Diffraction Gratings: from Principles to Applications in High-Intensity Lasers Nicolas Bonod, Jérôme Neauport
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diffraction Grating Experiments Warning: Never Point Any Laser Into Your Own Or Other People’S Eyes
Diffraction grating experiments Warning: Never point any laser into your own or other people’s eyes. Materials and tools Diffraction glasses (diffraction grating 1000 lines/mm) Flashlight Laser pointers (red, green, blue) Other light sources (light bulbs, arc lamps, etc.) Rulers White paper for screen Binder clips Graphing paper or computer graphing tools Scientific calculator In these experiments you will use diffraction glasses to perform measurements of light diffraction. Diffraction is a phenomenon that is due to the wave-like nature of light. Predict 1. What do you think will happen when you shine white light through a prism and why? Draw a picture to show your predictions. When white light goes through a diffraction grating (diffraction glasses), different colors are bent a different angles, similar to how they are bent be a prism. 2. (a) What do you think will happen when you shine red laser light through the diffraction glasses? (b) What do you think will happen when you shine blue laser light through the diffraction glasses? (c) Draw a picture to show your predictions. Experiment setup 1. For a projection screen, use a white wall, or use binder clips to make a white screen out of paper. 2. Use binder clips to make your diffraction glasses stand up. 3. Secure a light source with tape as needed. 4. Insert a piece of colored plastic between the source and the diffraction grating as needed. Observation 1. Shine white light through the diffraction glasses and observe the pattern projected on a white screen. Adjust the angle between the beam of light and the glasses to get a symmetric pattern as in the figure above. -
Lab 4: DIFFRACTION GRATINGS and PRISMS (3 Lab Periods)
revised version Lab 4: DIFFRACTION GRATINGS AND PRISMS (3 Lab Periods) Objectives Calibrate a diffraction grating using a spectral line of known wavelength. With the calibrated grating, determine the wavelengths of several other spectral lines. De- termine the chromatic resolving power of the grating. Determine the dispersion curve (refractive index as a function of wavelength) of a glass prism. References Hecht, sections 3.5, 5.5, 10.2.8; tables 3.3 and 6.2 (A) Basic Equations We will discuss diffraction gratings in greater detail later in the course. In this laboratory, you will need to use only two basic grating equations, and you will not need the details of the later discussion. The first equation should be familiar to you from an introductory Physics course and describes the angular positions of the principal maxima of order m for light of wavelength λ. (4.1) where a is the separation between adjacent grooves in the grating. The other, which may not be as familiar, is the equation for the chromatic resolving power Rm in the diffraction order m when N grooves in the grating are illuminated. (4.2) where (Δλ)min is the smallest wavelength difference for which two spectral lines, one of wave- length λ and the other of wavelength λ + Δλ, will just be resolved. The absolute value insures that R will be a positive quantity for either sign of Δλ. If Δλ is small, as it will be in this experiment, it does not matter whether you use λ, λ + Δλ, or the average value in the numerator. -
WHITE LIGHT and COLORED LIGHT Grades K–5
WHITE LIGHT AND COLORED LIGHT grades K–5 Objective This activity offers two simple ways to demonstrate that white light is made of different colors of light mixed together. The first uses special glasses to reveal the colors that make up white light. The second involves spinning a colorful top to blend different colors into white. Together, these activities can be thought of as taking white light apart and putting it back together again. Introduction The Sun, the stars, and a light bulb are all sources of “white” light. But what is white light? What we see as white light is actually a combination of all visible colors of light mixed together. Astronomers spread starlight into a rainbow or spectrum to study the specific colors of light it contains. The colors hidden in white starlight can reveal what the star is made of and how hot it is. The tool astronomers use to spread light into a spectrum is called a spectroscope. But many things, such as glass prisms and water droplets, can also separate white light into a rainbow of colors. After it rains, there are often lots of water droplets in the air. White sunlight passing through these droplets is spread apart into its component colors, creating a rainbow. In this activity, you will view the rainbow of colors contained in white light by using a pair of “Rainbow Glasses” that separate white light into a spectrum. ! SAFETY NOTE These glasses do NOT protect your eyes from the Sun. NEVER LOOK AT THE SUN! Background Reading for Educators Light: Its Secrets Revealed, available at http://www.amnh.org/education/resources/rfl/pdf/du_x01_light.pdf Developed with the generous support of The Charles Hayden Foundation WHITE LIGHT AND COLORED LIGHT Materials Rainbow Glasses Possible white light sources: (paper glasses containing a Incandescent light bulb diffraction grating). -
Diffraction Grating and the Spectrum of Light
DIFFRACTION GRATING OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. THEORY: The operation of the grating is depicted in Fig. 1 on page 3. Lens 1 produces a parallel beam of light from the single slit source A to the diffraction grating. The grating itself consists of a large number of very narrow transparent slits equally spaced with a distance D between adjacent slits. The light rays numbered 1, 2, 3, etc. represent those rays which are diffracted at an angle by the grating. Lens 2 is used to focus these rays to a line image at B. Notice that ray 2 travels a distance x = D sin more than 1, ray 3 travels x more than 2, etc. When the extra distance traveled is one wavelength, two wavelengths, or N wavelengths, constructive interference occurs. Thus, bright images of a monochromatic (single color) source of wavelength will occur at position B at a diffraction angle if Sin(N) = N / D where N = 0, 1, 2, 3, ... (1) The images generally are brightest for N=0 (0 = 0), and become corresponding less bright for higher N. Since, for a given value of N, the angle at which constructive interference occurs depends on , a polychromatic light source will produce a SERIES of single color bright images. There will be an image for each wavelength radiated by the source. Each image will have a color corresponding to its wavelength, and each image will be formed at a different angle. In this manner a spectrum of the light source is formed by the grating. -
High Performance Computing Tera 10: Beyond 50 Thousand Billion Operations Per Second
JUNE 2006 - SPECIAL ISSUE IN PARTNERSHIP WITH BULL AND INTEL High Performance Computing Tera 10: beyond 50 thousand billion operations per second Editorial The lightning growth of intensive computing oday, researchers, engineers an architecture promising a million they will require a 100 to 10,000- and entrepreneurs in vir- operations a second for a cost of just fold increase in computing capacity Ttually every field are finding a million dollars. Thirty years on within the next 10-20 years. that high-performance computing – with the advances in electronic In this frenetic race, there is general (HPC) is starting to play a central circuit technology and the science agreement that France has not pro- role in maintaining their competi- of computer simulation – a mil- gressed as fast as we would have wan- tive edge: in research and business lion times that processing power is ted over the past few years. In order activities alike. now available for an equivalent cost. to be effective and consistent, it is Advances in scientific research Today’s most powerful machine deli- not enough just to give the scientific have always depended on the link vers 280 teraflops, and there are plans community the most powerful com- between experimental and theore- in the near future for a 1 petaflop puters. Active support for research tical work. The emergence of the machine in China and a 5 petaflop and higher education into algorithms supercomputer opened up a whole machine in Japan. and the associated computer sciences new avenue: high-powered compu- Where will this progress lead us? is also essential. -
25-2 the Diffraction Grating
Answer to Essential Question 25.1 (a) The only points for which changing the wavelength has no impact on the interference of the waves are points for which the path-length difference is zero. Thus, the point in question must lie on the perpendicular bisector of the line joining the sources. (b) If we re-arrange Equation 25.3 to solve for the sine of the angle, we get . Thus, decreasing the wavelength decreases sin θ, so the pattern gets tighter. Decreasing d, the distance between the sources, has the opposite effect, with the pattern spreading out. We can understand the wavelength effect conceptually in that, when the wavelength decreases, we don’t have to go as far from the perpendicular bisector to locate points that are half a wavelength (or a full wavelength) farther from one source than the other. Figure 25.3 shows the effect of decreasing the wavelength, or of decreasing the distance between the sources. Figure 25.3: The top diagram shows the interference pattern produced by two sources. The middle diagram shows the effect of decreasing the wavelength of the waves produced by the sources, while the bottom diagram shows the effect of decreasing the distance between the sources. 25-2 The Diffraction Grating Now that we understand what happens when we have two sources emitting waves that interfere, let’s see if we can understand what happens when we add additional sources. The distance d between neighboring sources is the same as the distance between the original two sources, and the sources are arranged in a line. -
Nd Lu Caf2 for High-Energy Lasers Simone Normani
Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D. -
Three Gratings System for the Measurement of Refractive Index of Liquids
International Journal of Applied Science and Mathematics Volume 3, Issue 3, ISSN (Online): 2394-2894 Three Gratings System for the Measurement of Refractive Index of Liquids Shyam Singh Physics Department, University of Namibia Private Bag 13301, Windhoek, NAMIBIA Fax: 264-61-206-3791 Email: [email protected] Abstract – This paper describes a very exciting method of a distance x from the third grating due to the interference finding the refractive index of liquids using a three of diffracted light from the third grating. The central point transmission diffraction gratings. An especially design glass is brighter than the other two points but the other two cell is used whose width can be changed using a railing. Light points are at equidistant from the central point as can be from a low power helium-neon laser is diffracted by a seen in Fig 1. This situation confirms the perfect transmission diffraction grating and is collimated by a lens L of short focal length. The parallel beams of light are received alignment and setup of the experiment. The distance by the second grating mounted on the first wall of the glass between the walls of the glass cell d is predetermined cell and its first order diffraction is formed on the second based on the experimental liquid and this is the only wall of the glass cell. The interference is received on a screen drawback of this experiment. However, this drawback is at a distance x from the third grating mounted on the second not so crucial as the distance d can easily be adjusted by a wall of the glass cell. -
Diffraction Grating Revisited: a High-Resolution Plasmonic Dispersive Element
1 Diffraction grating revisited: a high-resolution plasmonic dispersive element V. Mikhailov1, J. Elliott2, G. Wurtz2, P. Bayvel1, A. V. Zayats2* 1 Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK 2 School of Mathematics and Physics, The Queen’s University of Belfast, Belfast BT7 1NN, UK Abstract The spectral dispersion of light is critical in applications ranging from spectroscopy to sensing and optical communication technologies. We demonstrate that ultra-high spectral dispersion can be achieved with a finite-size surface plasmon polaritonic (SPP) crystal. The 3D to 2D reduction in light diffraction dimensions due to interaction of light with collective electron modes in a metal is shown to increase the dispersion by some two orders of magnitude, due to a two-stage process: (i) conversion of the incident light to SPP Bloch waves on a nanostructured surface and (ii) Bloch waves traversing the SPP crystal boundary. This has potential for high-resolution spectrograph applications in photonics, optical communications and lab-on-a-chip, all within a planar device which is compact and easy to fabricate. 2 The spectral dispersion of light, that is the dependence of generalised refractive index on frequency (1), is ubiquitous in applications ranging from optical spectral devices to sensing and novel optical communication technologies (2-4). Conventionally, both prisms and diffraction gratings can be used to disperse incident light, with gratings preferred because of their high dispersion and, thus, higher spectral resolution. Optical spectroscopy based on light-wave dispersion is employed for studying the optical properties and the internal structure of materials, atoms and molecules. -
VILNIUS UNIVERSITY Martynas Barkauskas TIME-RESOLVED
VILNIUS UNIVERSITY Martynas Barkauskas TIME-RESOLVED SPECTROSCOPY OF NONLINEAR CRYSTALS AND PHOTOCHROMIC SWICHES Doctoral dissertation Physical sciences, physics (02 P) Vilnius, 2009 Dissertation was prepared at the Vilnius University in 2004-2008 Scientific supervisor: prof. habil. dr. Valdas Sirutkaitis (Vilnius University, physical sciences, physics – 02 P) Scientific advisor: doc. dr. Mikas Vengris (Vilnius University, physical sciences, physics – 02 P) VILNIAUS UNIVERSITETAS Martynas Barkauskas NETIESINIŲ KRISTALŲ IR FOTOCHROMINIŲ JUNGIKLIŲ KINETINĖ SPEKTROSKOPIJA Daktaro disertacija Fiziniai mokslai, fizika (02 P) Vilnius, 2009 Disertacija rengta 2004-2008 metais Vilniaus universitete Mokslinis vadovas: prof. habil. dr. Valdas Sirutkaitis (Vilniaus universitetas, fiziniai mokslai, fizika – 02 P) Konsultantas: doc. dr. Mikas Vengris (Vilniaus universitetas, fiziniai mokslai, fizika – 02 P) Contents List of abbreviations ................................................................................ 6 i. Introduction.......................................................................................... 7 ii. Author’s publications ......................................................................... 10 iii. Author’s contribution.......................................................................... 11 1. Time-resolved absorption spectroscopies......................................... 12 1.1. Microsecond flash spectrometers............................................. 12 1.2. Laser flash photolysis (nanosecond time domain) -
Diffraction Gratings Selection Guide
Understanding and selecting diffraction gratings Diffraction gratings are used in a variety of applications where light needs to be spectrally split, including engineering, communications, chemistry, physics and life sciences research. Understanding the varying types of grating will allow you to select the best option for your needs. An introduction to diffraction gratings Diffraction gratings are passive optical components that produce an angular split of an incident light source as a function of wavelength. Each wavelength exits the device at a different angle, allowing spectral selection for a wide range of applications. Typically, a grating consists of a series of parallel grooves, equally spaced and formed in a reflective coating deposited onto a suitable substrate. The distance between each groove and the angles the grooves form in respect to the substrate influences both the dispersion and efficiency of a grating. If the wavelength of the incident radiation is much larger than the groove spacing, diffraction will not occur. If the wavelength is much smaller than the groove spacing, the facets of the groove will act as mirrors and, again, no diffraction will take place. There are two main classes of grating, based on the way the grating is formed: Ruled gratings – a diamond, mounted on a ruling engine physically forms grooves into the reflective surface. Holographic gratings – groves are formed by Each of these types of grating has different optical laser-constructed interference patterns and a characteristics. It is therefore important to choose the photolithographic process. best type of grating for your application. consult. design. integrate. 01 Ruled gratings Which diffraction grating is best for Precision and preparation are the keys to producing your application? ruled gratings successfully. -
Spectroscopy – I. Gratings and Prisms
Spectroscopy – I. Gratings and Prisms Dave Kilkenny 1 Contents 1 Historical Notes 3 2 Basics 6 2.1 Dispersion...................................... .. 6 2.2 Resolvingpower.................................. ... 6 3 Objective-Prism Spectroscopy 7 4 Diffraction Gratings 13 4.1 Young’s experiment – double-slit interference . .............. 13 4.2 Multiple-slit interference. .......... 15 4.3 “Classical”Gratings ............................. ..... 16 4.3.1 Gratingdispersion ............................. .. 18 4.3.2 Gratingorders................................. 18 4.3.3 Freespectralrange ............................. .. 20 4.3.4 Blazeandefficiency.............................. 21 4.4 Echellegratings................................. .... 22 4.5 Volume Phase Holographic (VPH) Gratings . ........ 23 4.6 Summary ........................................ 27 5 Grisms 28 2 1 Historical Notes Some important milestones: • 1637 Descartes explained the origin of the rainbow. • 1666 Newton’s classic experiments on the nature of colour. • 1752 Melvil discovered the yellow “D lines” emitted by sodium vapour. • 1802 Wollaston discovered dark lines in the spectrum of the Sun. • 1814 Fraunhofer used a small theodolite telescope to examine stellar spectra and found similar lines as in the solar spectrum. He catalogued the features as A, B, C, ... etc, some of which persist to the present – the sodium “D” lines, the “G” band (CN - cyanogen). • 1859 The famous Kirchhoff – Bunsen experiments established that a heated surface emits a continuous (Planck or “black body”) spectrum; a heated low pressure gas emits an emission spectrum with discrete lines at wavelengths characteristic of the gas; and a cool low pressure gas in front of a hot source absorbs at those same characteristic wavelengths. Figure 1: Summary of the Kirchhoff-Bunsen experiments. 3 The latter, of course is how we simplistically view stars – the heated interior provides a continuous Planck spectrum and the cooler photosphere does the line absorbing.