Wrist Problems

Total Page:16

File Type:pdf, Size:1020Kb

Wrist Problems 7 Wrist Problems EDWARD J. S HAHADY Wrist problems and complaints are another group of common and frus- trating musculoskeletal issues in primary health care. Wrist injuries can be intimidating because of the complex anatomy and concern for potential long-term disability. Overcoming the fear and frustration of caring for wrist injury becomes possible with a few simple organizational steps: 1. Step 1 is to realize that 95 % of patients seen in the office with wrist- complaints can be classified into three categories and six to seven problems. 2. Step 2 is to take a focused history that segments the categories into acute trauma, overuse trauma, and medical disease. You now have a manageable list (Table 7.1) to begin further investigation. 3. Step 3 is to perform a focused thorough wrist examination. With a focused history and a thorough wrist examination you most likely now have the diagnosis. Your knowledge of the usual history and examination associated with the most common problems has facilitated the diagnostic process. 4. Step 4 is ordering confirmatory studies if needed (many times they are not). 5. Step 5 is to start treatment. (This may include appropriate consultation.) Five percent of the time the diagnosis will not be so obvious. However, not being one of the 95% is usually obvious. That is when additional studies and/or a consultation becomes necessary. Rare or not so frequent problems are usually the ones that receive the most press. How often do you hear the words “I got burned once” mentioned about a rare problem that was missed in the primary care setting. Having a good working knowledge of the characteristics of common problems pro- vides an excellent background to help recognize the uncommon. The uncom- mon is easy to recognize once you know the common. Be driven by the search for the common rather than the expensive intimidating search for the rare birds. 118 7. Wrist Problems 119 TABLE 7.1. Classification of common wrist problems. Overuse trauma ● Carpal tunnel syndrome ● De Quervain’s tenosynovitis ● Other tendonitis Acute trauma ● Fractured scaphoid bone of the wrist ● Scapholunate ligament rupture ● Wrist sprain Medical problems ● Arthritis associated with other diseases like rheumatoid arthritis 1. Focused History The first question is whether the onset of the problem was acute. Did it just start or has it been present for a prolonged period of time? The next question would depend on the answer to the first. If the onset is acute, then ask about a fall, especially one that involved breaking the fall with the outstretched hand (a common mechanism in wrist injury). If the onset is not acute, ask about occupations, hobbies, or sports that involve repeated wrist movement like computer use, painting, and throwing sports. A recent change in occupation or intensity of activity is also important. Ask about any chronic disease. Wrist pain can accompany collagen vascular diseases like rheumatoid arthritis. 2. Focused Physical Examination Begin by asking the patient to go through four motions without your help. This examination establishes a marker for severity of the injury and a base- line to assess degree of recovery. The four wrist motions are ulnar deviation (Figure 7.1); radial deviation (Figure 7.2); wrist extension (Figure 7.3); and wrist flexion (Figure 7.4). It is important to start every examination by defining range of motion (ROM) and noting any difference between one wrist and another. Use a goniometer to precisely assess degrees of motion. The remaining examina- tion will be dictated by the focused history. 3. Case 3.1. History A 33-year-old female secretary presents to your office with right wrist pain for the past 6 months. It was relieved by taking a few ibuprofen tablets but now the pain is persistent and makes it difficult for her to type. She also notes 120 E.J. Shahady 30 degrees FIGURE 7.1. Ulnar deviation; 30° is normal. 20 degrees FIGURE 7.2. Radial deviation; 20° is normal. 7. Wrist Problems 121 FIGURE 7.3. Wrist extension; normal is up to 80°. FIGURE 7.4. Wrist flexion; normal is up to 80°. 122 E.J. Shahady some weakness when she grasps objects and occasionally she drops her cof- fee cup. She is frustrated by her inability to open jars or twist off lids. She feels like she is an old woman before her time. She reports no falls and she has no other complaints. Her general health is excellent. She is a power walker and takes no medications. 3.2. Thinking Process The lack of a fall or other acute trauma makes the diagnosis listed under acute trauma less likely. Still perform the examination maneuvers to assess for trauma as some patients forget the fall that occurred some time ago. Probably this examination will be negative for acute trauma. Medical causes are also unlikely, as she has no history of chronic disease that suggests this. If this is the first sign of a systemic chronic disease, it will soon become obvi- ous by a lack of response to your treatment and appearance of other symp- toms of that disease. This makes an overuse syndrome most likely. Additional questions and the wrist examination that will focus on overuse syndromes should make the diagnosis. Carpal tunnel syndrome is a possibility and it has a characteristic history. These patients usually have occupations that require prolonged or repeated wrist flexion. They also usually complain that the pain is located on the palm of the hand in the thenar area (thumb side). The pain may radiate the elbow. Numbness and tingling in that area of the palm are usually present. The pain may radiate up to the elbow and it is aggravated by wrist flexion and exten- sion. These patients may also awaken at night with pain and numbness because the wrist falls into flexion with sleep. Grasping objects is painful and they may report dropping cups and glasses. This patient is a secretary and she spends 6 h a day with computer data entry. Her pain is in the thenar area and is accompanied by numbness and tingling. She awakens in the morning feeling like she needs to rub or shake her hand to “get the circulation back.” The diagnosis of carpal tunnel syn- drome is most likely. The physical examination should be preformed to con- firm this diagnosis and to rule out the other possibilities. Carpal tunnel syndrome is a compression neuropathy of the median nerve. The physical examination will focus on assessing the sensory and motor func- tions of that nerve. First observe the palm of the hand and compare the thenar area of the injured hand to the noninjured hand to look for atrophy. Next, tap over the median nerve at the wrist (Figure 7.5). A positive test (Tinel’s sign) is the production of tingling on the palmer surface of the thumb, index finger, and a portion of the middle finger. Test the strength of the thenar muscles by assessing the ability of the thumb to move toward the little finger against resistance (Figure 7.6). Placing the wrists together in maximum flexion (Phalen’s test) for 45 s or less will cause numbness or aching. (Figure 7.7). De Quervain’s tenosynovitis is an inflammation of the tendon sheaths of the abductor pollicis longus and the extensor pollicis brevis at the first dorsal 7. Wrist Problems 123 FIGURE 7.5. Median nerve percussion (Tinel’s test). FIGURE 7.6. Thenar muscle strength test. 124 E.J. Shahady FIGURE 7.7. Phalen’s test. compartment over the radial styloid. These tendons form the floor of the anatomic snuffbox of the wrist (Figure 7.8). Palpate the tendons over the radial styloid and at the floor of the snuffbox for pain and tenderness. Perform Finkelstein’s test (Figure 7.9) by asking the patient to ulnar-deviate the wrist with the thumb flexed and abducted into the palm places tension on the ten- dons and their sheaths. The examiner may have to provide an additional force to complete the test. Reproduction of the pain clinches the diagnosis. Examination of the snuffbox to evaluate the scaphoid (Figure 7.10) is important to rule out a subtle fracture that has been overlooked from past trauma. How to do this examination will be explained when scaphoid frac- tures are discussed in Section 7 (Scaphoid Fractures). This patient had positive Phalen’s and Tinel’s signs. She had no thenar atro- phy and thumb opposition was not weak. Her Finkelstein’s test is negative and there is no tenderness over the radial styloid (Figure 7.8). This history and phys- ical examination makes the diagnosis of carpal tunnel syndrome most likely. 3.3. Additional Studies No further studies are needed at this time unless a scaphoid fracture is sus- pected. Nerve conduction studies are helpful if the diagnosis is not clear or surgery is a therapeutic consideration. 7. Wrist Problems 125 Radial Styloid Snuff Box Extensor Pollicis Brevis Abductor Pollicis Longus FIGURE 7.8. Anatomic snuffbox area. FIGURE 7.9. Finkelstein’s test. 126 E.J. Shahady FIGURE 7.10. Examination of the snuffbox for scaphoid fracture. 3.4. Treatment for Carpal Tunnel Syndrome Most cases will respond to conservative measures. First, identify and decrease the offending activity that is causing the problem. Workstation modifications to decrease wrist flexion can be very beneficial. Examples include adjusting keyboard height and supports for the wrist and forearm. Intermittent breaks from typing every few hours decreases fatigue. If none of these measures work, consider a change in occupation or sport technique. Writing a note to the patient’s employer, coach, or teacher explaining how these changes will increase productivity helps patients obtain the cooperation of their superiors.
Recommended publications
  • Carpal Fractures
    CURRENT CONCEPTS Carpal Fractures Nina Suh, MD, Eugene T. Ek, MBBS, PhD, Scott W. Wolfe, MD CME INFORMATION AND DISCLOSURES The Review Section of JHS will contain at least 3 clinically relevant articles selected by the Provider Information can be found at http://www.assh.org/Pages/ContactUs.aspx. editor to be offered for CME in each issue. For CME credit, the participant must read the Technical Requirements for the Online Examination can be found at http://jhandsurg. articles in print or online and correctly answer all related questions through an online org/cme/home. examination. The questions on the test are designed to make the reader think and will occasionally require the reader to go back and scrutinize the article for details. Privacy Policy can be found at http://www.assh.org/pages/ASSHPrivacyPolicy.aspx. The JHS CME Activity fee of $30.00 includes the exam questions/answers only and does not ASSH Disclosure Policy: As a provider accredited by the ACCME, the ASSH must ensure fi include access to the JHS articles referenced. balance, independence, objectivity, and scienti c rigor in all its activities. Disclosures for this Article Statement of Need: This CME activity was developed by the JHS review section editors and review article authors as a convenient education tool to help increase or affirm Editors reader’s knowledge. The overall goal of the activity is for participants to evaluate the Ghazi M. Rayan, MD, has no relevant conflicts of interest to disclose. appropriateness of clinical data and apply it to their practice and the provision of patient Authors care.
    [Show full text]
  • Hand Surgery: a Guide for Medical Students
    Hand Surgery: A Guide for Medical Students Trevor Carroll and Margaret Jain MD Table of Contents Trigger Finger 3 Carpal Tunnel Syndrome 13 Basal Joint Arthritis 23 Ganglion Cyst 36 Scaphoid Fracture 43 Cubital Tunnel Syndrome 54 Low Ulnar Nerve Injury 64 Trigger Finger (stenosing tenosynovitis) • Anatomy and Mechanism of Injury • Risk Factors • Symptoms • Physical Exam • Classification • Treatments Trigger Finger: Anatomy and MOI (Thompson and Netter, p191) • The flexor tendons run within the synovial tendinous sheath in the finger • During flexion, the tendons contract, running underneath the pulley system • Overtime, the flexor tendons and/or the A1 pulley can get inflamed during finger flexion. • Occassionally, the flexor tendons and/or the A1 pulley abnormally thicken. This decreases the normal space between these structures necessary for the tendon to smoothly glide • In more severe cases, patients can have their fingers momentarily or permanently locked in flexion usually at the PIP joint (Trigger Finger‐OrthoInfo ) Trigger Finger: Risk Factors • Age: 40‐60 • Female > Male • Repetitive tasks may be related – Computers, machinery • Gout • Rheumatoid arthritis • Diabetes (poor prognostic sign) • Carpal tunnel syndrome (often concurrently) Trigger Finger: Subjective • C/O focal distal palm pain • Pain can radiate proximally in the palm and distally in finger • C/O finger locking, clicking, sticking—often worse during sleep or in the early morning • Sometimes “snapping” during flexion • Can improve throughout the day Trigger Finger:
    [Show full text]
  • Scapholunate Ligament Tear
    Scapholunate Ligament Tear Note: These exercises are only to be performed with physician approval. Wrist & Forearm Active ROM Exercises 1 . Wrist Flexion & Extension 2. Wrist Ulnar and Radial Deviation With forearm supported on table and wrist over With hand flat on table, slide hand side. the edge, lift hand up with fingers resting in a Repeat 8 – 10 times, 3 – 4 times per day. fist, and then relax hand down with fingers open. Repeat 8 – 10 times, 3 – 4 times per day. 3 . Forearm Supination and Pronation Keeping elbow bent and close to your side, to side, rotate your hand to turn palm up, and then palm down. It is helpful to use a light hammer or light weighted dowel to perform this exercise Repeat 8 – 10 times, 3 – 4 times per day. 1 Passive Wrist Stretches Use uninvolved hand to gently bend involved wrist downward. Hold a comfortable stretch about 15 seconds. Repeat 8–10 times, 3–4 times per day. Use uninvolved hand to gently bend involved wrist towards the ceiling. Hold a comfortable stretch about 15 seconds. Repeat 8–10 times, 3–4 times per day. Place both hands together in a ‘meditation-like’ position. If you are having a hard time keeping the base of the palms connected, place a card or thin object between both palms and attempt to hold together. Slowly start to increase wrist flexion (wrist bending) by lowering both wrists while maintaining the palms together. The fingers and thumbs should be resting against each other. Hold a comfortable stretch about 15 seconds.
    [Show full text]
  • In Vivo Contact Mechanics of the Distal Radioulnar Joint with And
    IN VIVO CONTACT MECHANICS OF THE DISTAL RADIOULNAR JOINT WITH AND WITHOUT SCAPHOLUNATE DISSOCIATION By Mathew Sunil Varre Submitted to the graduate degree program in Mechanical Engineering and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering ________________________________ Chairperson: Dr. Kenneth J. Fischer ________________________________ Dr. Christopher Depcik ________________________________ Dr. Xinmai Yang Date Defended: i The Thesis Committee for Mathew Sunil Varre certifies that this is the approved version of the following thesis: IN VIVO CONTACT MECHANICS OF THE DISTAL RADIOULNAR JOINT WITH AND WITHOUT SCAPHOLUNATE DISSOCATION ________________________________ Chairperson: Dr. Kenenth J.Fischer Date approved: 08/17/2011 ii Acknowledgements First and foremost I would like to thank my advisor Dr. Kenneth J. Fischer for giving me an opportunity as his graduate student and providing all the necessary resources to bring this to pass. I thank him for all his input and assistance in ensuring that this project remained on track. I would like to thank my committee members Dr. Christopher Depcik and Dr. Xinmai Yang for all their invaluable support through the duration of my graduation studies. I also would like to thank my co-authors Dr. Bruce E. Toby, Dr. Terence McIff and Dr. Phil Lee for their support, valuable feedback and assistance in the project. I extend my gratitude to all the Department of Mechanical Engineering faculty, staff and colleagues who gave in some part or another in this venture. I sincerely thank Allan Schmitt at the Hoglund Brain Imaging Center, University of Kansas Medical Center for his assistance with imaging.
    [Show full text]
  • Anatomy & Abnormalities of the Wrist
    Anatomy & Injuries of the Pediatric Wrist Mahesh Thapa, MD Seattle Children’s University of Washington NO DISCLOSURES Acknowldegements • Andy Zbojniewicz • Matt Skalski • Roberto Schubert • Andrew Lawson • C. Chong • Complete Anatomy App Objectives At the end of this session the audience should be able to: 1. Identify the components of the TFCC and other important wrist ligaments on an MRI. 2. Describe how to perform single and triple compartment wrist arthrograms. 3. Recognize and classify TFCC injuries 4. Evaluate the pediatric wrist for common injures WRIST EMBRYOLOGY • Wrist bones start as a single carpal mass from mesenchymal condensation. • Capitate is the 1st structure to appear as immature pre-cartilage • Endochondral ossification • Capitate ossific center develops first TRIANGULAR FIBROCARTILAGE COMPLEX (TFCC) TFCC - Function • Stabilizes the DRUJ • Transmits axial load between the carpus and the ulna, • Stabilizes the ulnar aspect of the carpus. TFCC – Articular Disc TFCC - Dorsal • Dorsal Radioulnar ligament • Extensor Carpi ulnaris tendon and sheath TFCC - Dorsal Dorsal radioulnar ligament and extensor carpi ulnaris tendon TFCC - Ulnar • Triangular Ligament – Styloid insertion – Foveal insertion – Intervening ligamentum subcruentum • Meniscal Homologue • Ulnar Collateral ligament TFCC - Ulnar TFCC ulnar styloid and foveal insertion and ligamentum subcruentum TFCC - Ulnar Different patient TFCC ulnar styloid and foveal insertion and ligamentum subcruentum TFCC - Volar • Volar radioulnar ligament • Ulnotriquetral ligament • Ulnolunate
    [Show full text]
  • Rehabilitation for Scapholunate Injury: Application of Scientific and Clinical Evidence to Practice
    Journal of Hand Therapy 29 (2016) 146e153 Contents lists available at ScienceDirect Journal of Hand Therapy journal homepage: www.jhandtherapy.org JHT READ FOR CREDIT ARTICLE #418. Special Issue: Wrist Rehabilitation for scapholunate injury: Application of scientific and clinical evidence to practice Aviva L. Wolff EdD a,*, Scott W. Wolfe MD b a Leon Root, MD Motion Analysis Laboratory, Hospital for Special Surgery, New York, NY, USA b Hand and Upper Extremity Service, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA article info abstract Article history: In this article, the development of a rehabilitation approach is describe using scapholunate injury as a Received 4 January 2016 model. We demonstrate how scientific and clinical evidence is applied to a treatment paradigm and Received in revised form modified based on emerging evidence. Role of the scapholunate interosseous ligament within the path- 16 March 2016 omechanics of the carpus, along with the progression of pathology, and specific rehabilitation algorithms Accepted 18 March 2016 tailored to the stage of injury. We review the recent and current evidence on the kinematics of wrist motion during functional activity, role of the muscles in providing dynamic stability of the carpus, and basic science Keywords: of proprioception. Key relevant findings in each of these inter-related areas are highlighted to demonstrate Scapholunate injury Scapholunate interosseous ligament how together they form the basis for current wrist rehabilitation. Finally, we make recommendations for fi Dart-thrower’s motion future research to further test the ef cacy of these approaches in improving functional outcomes. Rehabilitation Ó 2016 Hanley & Belfus, an imprint of Elsevier Inc.
    [Show full text]
  • Injury to the Scapholunate Ligament in Sport “A Case Report”
    World Journal of Sport Sciences 7 (3): 154-159, 2012 ISSN 2078-4724 © IDOSI Publications, 2012 DOI: 10.5829/idosi.wjss.2012.7.3.71228 Injury to the Scapholunate Ligament in Sport “A Case Report” 1SoutAkbar Hessam, 1Rahimi Abbas and 1MirHosseini Kasra 1Department of Orthopaedics and Accident surgery, University of Nottingham, UK 2Department of Physiotherapy, Shahid Beheshti University of Medical Sciences, Tehran, Iran Abstract: Although wrist injuries are not so common such as ankle or knee joints in sports, it is more common in athletes using their wrists aggressive such as baseball, volleyball and goalkeepers in football. All soft tissues including tendons and ligaments (sprains and strains) and bones may be injured in sports. Trauma sometimes causes minor or major ligamentous injury, of which is the scapholunate ligament with a rate of 5% injury in sport. The injury occurs from a fall onto the out-stretched hyper-extended hand. The study reviewed a scapholunate ligament injury in a young amateur football player. The diagnosis, treatment and prognosis of this injury were discussed in this study and may be helpful for such injuries in other sports. Key words: Scapholunate ligament % Out-stretched hand % Wrist injuries INTRODUCTION The wrist is composed of eight bones which are placed in two rows - proximal and distal [3]. From Wrist injuries occur commonly amongst athletes. lateral to medial, the proximal row consists of the They can be divided into two categories - acute and scaphoid, lunate, triquetrum and pisiform bones. The chronic. Acute injuries are mostly caused by traumatic distal row is composed of the trapezium, trapezoid, events such as falls or direct trauma to the wrist, while capitate and hamate bones.
    [Show full text]
  • Scapholunate Ligament Repair Dr
    Scapholunate Ligament Repair Dr. Bakker’s Post-op Protocol IMPORTANT INSTRUCTIONS FOLLOWING SURGERY: After surgery, your forearm and hand will be in a large bandage and plaster splint. Please DO NOT remove this. Try to keep your bandage clean and dry. To minimize swelling, you must keep your hand lifted up to your shoulder level. When sitting or lying, you should use pillows to support your surgically affected extremity, especially when sleeping. Encouragement for finger movement to avoid stiffness and to help with swelling reduction. A pulling sensation may be noted, but this is normal. REFERRAL TO HAND THERAPY: You will be instructed to make an appointment with hand therapy (OT) around 6 weeks out from your surgery. Depending on the clinic where hand therapy will be performed, please contact our Edina office at 952-456-7000 or our Plymouth office at 763-520-7870, to schedule. The goals for hand therapy following a scapholunate ligament repair are to regain range of motion, decrease pain, regain strength and return to functional activities. You will be seen in hand therapy 1 time a week starting at six weeks post-operative. WEEKS 0-2: Remain in post-operative short arm splint. Perform gentle range of motion of the fingers. Ice 20-30 minutes three times daily. Monitor for increased swelling of the fingers. Transition to Tylenol. Take 1500 mg of Vitamin C daily. WEEKS 2-6: Return to the clinic at week 2 post-operatively for suture removal and cast application. The type of cast that will be applied is called a short arm.
    [Show full text]
  • Acute Scapholunate and Lunotriquetral Dissociation
    CHAPTER 10 Acute Scapholunate and Lunotriquetral Dissociation Craig M. Rodner, MD • Arnold-Peter C. Weiss, MD INTRODUCTION: The scapholunate (SL) and lunotriquetral (LT) ligaments are interosseous carpal ligaments that provide stability to the proximal carpal row. Injury to these ligaments may lead to carpal instability patterns that have been well described in the literature. Intercarpal ligament tears may be acute or chronic. This chapter will focus on the surgical treatment of acute SL and LT tears. Before proceeding with a discussion of open SL reduction and ligament repair, it is important to review some pertinent anatomy. The SL interosseous ligament is comprised of 3 parts: an avascular, mostly fibrocartilagenous or membranous proximal portion along with 2 “true” ligaments, one dorsal and one volar. The dorsal portion of the SL ligament is thicker than the volar portion, with transversely oriented collagen fibers. These dorsal fibers have been shown to be important in stabilizing SL translation, whereas the more obliquely oriented volar fibers are more critical in constraining rotation. When the SL ligament complex is torn, the scaphoid has a tendency to flex and the lunate has a tendency to extend, assuming a dorsal intercalated segmental instability (DISI) pattern, an observation that is supported both by in vitro and clinical data. Acute SL dissociation is the most commonly recognized and treated pattern of carpal instability. It usually occurs after a fall on an outstretched hand, with the forearm in pronation and the wrist hyperextended. Diagnosis of these injuries can be difficult and knowledge of normal radiographic parameters is essential. In normal wrists, the radiographic distance between the ulnar border of the scaphoid and the radial border of the lunate is less than 3 mm and the SL angle, formed by the intersection of the longitudinal axes of the scaphoid and lunate on a lateral radiograph, ranges between 30° and 60° (average = 47°).
    [Show full text]
  • Scapholunate Repair Or Reconstruction
    Sussex SURGERY Scapholunate Hand Repair or Surgery Reconstruction SURGERY Scapholunate Repair or Reconstruction What does this involve? No scapholunate ligament telescope to look inside the wrist) It is impossible to be sure when a reconstructions are as good as the might be necessary to be sure scapholunate ligament injury is One of the most important original scapholunate ligament about this. If this is found to be severe enough to put you at risk ligaments between the small itself. Various types of the case strengthen exercises of arthritis in the longer term or bones in your wrist is the reconstruction have been tried alone or a smaller operation to even if that arthritis will give you scapholunate ligament. over the years. Often the surgeon reinforce the stretched ligament trouble. Most surgeons would If this ligament is torn it can be will support the repair or might be considered. recommend surgery for fresh repaired if the diagnosis is made reconstruction with wires through scapholunate ligament injuries as early enough (ideally less than 6 the bones and a plaster cast. The When is surgery needed? this seems to be reliable at weeks after the injury). wires need to be removed 6-8 avoiding late instability. For If the scapholunate ligament is Often the diagnosis is delayed weeks after the surgery with injuries diagnosed later treatment completely ruptured the and then the small ligament is too another small operation. The wrist is more difficult to decide upon. mechanics of how the wrist works soft to repair. A scapholunate can start moving again after that.
    [Show full text]
  • Acute Scapholunate Ligament Instability
    EVIDENCE-BASED MEDICINE Acute Scapholunate Ligament Instability Michael S. Guss, MD,* Wesley H. Bronson, MD,* Michael E. Rettig, MD* THE PATIENT time.2e4 Dorsal intercalated segment instability due to A 31-year-old right-hand-dominant male professional SLIL injury can cause intermittent pain or snapping, dancer felt pain during hyperextension of his right and is associated with the gradual development of SL advanced collapse arthritis, although the natural history wrist attempting to pick up his dance partner 2 weeks Evidence-Based Medicine before presentation. He presents with pain and weak- of radiographic changes, symptoms, and disability is 1 ness in the right wrist. There is obvious swelling and incompletely understood. Operative treatment of acute tenderness dorsally at the scapholunate (SL) interval and subacute injuries is believed to alleviate symptoms 5,6 of the right wrist. His grip strength is measured 20% of and delay or prevent arthrosis. Surgical techniques the uninvolved side using a hand dynamometer. The for acute injuries include closed, arthroscopic-assisted, scaphoid shift test was too painful to perform. A or open reduction, percutaneous or open screw or wire posteroanterior static wrist radiograph demonstrates fixation, and direct repair of the SLIL (with open an SL interval of 4 mm and a cortical ring sign. The treatment) with or without dorsal capsulodesis with no 7 lateral wrist radiograph reveals a radiolunate angle of consensus on the best method. 30 and an SL angle of 95 . THE EVIDENCE THE QUESTION Zarkadas et al surveyed 468 hand surgeons regarding 7 What is the optimal treatment of acute SL ligament the management of acute and chronic SL instability.
    [Show full text]
  • Grade I and II Dynamic Scapho-Lunate Instability Treated
    Grade I and II Dynamic Scapho-Lunate Instability Treated with Proprioception Via Dynamic Taping and Neuromuscular control Saba Kamal, OTR, CHT, Samir Sharma, MD, Foram Desai, OTR, Donna Breger Stanton, OTD, OTR/L, FAOTA Abstract Study Design: Case report. Introduction One of the most common injuries to the wrist joint is often associated with “Scapholunate (S-L) dissociation” due to the disruption or weakening of the SL interosseous ligament (SLIL) complex.1 S-L instability can be described as static or dynamic.1 Static S-L injuries result in pain at rest causing dysfunction with everyday activities.1 However, a large number of dynamic S-L injuries can have a delayed diagnosis due to absence of symptoms as the S-L joint receives stability from other surrounding structures.1 Based on this research, Salv- Coll et al1 proposed that after dynamic S-L injury, it is essential to attend to normal joint surfaces, supporting ligaments and muscles, and a complex network of neural pathways to attain the stability of the S- L joint. This case report analyzes conservative management treatment for Grade I and Grade II dynamic S-L injury using dynamic or leuko taping and neuromuscular strengthening to improve functional capabilities. Purpose of the Study The purpose of this case report is to incorporate proprioceptive input using dynamic taping, in combination with neuromuscular training to help with improving functional outcome in grade II dynamic S-L instability cases. The hypothesis is that taping helps reduce the misalignment by decreasing the gap between scaphoid and lunate. This decreases the pain which allows for neuromuscular strengthening exercises to ensue sooner, resume functional activities, and prevent further joint degeneration.
    [Show full text]