flow-Regulated Stream in a Restored Forest Using Edna Metabarcoding
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420661; this version posted May 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evaluation of seasonal dynamics of fungal DNA assemblages in a flow-regulated stream in a restored forest using eDNA metabarcoding Shunsuke Matsuoka1, Yoriko Sugiyama2, Yoshito Shimono3, Masayuki Ushio4,5, Hideyuki Doi1 1. Graduate School of Simulation Studies, University of Hyogo 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, 650- 0047, Japan 2. Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan 3. Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan 4. Hakubi Center, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan 5. Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan Corresponding author: Shunsuke Matsuoka ([email protected]) Abstract Investigation of seasonal variations in fungal communities is essential for understanding biodiversity and ecosystem functions. However, the conventional sampling method, with substrate removal and high spatial heterogeneity of community compositions, makes surveying the seasonality of fungal communities challenging. Recently, water environmental DNA (eDNA) analysis has been explored for its utility in biodiversity surveys. In this study, we assessed whether the seasonality of fungal communities can be detected by monitoring eDNA in a forest stream. We conducted monthly water sampling in a forest stream over two years and used DNA metabarcoding to identify fungal eDNA. -
Environmental DNA for Wildlife Biology and Biodiversity Monitoring
Review Environmental DNA for wildlife biology and biodiversity monitoring 1,2* 3* 1,4 3 Kristine Bohmann , Alice Evans , M. Thomas P. Gilbert , Gary R. Carvalho , 3 3 5,6 3 Simon Creer , Michael Knapp , Douglas W. Yu , and Mark de Bruyn 1 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K, Denmark 2 School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK 3 Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Deiniol Road, Bangor University, Bangor LL57 2UW, UK 4 Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6845, Australia 5 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang East Road, Kunming, Yunnan 650223, China 6 School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK Extraction and identification of DNA from an environ- technology. Today, science fiction is becoming reality as a mental sample has proven noteworthy recently in growing number of biologists are using eDNA for species detecting and monitoring not only common species, detection and biomonitoring, circumventing, or at least but also those that are endangered, invasive, or elusive. alleviating, the need to sight or sample living organisms. Particular attributes of so-called environmental DNA Such approaches are also accelerating the rate of discovery, (eDNA) analysis render it a potent tool for elucidating because no a priori information about the likely species mechanistic insights in ecological and evolutionary pro- found in a particular environment is required to identify cesses. -
Aglaoctenus (Araneae, Lycosidae)
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA FERNANDA VON HERTWIG MASCARENHAS FONTES ANÁLISE FILOGEOGRÁFICA DE DUAS ESPÉCIES DO GÊNERO AGLAOCTENUS (ARANEAE, LYCOSIDAE) PHYLOGEOGRAPHICAL ANALYSIS OF TWO AGLAOCTENUS SPECIES (ARANEAE, LYCOSIDAE) CAMPINAS 2016 FERNANDA VON HERTWIG MASCARENHAS FONTES ANÁLISE FILOGEOGRÁFICA DE DUAS ESPÉCIES DO GÊNERO AGLAOCTENUS (ARANEAE, LYCOSIDAE) PHYLOGEOGRAPHICAL ANALYSIS OF TWO AGLAOCTENUS SPECIES (ARANEAE, LYCOSIDAE) Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutora em Genética e Biologia Molecular, na Área de Genética Animal e Evolução. Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Genetics and Molecular Biology, in the area of Animal Genetics and Evolution. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA FERNANDA VON HERTWIG MASCARENHAS FONTES E ORIENTADA PELA PROFA. DRA. VERA NISAKA SOLFERINI. Orientadora: VERA NISAKA SOLFERINI CAMPINAS 2016 Campinas, 22 de setembro de 2016. COMISSÃO EXAMINADORA Profa. Dra. Vera Nisaka Solferini Dr. Marcos Roberto Dias Batista Prof. Dr. Evandro Marsola de Moraes Profa. Dra. Ana Maria Lima de Azeredo Espin Prof. Dr. Fábio Sarubbi Raposo do Amaral Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. Ao meu querido pai Saudades eternas AGRADECIMENTOS Agradeço especialmente aos meus pais, Tatiana e Antonio Fernando (in memoriam), pelo carinho e dedicação. Todo o esforço que fizeram foi imprescindível para que eu pudesse concluir mais essa etapa na minha vida. Amo vocês! Às minhas queridas irmãs e amigas, Tarsilla e Renata, que sempre estiveram ao meu lado. -
Cristescu TREE 2014.Pdf
TREE-1853; No. of Pages 6 Opinion From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity Melania E. Cristescu Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada DNA-based species identification, known as barcoding, introduced by Arnot et al. [6] and was firmly advanced transformed the traditional approach to the study of and standardized by Hebert et al. [7]. The simple idea of biodiversity science. The field is transitioning from bar- using a short DNA fragment as a barcode (see Glossary) for coding individuals to metabarcoding communities. This identifying species across the Metazoa has been both revolution involves new sequencing technologies, bio- strongly embraced and vigorously scrutinized over the past informatics pipelines, computational infrastructure, and decade [8,9]. Nevertheless, the efforts led by Paul Hebert, experimental designs. In this dynamic genomics land- and supported by the Consortium for the Barcode of Life scape, metabarcoding studies remain insular and biodi- (CBoL; http://www.barcodeoflife.org/) resulted in a global versity estimates depend on the particular methods enterprise that combined molecular tools with valuable but used. In this opinion article, I discuss the need for a scarce taxonomic expertise [10,11]. Today, DNA barcodes coordinated advancement of DNA-based species identi- are being used commonly to identify specimens and the fication that integrates taxonomic and barcoding infor- approach has wide applications in biodiversity conserva- mation. Such an approach would facilitate access to tion, environmental management, invasion biology, the almost 3 centuries of taxonomic knowledge and 1 de- study of trophic interactions, and food safety [12–14]. -
Araneae, Lycosidae, Sosippinae)
2007. The Journal of Arachnology 35:313–317 A REVIEW OF THE WOLF SPIDER GENUS HIPPASELLA (ARANEAE, LYCOSIDAE, SOSIPPINAE) E´ der S. S. A´ lvares1,2 and Antonio D. Brescovit1: 1Laborato´rio de Artro´podes, Instituto Butantan, Sa˜o Paulo, Sa˜o Paulo, Brazil 2Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil. E-mail: [email protected] ABSTRACT. The monotypic genus Hippasella Mello-Leita˜o 1944 is revised, and its type-species H. nitida Mello-Leita˜o 1944 is considered a junior synonym of Tarentula guaquiensis Strand 1908, from Bolivia. Hippasella guaquiensis (Strand) comb. nov. is redescribed and the female genitalia are illustrated for the first time. This species now is recorded from Peru, Bolivia and Argentina. It appears to prefer vegetation near water. RESUMO. Ogeˆnero monotı´pico Hippasella Mello-Leita˜o 1944 e´ revisado e sua espe´cie-tipo H. nitida Mello-Leita˜o 1944 e´ considerada um sinoˆnimo ju´nior de Tarentula guaquiensis Strand 1908, da Bolı´via. Hippasella guaquiensis (Strand) comb. nov. e´ redescrita e a genita´lia da feˆmea e´ ilustrada pela primeira vez. Esta espe´cie e´ agora conhecida do Peru, Bolı´via e da Argentina, onde parece preferir a vegetac¸a˜o pro´xima a`a´gua. Keywords: Neotropical, taxonomy, redescription The genus Hippasella was proposed by Me- turais, Porto Alegre, and in the Museo de llo-Leita˜o (1944) based on Hippasella nitida Historia Natural San Marcos, Lima, we found Mello-Leita˜o 1944, a species known only some additional specimens of this species, in- from a male specimen collected in La Plata, cluding females. -
Environmental DNA for Improved Detection and Environmental Surveillance of Schistosomiasis
Environmental DNA for improved detection and environmental surveillance of schistosomiasis Mita E. Senguptaa,1, Micaela Hellströmb,c, Henry C. Kariukid, Annette Olsena, Philip F. Thomsenb,e, Helena Mejera, Eske Willerslevb,f,g,h, Mariam T. Mwanjei, Henry Madsena, Thomas K. Kristensena, Anna-Sofie Stensgaardj,2, and Birgitte J. Vennervalda,2 aDepartment of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; bCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark; cAquabiota Water Research, SE-115 50, Sweden; dDepartment of Microbiology and Parasitology, Kenya Methodist University, 60200 Meru, Kenya; eDepartment of Bioscience, University of Aarhus, DK-8000 Aarhus C, Denmark; fDepartment of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom; gHuman Genetics Programme, Wellcome Trust Sanger Institute, Hinxton, SB10 1SA Cambridge, United Kingdom; hDanish Institute for Advanced Study, University of Southern Denmark, DK-5230 Odense M, Denmark; iNeglected Tropical Diseases Unit, Division of Communicable Disease Prevention and Control, Ministry of Health, Nairobi, Kenya; and jCenter for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, DK-2100 Copenhagen, Denmark Edited by Andrea Rinaldo, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, and approved March 18, 2019 (received for review September 21, 2018) Schistosomiasis is a water-based, infectious disease with -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Directory of Organisations and Resources for People with Disabilities in South Africa
DISABILITY ALL SORTS A DIRECTORY OF ORGANISATIONS AND RESOURCES FOR PEOPLE WITH DISABILITIES IN SOUTH AFRICA University of South Africa CONTENTS FOREWORD ADVOCACY — ALL DISABILITIES ADVOCACY — DISABILITY-SPECIFIC ACCOMMODATION (SUGGESTIONS FOR WORK AND EDUCATION) AIRLINES THAT ACCOMMODATE WHEELCHAIRS ARTS ASSISTANCE AND THERAPY DOGS ASSISTIVE DEVICES FOR HIRE ASSISTIVE DEVICES FOR PURCHASE ASSISTIVE DEVICES — MAIL ORDER ASSISTIVE DEVICES — REPAIRS ASSISTIVE DEVICES — RESOURCE AND INFORMATION CENTRE BACK SUPPORT BOOKS, DISABILITY GUIDES AND INFORMATION RESOURCES BRAILLE AND AUDIO PRODUCTION BREATHING SUPPORT BUILDING OF RAMPS BURSARIES CAREGIVERS AND NURSES CAREGIVERS AND NURSES — EASTERN CAPE CAREGIVERS AND NURSES — FREE STATE CAREGIVERS AND NURSES — GAUTENG CAREGIVERS AND NURSES — KWAZULU-NATAL CAREGIVERS AND NURSES — LIMPOPO CAREGIVERS AND NURSES — MPUMALANGA CAREGIVERS AND NURSES — NORTHERN CAPE CAREGIVERS AND NURSES — NORTH WEST CAREGIVERS AND NURSES — WESTERN CAPE CHARITY/GIFT SHOPS COMMUNITY SERVICE ORGANISATIONS COMPENSATION FOR WORKPLACE INJURIES COMPLEMENTARY THERAPIES CONVERSION OF VEHICLES COUNSELLING CRÈCHES DAY CARE CENTRES — EASTERN CAPE DAY CARE CENTRES — FREE STATE 1 DAY CARE CENTRES — GAUTENG DAY CARE CENTRES — KWAZULU-NATAL DAY CARE CENTRES — LIMPOPO DAY CARE CENTRES — MPUMALANGA DAY CARE CENTRES — WESTERN CAPE DISABILITY EQUITY CONSULTANTS DISABILITY MAGAZINES AND NEWSLETTERS DISABILITY MANAGEMENT DISABILITY SENSITISATION PROJECTS DISABILITY STUDIES DRIVING SCHOOLS E-LEARNING END-OF-LIFE DETERMINATION ENTREPRENEURIAL -
The Masked Torrent Mite, Torrenticola Larvata N. Sp. (Acari: Hydrachnidiae: Torrenticolidae): a Water Mite Endemic to the Ouachita Mountains of North America
ACAROLOGIA A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari. Subscriptions: Year 2017 (Volume 57): 360 € http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php Previous volumes (2010-2015): 250 € / year (4 issues) Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01) Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Acarologia 56(2): 245–256 (2016) DOI: 10.1051/acarologia/20162254 The masked torrent mite, Torrenticola larvata n. sp. (Acari: Hydrachnidiae: Torrenticolidae): a water mite endemic to the Ouachita Mountains of North America Cameron R. CHERI, J. Ray FISHER and Ashley P.G. DOWLING* (Received 14 January 2016; accepted 08 March 2016; published online 30 June 2016) Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA. [email protected], jrfi[email protected], [email protected] (* Corresponding author) ABSTRACT — Torrenticola larvata n. sp. is described from the Interior Highlands of North America.