Squeeze Flow of Electrorheological and Magnetorheological Fluids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rheological Characterization of Asphalt in a Temperature-Gradient Combinatorial Squeeze-Flow Setup
Rheol Acta (2007) 46:1075–1082 DOI 10.1007/s00397-007-0196-5 ORIGINAL CONTRIBUTION Rheological characterization of asphalt in a temperature-gradient combinatorial squeeze-flow setup Yatin P. Patil & Antonio Senador & Patrick T. Mather & Montgomery T. Shaw Received: 22 May 2006 /Accepted: 19 April 2007 / Published online: 12 May 2007 # Springer-Verlag 2007 Abstract A new technique for parallel rheological charac- properties depend on the composition of the feed stock and terization of asphalt in a combinatorial squeeze-flow array the processing parameters. Not surprisingly, it is a complex is described. The basis of the technique is a device that is material containing aliphatic and aromatic saturated and capable of subjecting multiple samples simultaneously to unsaturated polar and nonpolar organic compounds. The constant volume (Type B) squeeze flow with application of supermolecular structure is thought to be a three-dimensional a temperature gradient. The time-dependent sample network of asphaltenes dispersed in maltenes (Shen 1996). dimensions, which are calculated from digital images taken Asphaltenes comprise the hexane- or heptane-insoluble through the transparent top plate, are used to derive the fraction and are aggregates of polar aromatic compounds flow curves. The results obtained using the combinatorial (Maruska and Rao 1987). Maltenes are nonpolar aliphatic setup compared favorably with those obtained using hydrocarbons soluble in hexane or heptane. conventional parallel-plate torsional flow in a commercial Asphalt is graded for a particular temperature range as a rheometer. With the existing setup, the accessible shear rate road binder using standardized mechanical tests (American range is limited to about one decade at a single temperature. -
Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites
micromachines Review Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites Soheila Shabaniverki 1 and Jaime J. Juárez 1,2,* 1 Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA * Correspondence: [email protected]; Tel.: +1-515-294-3298 Abstract: Particle-polymer dispersions are ubiquitous in additive manufacturing (AM), where they are used as inks to create composite materials with applications to wearable sensors, energy storage materials, and actuation elements. It has been observed that directional alignment of the particle phase in the polymer dispersion can imbue the resulting composite material with enhanced mechani- cal, electrical, thermal or optical properties. Thus, external field-driven particle alignment during the AM process is one approach to tailoring the properties of composites for end-use applications. This review article provides an overview of externally directed field mechanisms (e.g., electric, magnetic, and acoustic) that are used for particle alignment. Illustrative examples from the AM literature show how these mechanisms are used to create structured composites with unique properties that can only be achieved through alignment. This article closes with a discussion of how particle distribution (i.e., microstructure) affects mechanical properties. A fundamental description of particle phase transport in polymers could lead to the development of AM process control for particle-polymer composite fabrication. This would ultimately create opportunities to explore the fundamental impact that alignment has on particle-polymer composite properties, which opens up the possibility of tailoring these materials for specific applications. -
Electrorheological Dampers for Structural Vibration Suppression
P895-263893 11111111111111111111 11111111111 December 1994 Report No. UMCEE 94-:35 ELECTRORHEOLOGICAL DAMPERS FOR STRUCTURAL VIBRATION SUPPRESSION by Henri P. Gavin Robert D. Hanson A report on research sponsored by National Science Foundation Grant No. NSF-BCS-9201787 PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE The Department of Civil and Environmental Engineering The University of Michigan Ann Arbor, Michigan 49109-2125 ACKNOWLEDGEMENTS The author thanks the National Science Foundation for providing the financial re sources to conduct the research described in this report. This report is, in essence, the doctoral dissertation of Henri P. Gavin. This dissertation was supported financially by a grant from the National Science Foundation under Award No. BCS-9201787 as part of the Coordinated USA Research Program on Structural Control for Safety, Performance, and Hazard Mitigation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation. The contributions of Professors Hanson, McClamroch, Filisko, and Peek to this work are gratefully acknowledged. It is a privilege and an inspiration to be associated with internationally renowned leaders in their fields. Professor Hanson's skills go beyond his technical knowledge of earthquake engi neering and his ability to extract the most important mechanisms from very compli cated systems. He is a consummate organizer, leader, and mediator. I am indebted to him for providing me an opportunity to work in structural control, for his men torship, and for his expert guidance. Extensive discussions "With Professor Filisko contributed largely to my concept of ER materials. -
Distributions, Measures, Functions of Bounded Variations
Appendix A Distributions, Measures, Functions of Bounded Variations Sections A.1 and A.2 are given for the sake of completeness because some notions are used in Chaps. 1 and 2, but may be safely skipped since their implication on understanding Nonsmooth Mechanics is weak. By contrast, Sects. A.3 and B survey useful mathematical tools that cannot be ignored. A.1 Schwartz’ Distributions A.1.1 The Functional Approach In this section we first briefly introduce the functional notion of a distribution as defined in [1082]. Definition A.1 D is the subspace of smooth1 functions ϕ : Rn → C, with bounded support. Thus a function ϕ(·) on Rn belongs to D, if and only if ϕ(·) is smooth, and there n exists a bounded set Kϕ of R outside of which ϕ ≡ 0. As an example, L. Schwartz gives the following function [1082, Chap. 1,§2], with n = 1, Kϕ =[−1, 1]: 0if|t|≥1 ϕ(t) = −1 (A.1) e 1−t2 if |t| < 1 Definition A.2 A distribution D is a continuous linear form defined on the vector space D. This means that to any ϕ ∈ D, D associates a complex number D(ϕ), noted D, ϕ. The space of distributions on D is the dual space of D and is noted D . The functions in D are sometimes called test-functions. 1i.e., indefinitely differentiable. © Springer International Publishing Switzerland 2016 535 B. Brogliato, Nonsmooth Mechanics, Communications and Control Engineering, DOI 10.1007/978-3-319-28664-8 536 Appendix A: Distributions, Measures, Functions of Bounded Variations Two distributions D1, D2 are equal on an open interval Δ if D1 − D2 = 0 on Δ, i.e., if for any ϕ ∈ D whose support Kϕ is contained in Δ, then D1 − D2, ϕ=0. -
Squeeze Flow of Viscoplastic Bingham Material
ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5–10 June 2016 SQUEEZE FLOW OF VISCOPLASTIC BINGHAM MATERIAL Larisa V. Muravleva1 1 Lomonosov Moscow State University Leninskie gory, 1, Main Building 119991 Moscow Russia e-mail: [email protected] Keywords: Viscoplastic Fluid, Squeeze Flow, Augmented Lagrangian Method. Abstract. We consider both planar and axisymmetric squeeze flows of a viscoplastic medium. Firstly we deal with no-slip boundary conditions. The asymptotic and the numerical solutions are developed. Previous theoretical analysis of this problem, using the standard lubrication ap- proximation, has led to conflicting results, whereby the material around the plane of symmetry must both behaves as unyielded solid and translates in the main direction with a nonuniform ve- locity. This variation of the velocity implies that the plug region cannot be truly unyielded. Our solutions show that this region is a pseudo-plug region in which the leading order equation pre- dicts a plug, but really it is weakly yielded at higher order. We follow the asymptotic technique suggested earlier by Balmforth, Craster (1999) and Frigaad, Ryan (2004). The obtained ana- lytical expressions and numerical results are in a very good agreement with the earlier works. For numerical simulations we apply Augmented Lagrangian method (ALM) that yields superior results regarding the location of the yieldsurface. Finite-difference method on staggered grids is used as a discretization technique. Secondly we consider squeeze flow of a Bingham fluid subject to wall slip. If the wall shear- stress is smaller than the threshold value (the slip yield stress), the fluid adherence to the bound- ary is imposed and we have no-slip condition. -
The Design and Analysis of a Micro Squeeze Flow Rheometer
The Design and Analysis of a Micro Squeeze Flow Rheometer By David Cheneler A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Department of Mechanical Engineering College of Engineering and Physical Sciences The University of Birmingham September 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT This thesis describes the analysis and design of a micro squeeze flow rheometer. The need to analyse the rheology of complex liquids occurs regularly in industry and during research. However, frequently the amount of fluid available is too small, precluding the use of conventional rheometers. Conventional rheometers also tend to have the disadvantage of being too massive, preventing them from operating effectively at high frequencies. The investigation carried out in this thesis has revealed that current microrheometry techniques also have their own disadvantages. The proposed design is a stand-alone device capable of measuring the dynamic properties of nanolitre volumes of viscoelastic fluid at frequencies up to the kHz range, an order of magnitude greater than conventional rheometers. The device uses a single piezoelectric component to both actuate and sense its own position. -
Complex Fluids in Energy Dissipating Systems
applied sciences Review Complex Fluids in Energy Dissipating Systems Francisco J. Galindo-Rosales Centro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia da Universidade do Porto, CP 4200-465 Porto, Portugal; [email protected] or [email protected]; Tel.: +351-925-107-116 Academic Editor: Fan-Gang Tseng Received: 19 May 2016; Accepted: 15 July 2016; Published: 25 July 2016 Abstract: The development of engineered systems for energy dissipation (or absorption) during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications. Keywords: complex fluids; electrorheological fluids; ferrofluids; magnetorheological fluids; electro-magneto-rheological fluids; shear thickening fluids; viscoelastic fluids; energy dissipating systems PACS: 82.70.-y; 83.10.-y; 83.60.-a; 83.80.-k 1. Introduction Preventing damage or discomfort resulting from any sort of external kinetic energy (impact or vibration) is an omnipresent problem in our society. On one hand, impacts and vibrations are responsible for several health problems. According to the European Injury Data Base (IDB), injuries due to accidents are killing one EU citizen every two minutes and disabling many more [1]. -
A Note on Squeezing Flow Between Two Infinite Parallel Plates with Slip Boundary Conditions
International Journal of the Physical Sciences Vol. 6(14), pp. 3296-3301, 18 July, 2011 Available online at http://www.academicjournals.org/IJPS DOI: 10.5897/IJPS11.499 ISSN 1992 - 1950 ©2011 Academic Journals Full Length Research Paper A note on squeezing flow between two infinite parallel plates with slip boundary conditions Murad Ullah 1*, S. Islam 2, Gul Zaman 3 and Shazia Naeem Khalid 1 1Islamia College Peshawar (Charted University), Peshawar, NWFP, Pakistan. 2Mathematics, COMSATS Institute of Information technology, Park Road, Chakshazad, Islamabad, Pakistan. 3Centre for Advanced Mathematics and Physics, NUST, H-12, Islamabad, Pakistan. Accepted 04 May, 2011 The aim of this letter is to investigate an axisymmetric squeezing flow of an incompressible fluid generated by two large parallel plates, including fluid inertial effects. The governing equations have been transformed into a nonlinear ordinary differential equation using integribility condition. Solution to the problem is obtained by using an optimal homotopy asymptotic method (OHAM). The results reveal that the new method is very effective and simple. Key words: Axisymmetric squeezing flow, slip boundary conditions, optimal homotopy asymptotic method (OHAM). INTRODUCTION The study of squeezing flows has been published in a with slip boundary conditions, taking into account the wide variety of journals spanning a century or more due inertia effects. The optimal homotopy asymptotic method to its practical applications in chemical engineering and is applied to solve the title problem (Herisanu et al., 2008; food industry. The basic research in this field was carried Idrees et al., 2010a, b; Islam et al., 2010; Marinca and out by Stefan (1874). -
A Study of Active Engine Mounts
A Study of Active Engine Mounts Examensarbete utfört i Reglerteknik vid Tekniska Högskolan i Linköping av Fredrik Jansson & Oskar Johansson Reg nr: LiTH-ISY-EX-3453-2003 Linköping 2003 F. JANSSON O. JOHANSSON A Study of Active Engine Mounts Examensarbete utfört i Reglerteknik vid Linköpings tekniska högskola av Fredrik Jansson och Oskar Johansson Reg nr: LiTH-ISY-EX-3453-2003 Supervisor: Andreas Eidehall Linköpings Universitet Claes Olsson Volvo Car Corporation Examiner: Professor Fredrik Gustafsson Linköpings Universitet Linköping 17th December 2003 F. JANSSON O. JOHANSSON A STUDY OF ACTIVE ENGINE MOUNTS Avdelning, Institution Datum Division, Department Date 2003-12-17 Institutionen för systemteknik 581 83 LINKÖPING Språk Rapporttyp ISBN Language Report category Svenska/Swedish Licentiatavhandling X Engelska/English X Examensarbete ISRN LITH-ISY-EX-3453-2003 C-uppsats D-uppsats Serietitel och serienummer ISSN Title of series, numbering Övrig rapport ____ URL för elektronisk version http://www.ep.liu.se/exjobb/isy/2003/3453/ Titel Studie av aktiva motorkuddar Title A Study of Active Engine Mounts Författare Fredrik Jansson and Oskar Johansson Author Sammanfattning Abstract Achieving better NVH (noise, vibration, and harshness) comfort necessitates the use of active technologies when product targets are beyond the scope of traditional passive insulators, absorbers, and dampers. Therefore, a lot of effort is now being put in order to develop various active solutions for vibration control, where the development of actuators is one part. Active hydraulic engine mounts have shown to be a promising actuator for vibration isolation with the benefits of the commonly used passive hydraulic engine mounts in addition to the active ones. -
Oscillatory Squeeze Flow for the Study of Linear Viscoelastic Behavior
Downloaded from orbit.dtu.dk on: Sep 28, 2021 Oscillatory squeeze flow for the study of linear viscoelastic behavior Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole; Dealy, John M. Published in: Journal of Rheology Link to article, DOI: 10.1122/1.4943984 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Wingstrand, S. L., Alvarez, N. J., Hassager, O., & Dealy, J. M. (2016). Oscillatory squeeze flow for the study of linear viscoelastic behavior. Journal of Rheology, 60(3), 407-418. https://doi.org/10.1122/1.4943984 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Oscillatory squeeze flow for the study of linear viscoelastic behavior Sara L. Wingstrand, Nicolas J. Alvarez, Ole Hassager, and John M. Dealy Citation: Journal of Rheology 60, 407 (2016); doi: 10.1122/1.4943984 View online: http://dx.doi.org/10.1122/1.4943984 View Table of Contents: http://scitation.aip.org/content/sor/journal/jor2/60/3?ver=pdfcov Published by the The Society of Rheology Articles you may be interested in Large amplitude oscillatory microrheology J. -
The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(Ionic
polymers Article The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles Chen Zheng, Qi Lei, Jia Zhao, Xiaopeng Zhao and Jianbo Yin * Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710129, China; [email protected] (C.Z.); [email protected] (Q.L.); [email protected] (J.Z.); [email protected] (X.Z.) * Correspondence: [email protected]; Tel.: +86-029-88431662 Received: 1 March 2020; Accepted: 20 March 2020; Published: 22 March 2020 Abstract: By using different conductivity of polyaniline as filler, a kind of poly(ionic liquid)/polyaniline composite particles was synthesized to investigate the influence of dielectric polarization rate difference between filler and matrix on the electrorheological response and flow stability of composite-based electrorheological fluids under simultaneous effect of shear and electric fields. The composite particles were prepared by a post ion-exchange procedure and then treated by ammonia or hydrazine to obtain different conductivity of polyaniline. Their electrorheological response was measured by dispersing these composite particles in insulating carrier liquid under electric fields. It showed that the composite particles treated by ammonia had the strongest electrorheological response and 1 1 most stable flow behavior in a broad shear rate region from 0.5 s− to 1000 s− . By using dielectric spectroscopy, it found that the enhanced electrorheological response with stable flow depended on the matching degree of the dielectric polarization rates between poly(ionic liquid) matrix and polyaniline filler. The closer their polarization rates are, the more stable the flow curves are. -
Smart Materials: Electrorheological Fluids
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072 SMART MATERIALS: ELECTRORHEOLOGICAL FLUIDS Amit Appasaheb Patil1, Rahul Ramesh Joshi2 1Professor, Department of Textile Plant Engineering Textile and Engineering Institute, Ichalkaranji, MH, India 2Professor, Department of Textile Plant Engineering Textile and Engineering Institute, Ichalkaranji, MH, India -----------------------------------------------------------------------***-------------------------------------------------------------------- Abstract:- A research is never ending process. The instable 3) At stresses greater than this yield stress, the fluid flows demand in the international market place for high like a viscous fluid, But with a large viscosity, again performance structural and Mechanical systems for the proportional to the square of the electrical field. aerospace, defence and advanced manufacturing industries has triggered the evolution of advanced composite materials. In the early 1980's, R Stan way, Sproston, developed a class With world’s technological revolutionary era, we come across of ER fluids made from ionic polymers with greatly improved various smart materials which can be successfully properties. implemented into new practices for the fulfilment of human as well as technology requirements. Radical improvements of ER fluids are colloidal suspensions of particles of size 1- industrial processes cannot be achieved solely by increasing 100 microns in no conducting solvents the efficiency of traditional production techniques and tools, The viscosity of ER suspensions can increase 2-3 orders but requires new solutions, employing novel ideas. One of magnitude when electric fields ~1kV/mm are applied promising and novel technique exists which is based on the across them. The response takes ~ 1ms. electrorheological effect present in the electrorheological fluids.