Contrib Aused B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acquired Protective Immune Response in a Fish-Myxozoan Model
Fish and Shellfish Immunology 90 (2019) 349–362 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Acquired protective immune response in a fish-myxozoan model T encompasses specific antibodies and inflammation resolution Amparo Picard-Sánchez1, Itziar Estensoro1, Raquel del Pozo, M. Carla Piazzon, ∗ Oswaldo Palenzuela, Ariadna Sitjà-Bobadilla Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain ARTICLE INFO ABSTRACT Keywords: The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) Acquired immune response leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection Fish IgM with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral Sparus aurata factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression Enteromyxum leei were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), Parasite resistance expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were Gene expression resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1β, high il10 and low hsp90α ex- pression). 1. Introduction causing different degrees of anorexia, delayed growth with weight loss, cachexia, reduced marketability and increased mortality [6]. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Acanthamoeba Spp., Balamuthia Mandrillaris, Naegleria Fowleri, And
MINIREVIEW Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris , Naegleria fowleri , and Sappinia diploidea Govinda S. Visvesvara1, Hercules Moura2 & Frederick L. Schuster3 1Division of Parasitic Diseases, National Center for Infectious Diseases, Atlanta, Georgia, USA; 2Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; and 3Viral and Rickettsial Diseases Laboratory, California Department of Health Services, Richmond, California, USA Correspondence: Govinda S. Visvesvara, Abstract Centers for Disease Control and Prevention, Chamblee Campus, F-36, 4770 Buford Among the many genera of free-living amoebae that exist in nature, members of Highway NE, Atlanta, Georgia 30341-3724, only four genera have an association with human disease: Acanthamoeba spp., USA. Tel.: 1770 488 4417; fax: 1770 488 Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. Acanthamoeba 4253; e-mail: [email protected] spp. and B. mandrillaris are opportunistic pathogens causing infections of the central nervous system, lungs, sinuses and skin, mostly in immunocompromised Received 8 November 2006; revised 5 February humans. Balamuthia is also associated with disease in immunocompetent chil- 2007; accepted 12 February 2007. dren, and Acanthamoeba spp. cause a sight-threatening infection, Acanthamoeba First published online 11 April 2007. keratitis, mostly in contact-lens wearers. Of more than 30 species of Naegleria, only one species, N. fowleri, causes an acute and fulminating meningoencephalitis in DOI:10.1111/j.1574-695X.2007.00232.x immunocompetent children and young adults. In addition to human infections, Editor: Willem van Leeuwen Acanthamoeba, Balamuthia and Naegleria can cause central nervous system infections in animals. Because only one human case of encephalitis caused by Keywords Sappinia diploidea is known, generalizations about the organism as an agent of primary amoebic meningoencephalitis; disease are premature. -
A Revised Classification of Naked Lobose Amoebae (Amoebozoa
Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility. -
Histopathological Changes Caused by Enteromyxum Leei Infection in Farmed Sea Bream Sparus Aurata
Vol. 79: 219–228, 2008 DISEASES OF AQUATIC ORGANISMS Published May 8 doi: 10.3354/dao01832 Dis Aquat Org Histopathological changes caused by Enteromyxum leei infection in farmed sea bream Sparus aurata R. Fleurance1, C. Sauvegrain2, A. Marques3, A. Le Breton4, C. Guereaud1, Y. Cherel1, M. Wyers1,* 1Department of Veterinary Pathology, UMR 703 INRA/ENVN, Nantes Veterinary School, BP 40706, 44307 Nantes cedex 03, France 2Aquanord, Terre des marins, 59820 Gravelines, France 3DRIM Dept BEE, UM2, case 080 Université Montpellier, 34095 Montpellier cedex 5, France 4Fish Health Consultant, 31330 Grenade sur Garonne, France ABSTRACT: Histological examinations were carried out on the stomach, pyloric caeca and 4 differ- ent parts of the intestine, as well as the rectum, hepatopancreas, gall bladder and spleen of 52 sea bream Sparus aurata spontaneously infected by Enteromyxum leei. Fifteen fish from a non-infected farm were included as a control. Clinical signs appeared only in extensively and severely infected fish. We observed Enteromyxum leei almost exclusively in the intestinal tract, and very rarely in the intrahepatic biliary ducts or gall bladder. We observed heavily infected intestinal villi adjacent to par- asite-free villi. Histological changes indicated a parasite infection gradually extending from villus to villus, originating from an initial limited infected area probably located in the rectum. The parasite forms were exclusively pansporoblasts located along the epithelial basement membrane. Periodic acid-Schiff (PAS)–Alcian blue was the most useful histological stain for identifying the parasite and characterising the degree of intestinal infection. We observed severe enteritis in infected fish, with inflammatory cell infiltration and sclerosis of the lamina propria. -
Molecular Detection of Human Parasitic Pathogens
MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
A New Species of Myxidium (Myxosporea: Myxidiidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 6-2006 A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy Miloslav Jirků University of Veterinary and Pharmaceutical Sciences, Palackého, [email protected] Matthew G. Bolek Oklahoma State University, [email protected] Christopher M. Whipps Oregon State University John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Mike L. Kent OrFollowegon this State and Univ additionalersity works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons See next page for additional authors Jirků, Miloslav; Bolek, Matthew G.; Whipps, Christopher M.; Janovy, John J. Jr.; Kent, Mike L.; and Modrý, David, "A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy" (2006). John Janovy Publications. 60. https://digitalcommons.unl.edu/bioscijanovy/60 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Miloslav Jirků, Matthew G. Bolek, Christopher M. Whipps, John J. Janovy Jr., Mike L. Kent, and David Modrý This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ bioscijanovy/60 J. -
In Vitro Studies on Viability and Proliferation of Enteromyxum Scophthalmi (Myxozoa), an Enteric Parasite of Cultured Turbot Scophthalmus Maximus
DISEASES OF AQUATIC ORGANISMS Vol. 55: 133–144, 2003 Published July 8 Dis Aquat Org In vitro studies on viability and proliferation of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of cultured turbot Scophthalmus maximus María J. Redondo, Oswaldo Palenzuela*, Pilar Alvarez-Pellitero Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre la Sal, 12595 Ribera de Cabanes, Castellón, Spain ABSTRACT: In vitro cultivation of the myxozoan Enteromyxum scophthalmi was attempted using dif- ferent culture media and conditions. The progress of the cultures was monitored using dye-exclusion viability counts, tetrazolium-based cell-proliferation assays, measuring the incorporation of BrdU during DNA synthesis, and by morphological studies using light and electron microscopes. In pre- liminary experiments, the persistence of viable stages for a few days was ascertained in both medium 199 (M199) and in seawater. An apparent initial proliferation was noticed in the culture media, with many young stages observed by Day 7 post-inoculation (p.i.). In contrast, fast degeneration occurred in seawater, with but a few living stages persisting to Day 1 p.i and none to Day 5 p.i. Both tetrazolium-based cell-proliferation assays and dye-exclusion viability counts demonstrated a pro- gressive degeneration of the cultures. Although M199 medium and neutral pH with the addition of sera appeared to provide the most favourable conditions during the first few hours, all cultures degenerated with time and no parasite proliferation or maintenance could be achieved in the long term in any of the conditions assayed, including attempts of co-cultivation with a turbot cell line. The ultrastructure of stages cultured for 15 d demonstrated complete degeneration of organelles and mitochondria, although the plasma membrane remained intact in many stages. -
Paramoeba Pemaquidensis (Sarcomastigophora: Paramoebidae) Infestation of the Gills of Coho Salmon Oncorhynchus Kisutch Reared in Sea Water
Vol. 5: 163-169, 1988 DISEASES OF AQUATIC ORGANISMS Published December 2 Dis. aquat. Org. Paramoeba pemaquidensis (Sarcomastigophora: Paramoebidae) infestation of the gills of coho salmon Oncorhynchus kisutch reared in sea water Michael L. ~ent'l*,T. K. Sawyer2,R. P. ~edrick~ 'Battelle Marine Research Laboratory, 439 West Sequim Bay Rd, Sequim, Washington 98382, USA '~esconAssociates, Inc., Box 206, Turtle Cove, Royal Oak, Maryland 21662, USA 3~epartmentof Medicine, School of Veterinary Medicine, University of California, Davis, California 95616, USA ABSTRACT: Gill disease associated with Paramoeba pemaquidensis Page 1970 (Sarcomastigophora: Paramoebidae) infestations was observed in coho salmon Oncorhynchus lasutch reared in sea water Fish reared in net pens in Washington and in land-based tanks in California were affected. Approxi- mately 25 O/O mortality was observed in the net pens in 1985, and the disease recurred in 1986 and 1987. Amoeba infesting the gill surfaces elicited prominent epithelia1 hyperplasia. Typical of Paramoeba spp., the parasite had a Feulgen positive parasome (Nebenkorper) adjacent to the nucleus and floatlng and transitional forms had digitiform pseudopodia. We have established cultures of the organism from coho gills; it grows rapidly on Malt-yeast extract sea water medium supplemented with Klebsiella bacteria. Ultrastructural characteristics and nuclear, parasome and overall size of the organism in study indicated it is most closely related to the free-living paramoeba P. pemaquidensis. The plasmalemma of the amoeba from coho gills has surface filaments. Measurements (in pm) of the amoeba under various conditions are as follows: transitional forms directly from gills 28 (24 to 30),locomotive forms from liquid culture 21 X 17 (15 to 35 X 11 to 25), and locomotive forms from agar culture 25 X 20 (15 to 38 X 15 to 25). -
The Epidemiology and Clinical Features of Balamuthia Mandrillaris Disease in the United States, 1974 – 2016
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Clin Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 August 28. Published in final edited form as: Clin Infect Dis. 2019 May 17; 68(11): 1815–1822. doi:10.1093/cid/ciy813. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974 – 2016 Jennifer R. Cope1, Janet Landa1,2, Hannah Nethercut1,3, Sarah A. Collier1, Carol Glaser4, Melanie Moser5, Raghuveer Puttagunta1, Jonathan S. Yoder1, Ibne K. Ali1, Sharon L. Roy6 1Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA 2James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, MD, USA 3Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 4Kaiser Permanente, San Francisco, CA, USA 5Office of Financial Resources, Centers for Disease Control and Prevention Atlanta, GA, USA 6Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract Background—Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. Methods—The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed. -
VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano -
Archezoa and the Origin of Eukaryotes Patrick J
Problems and paradigms A kingdom’s progress: Archezoa and the origin of eukaryotes Patrick J. Keeling* Summary The taxon Archezoa was proposed to unite a group of very odd eukaryotes that lack many of the characteristics classically associated with nucleated cells, in particular the mitochondrion. The hypothesis was that these cells diverged from other eukaryotes before these characters ever evolved, and therefore they repre- sent ancient and primitive eukaryotic lineages. The kingdom comprised four groups: Metamonada, Microsporidia, Parabasalia, and Archamoebae. Until re- cently, molecular work supported their primitive status, as they consistently branched deeply in eukaryotic phylogenetic trees. However, evidence has now emerged that many Archezoa contain genes derived from the mitochondrial symbiont, revealing that they actually evolved after the mitochondrial symbiosis. In addition, some Archezoa have now been shown to have evolved more recently than previously believed, especially the Microsporidia for which considerable evidence now indicates a relationship with fungi. In summary, the mitochondrial symbiosis now appears to predate all Archezoa and perhaps all presently known eukaryotes. BioEssays 20:87–95, 1998. 1998 John Wiley & Sons, Inc. INTRODUCTION cyanobacteria and they also lack flagella and basal bodies Prior to the popularization of the endosymbiotic theory, it was (for discussion see Ref. 1). However, according to the widely believed that the evolutionary link between prokary- endosymbiotic theory, the reason photosynthesis is so simi- otes and eukaryotes was the presence of photosynthesis in lar in cyanobacteria and photosynthetic eukaryotes is that cyanobacteria and algae. The biochemistry of oxygenic the plastids of plant and algal cells are derived from a photosynthesis was considered too complicated and too cyanobacterial symbiont.