Cerebellar Physiology Richard M

Total Page:16

File Type:pdf, Size:1020Kb

Cerebellar Physiology Richard M Cerebellar Physiology Richard M. Costanzo, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Name the three functional subdivisions of the cerebellum. 2. Compare and contrast the mossy and climbing fiber systems. 3. Give examples of inhibitory interneurons located in the cerebellar cortex. 4. Describe how the cerebellar cortex influences the activity of the deep cerebellar nuclei. 5. Describe the cerebellar abnormality referred to as "ataxia". I. FUNCTIONAL SUBDIVISIONS OF THE CEREBELLUM The cerebellum receives information from most sensory modalities including information about body position, muscle length and muscle tension and provides continuous feedback control over movement. One of its major functions is to regulate the rate, range, force, and direction of movement (synergy). The cerebellum is responsible for the coordination of movement. In addition to the anatomical divisions of the cerebellum (cerebellar hemispheres, vermis, and the anterior, posterior, and flocculonodular lobes), the cerebellum has three functional subdivisions. They are the cerebrocerebellum (also called pontocerebellum), vestibulocerebellum, and the spinocerebellum. Figure 1: (From Netter- CIBA collection, 1983) A. Cerebrocerebellum (neocerebellum) The cerebrocerebellum helps to coordinate movement by continuously monitoring and adjusting motor commands. It receives input from different areas of the cerebral cortex (e.g., sensory and motor areas) by way of the pontine nuclei (cortico-ponto- cerebellar system) and thereby is continuously updated about ongoing movements being executed by the motor cortex. Efferents from the cerebrocerebellum project via the dentate nucleus to the thalamus and then motor (area 4), and premotor (area 6), areas of cortex, where they provide important information needed to prepare for movement. Efferents also project to a region of the red nucleus. Lesions to the cerebrocerebellum can result in delays in initiation of movement and distortions in coordination (ataxia). B. Vestibulocerebellum (archicerebellum) The vestibulocerebellum plays an important role in controlling balance and compensatory eye movements that occur with changing vestibular signals (vestibuloocular reflexes and optokinetic reflexes). It receives input primarily from the vestibular apparatus and its output projects back to the vestibular nuclei, bypassing the deep cerebellar nuclei. The vestibulocerebellum has its primary influence over the axial motor neurons (medial systems) that control balance and posture. C. Spinocerebellum (paleocerebellum) The spinocerebellum is primarily comprised of the anterior lobe vermis and hemisphere (although some spinocerebellar input also reaches the pyramis and uvula of the posterior lobe vermis). It receives sensory information (e.g., proprioception) from the spinal cord (via spinocerebellar tracts) as well as auditory and visual. The spinocerebellum uses this sensory information to continuously monitor movement and provide feedback signals to control muscle tone and adjust ongoing movement. II. CEREBELLAR CORTEX (3 layers) A. Molecular Layer (outer layer) 1. Stellate and basket cells 2. Dendrites of Purkinje and Golgi II cells 3. Parallel fibers (axons of granule cells) B. Purkinje Cell Layer (middle layer) 1. Purkinje cells C. Granule Layer (innermost layer) 1. Granule cells 2. Golgi type II cells 3. Glomeruli - axons of mossy fibers forming synaptic modules on dendrites of granular and golgi II cells. III. CEREBELLAR AFFERENTS (INPUTS) There are two excitatory fiber systems that provide input to the cerebellum. They are the climbing and mossy fiber systems. Both systems send collateral branches to the deep cerebellar nuclei in addition to their projections to cerebellar cortex. These excitatory collateral projections make up the primary cerebellar circuit. Projections to the cerebellar cortex activate secondary modulatory circuits that in turn regulate the output of the cerebellar nuclei via the inhibitory action of Purkinje cells. Purkinje cells which are driven (directly or indirectly) by the inputs from climbing and mossy fibers provide the only output pathway for activity in the cerebellar cortex. Purkinje cell efferents are always inhibitory and provide the modulatory control signals for the primary (excitatory) cerebellar circuit. Figure 2: Primary and modulatory cerebellar circuits A. Climbing Fibers Climbing fibers originate from a single region of the medulla (the inferior olive) and have direct projections to Purkinje cells. The term climbing fiber refers to the way that these fibers make multiple synaptic connections along the dendrites of Purkinje cells. A single fiber can make up to 2000 or 3000 synaptic contacts along the dendritic tree of a single Purkinje cell. Although a single climbing fiber may contact between 1-10 Purkinje cells, each Purkinje cell receives synaptic connections from only one climbing fiber. Synaptic connections formed by climbing fibers are some of the most powerful in the nervous system. A single action potential from a climbing fiber can elicit a gigantic excitatory high frequency burst in Purkinje cell dendrites and is referred to as a "complex spike". It is thought that climbing fibers act to condition Purkinje cells so as to modulate there response to mossy fiber input. It has also been suggested that they play a role in cerebellar or motor learning. Figure 3: Neural circuits of the cerebellar cortex (From Costanzo, 2006, Fig. 3-33) B. Mossy Fibers Mossy fibers make up the majority of cerebellar afferents. They include: pontocerebellar, spinocerebellar, reticulocerebellar and vestibulocerebellar afferents. Mossy fibers project to excitatory interneurons (granule cells) and form morphologically distinct synaptic structures referred to as cerebellar glomeruli. The axons from granule cells ascend to the molecular layer where they bifurcate and give rise to parallel fibers. The parallel fibers of the granule cells contact numerous Purkinje cell dendrites and produce a "beam" of excitation along row of Purkinje cells. The dendritic tree of each Purkinje cell can receive input from as many as 250,000 parallel fibers and therefore has access to a lot of information. IV. CEREBELLAR INTERNEURONS With the exception of granule cells, interneurons within the cerebellar cortex are all inhibitory. Granule cells have an excitatory influence of basket cells, stellate cells, golgi type II cells and on Purkinje cells via parallel fibers. Basket cells and stellate cells inhibit Purkinje cells. Golgi type II cells inhibit granule cells which in turn reduces their excitatory effect on Purkinje cells. The primary function of cerebellar interneurons is to modulate Purkinje cell output. V. CEREBELLAR CORTICAL EFFERENTS (Output) Purkinje cell axons provide the only output signals from the cerebellar cortex. Purkinje cells are GABAergic inhibitory neurons and project to the deep cerebellar nuclei (dentate, interpositus and fastigius) and the vestibular nucleus. These inhibitory projections serve to modulate the primary cerebellar circuit (excitatory stream of activity from mossy and climbing fiber collaterals projecting to cerebellar nuclei) and play an important role in the control of rate, range and direction of movement. VI. CEREBELLAR EFFERENTS The deep cerebellar nuclei (fastigial, interposed, dentate) give rise to all of the cerebellar efferent projections that leave the cerebellum. In general, cerebellar efferents are excitatory on their targets, e.g., thalamus, red nucleus, basilar pons, inferior olive. VII. FUNCTIONS OF THE CEREBELLUM The location of the cerebellum adjacent to the brainstem provides it with the unique opportunity to monitor (listen in on) sensory and motor activity. The lateral portion of the cerebellum (cerebrocerebellum) receives information form sensory and motor areas of cortex and plays an important role in the planning and preparation for movement. The cerebrocerebellum sends plan and program information to the premotor and motor cortex which in turn executes these plans by generating motor control signals. The spinocerebellum (vermis and intermediate region) participates in the execution of movement by monitoring sensory and proprioceptive feedback signals and making adjustments to the motor control signals. This assures that the programmed movement is coordinated and carried out as planned. VIII. DISEASES (LESIONS) OF THE OF THE CEREBELLUM Most abnormalities due to cerebellar lesions are observed during movement. Abnormalities of movement resulting from cerebellar lesions are referred to as "ataxia" (also called "asynergia" or "dyssynergia"). Cerebellar ataxia is the lack of coordination due to errors in rate, range, force and direction of movement. Asynergia can be manifested in a number of different ways. There could be a delay in the onset of movement, or the movement could be a poor execution of a sequence of movement so that it appears unsmooth and uncoordinated (decomposition of movement). A limb can overshoot its target (hypermetria or past pointing) or can stop before reaching its goal (hypometria). These disturbances of trajectory or placement of a body part during movement are called "dysmetrias". The inability to perform rapid alternating movements is referred to as "dysdiadochokinesia". Intention tremors are tremors that occur perpendicular to the direction of movement and increase in magnitude near the end of the movement. This is the result of a disturbance of temporal coordination of contraction
Recommended publications
  • Ultrastructural Study of the Granule Cell Domain of the Cochlear Nucleus in Rats: Mossy Fiber Endings and Their Targets
    THE JOURNAL OF COMPARATIVE NEUROLOGY 369~345-360 ( 1996) Ultrastructural Study of the Granule Cell Domain of the Cochlear Nucleus in Rats: Mossy Fiber Endings and Their Targets DIANA L. WEEDMAN, TAN PONGSTAPORN, AND DAVID K. RYUGO Center for Hearing Sciences, Departments of Otolaryngoloby-Head and Neck Surgery and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 2 1205 ABSTRACT The principal projection neurons of the cochlear nucleus receive the bulk of their input from the auditory nerve. These projection neurons reside in the core of the nucleus and are surrounded by an external shell, which is called the granule cell domain. Interneurons of the cochlear granule cell domain are the target for nonprimary auditory inputs, including projections from the superior olivary complex, inferior colliculus, and auditory cortex. The granule cell domain also receives projections from the cuneate and trigeminal nuclei, which are first-order nuclei of the somatosensory system. The cellular targets of the nonprimary projections are mostly unknown due to a lack of information regarding postsynaptic profiles in the granule cell areas. In the present paper, we examined the synaptic relationships between a heterogeneous class of large synaptic terminals called mossy fibers and their targets within subdivisions of the granule cell domain known as the lamina and superficial layer. By using light and electron microscopic methods in these subdivisions, we provide evidence for three different neuron classes that receive input from the mossy fibers: granule cells, unipolar brush cells, and a previously undescribed class called chestnut cells. The distinct synaptic relations between mossy fibers and members of each neuron class further imply fundamentally separate roles for processing acoustic signals.
    [Show full text]
  • Functional Imaging of the Deep Cerebellar Nuclei: a Review
    Cerebellum (2010) 9:22–28 DOI 10.1007/s12311-009-0119-3 Functional Imaging of the Deep Cerebellar Nuclei: A Review Christophe Habas Published online: 10 June 2009 # Springer Science + Business Media, LLC 2009 Abstract The present mini-review focused on functional and climbing fibers derived from the bulbar olivary nuclei. imaging of human deep cerebellar nuclei, mainly the The mossy-fiber influence on DCN firing appears to be dentate nucleus. Although these nuclei represent the unique weaker than the climbing-fiber influence. Despite the output channel of the cerebellum, few data are available pivotal role of these nuclei, only very few results are concerning their functional role. However, the dentate available for functional imaging of the DCN, including nucleus has been shown to participate in a widespread PET scan and MRI techniques, and most of these data functional network including sensorimotor and associative concern the DN. This lack of data is due to a number of cortices, striatum, hypothalamus, and thalamus, and plays a reasons. minor role in motor execution and a major role in First, the human DCN mainly comprise the large, sensorimotor coordination and learning, and cognition. widespread, and easily identifiable DN which has a marked The dentate nucleus appears to be predominantly involved low-intensity signal on MRI T2*-weighted sequences and in conjunction with the neocerebellum in executive and is clearly distinguished from the adjacent cortical structures. affective networks devoted, at least, to attention, working In contrast, FN and GEN are very thin and are both located memory, procedural reasoning, and salience detection. very close to the gray matter of lobules VIII and IX, while these nuclei are situated on the medial aspect of the DN.
    [Show full text]
  • Basal Ganglia & Cerebellum
    1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte.
    [Show full text]
  • FIRST PROOF Cerebellum
    Article Number : EONS : 0736 GROSS ANATOMY Cerebellum Cortex The cerebellar cortex is an extensive three-layered sheet with a surface approximately 15 cm laterally THE HUMAN CEREBELLUM (‘‘little brain’’) is a and 180 cm rostrocaudally but densely folded around significant part of the central nervous system both three pairs of nuclei. The cortex is divided into three in size and in neural structure. It occupies approxi- transverse lobes: Anterior and posterior lobes are mately one-tenth of the cranial cavity, sitting astride separated by the primary fissure, and the smaller the brainstem, beneath the occipital cortex, and flocculonodular lobe is separated by the poster- contains more neurons than the whole of the cerebral olateral fissure (Fig. 1). The anterior and posterior cortex. It consists of an extensive cortical sheet, lobes are folded into a number of lobules and further densely folded around three pairs of nuclei. The folded into a series of folia. This transverse organiza- cortex contains only five main neural cell types and is tion is then divided at right angles into broad one of the most regular and uniform structures in the longitudinal regions. The central vermis, named for central nervous system (CNS), with an orthogonal its worm-like appearance, is most obvious in the ‘‘crystalline’’ organization. Major connections are posterior lobe. On either side is the paravermal or made to and from the spinal cord, brainstem, and intermediate cortex, which merges into the lateral sensorimotor areas of the cerebral cortex. hemispheres. The most common causes of damage to the cerebellum are stroke, tumors, or multiple sclerosis.
    [Show full text]
  • Three-Dimensional Comparison of Ultrastructural Characteristics at Depressing and Facilitating Synapses Onto Cerebellar Purkinje Cells
    The Journal of Neuroscience, September 1, 2001, 21(17):6666–6672 Three-Dimensional Comparison of Ultrastructural Characteristics at Depressing and Facilitating Synapses onto Cerebellar Purkinje Cells Matthew A. Xu-Friedman,1 Kristen M. Harris,2 and Wade G. Regehr1 1Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and 2Department of Biology, Boston University, Boston, Massachusetts 02215 Cerebellar Purkinje cells receive two distinctive types of exci- vesicles per release site to test whether this number determines tatory inputs. Climbing fiber (CF) synapses have a high proba- the probability of release and synaptic plasticity. PF and CF bility of release and show paired-pulse depression (PPD), synapses had the same number of anatomically docked vesi- whereas parallel fiber (PF) synapses facilitate and have a low cles (7–8). The number of docked vesicles at the CF does not probability of release. We examined both types of synapses support a simple model of PPD in which release of a single using serial electron microscopic reconstructions in 15-d-old vesicle during the first pulse depletes the anatomically docked rats to look for anatomical correlates of these differences. PF vesicle pool at a synapse. Alternatively, only a fraction of ana- and CF synapses were distinguishable by their overall ultra- tomically docked vesicles may be release ready, or PPD could structural organization. There were differences between PF and result from multivesicular release at each site. Similarities in the CF synapses in how many release sites were within 1 ␮mofa number of docked vesicles for PF and CF synapses indicate mitochondrion (67 vs 84%) and in the degree of astrocytic that differences in probability of release are unrelated to the ensheathment (67 vs 94%).
    [Show full text]
  • Cerebellar Cortical Neuron Responses Evoked from the Spinal Border Cell Tract
    Cerebellar cortical neuron responses evoked from the spinal border cell tract. Geborek, Pontus; Spanne, Anton; Bengtsson, Fredrik; Jörntell, Henrik Published in: Frontiers in Neural Circuits DOI: 10.3389/fncir.2013.00157 2013 Link to publication Citation for published version (APA): Geborek, P., Spanne, A., Bengtsson, F., & Jörntell, H. (2013). Cerebellar cortical neuron responses evoked from the spinal border cell tract. Frontiers in Neural Circuits, 7, [157]. https://doi.org/10.3389/fncir.2013.00157 Total number of authors: 4 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 04. Oct. 2021 ORIGINAL RESEARCH ARTICLE published: 08 October 2013 NEURAL CIRCUITS doi: 10.3389/fncir.2013.00157 Cerebellar cortical neuron responses evoked from the spinal border cell tract Pontus Geborek, Anton Spanne, Fredrik Bengtsson and Henrik Jörntell* Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden Edited by: Spinocerebellar systems are likely to be crucial for cerebellar hallmark functions such Egidio D’Angelo, University of Pavia, as coordination.
    [Show full text]
  • Cerebellar Histology & Circuitry
    Cerebellar Histology & Circuitry Histology > Neurological System > Neurological System CEREBELLAR HISTOLOGY & CIRCUITRY SUMMARY OVERVIEW Gross Anatomy • The folding of the cerebellum into lobes, lobules, and folia allows it to assume a tightly packed, inconspicuous appearance in the posterior fossa. • The cerebellum has a vast surface area, however, and when stretched, it has a rostrocaudal expanse of roughly 120 centimeters, which allows it to hold an estimated one hundred billion granule cells — more cells than exist within the entire cerebral cortex. - It is presumed that the cerebellum's extraordinary cell count plays an important role in the remarkable rehabilitation commonly observed in cerebellar stroke. Histology Two main classes of cerebellar nuclei • Cerebellar cortical neurons • Deep cerebellar nuclei CEREBELLAR CORTICAL CELL LAYERS Internal to external: Subcortical white matter Granule layer (highly cellular) • Contains granule cells, Golgi cells, and unipolar brush cells. Purkinje layer 1 / 9 • Single layer of large Purkinje cell bodies. • Purkinje cells project a fine axon through the granule cell layer. - Purkinje cells possess a large dendritic system that arborizes (branches) extensively and a single fine axon. Molecular layer • Primarily comprises cell processes but also contains stellate and basket cells. DEEP CEREBELLAR NUCLEI From medial to lateral: Fastigial Globose Emboliform Dentate The globose and emboliform nuclei are also known as the interposed nuclei • A classic acronym for the lateral to medial organization of the deep nuclei is "Don't Eat Greasy Food," for dentate, emboliform, globose, and fastigial. NEURONS/FUNCTIONAL MODULES • Fastigial nucleus plays a role in the vestibulo- and spinocerebellum. • Interposed nuclei are part of the spinocerebellum. • Dentate nucleus is part of the pontocerebellum.
    [Show full text]
  • 2141.Full.Pdf
    The Journal of Neuroscience, June 1989, g(8): 2141-2150 Physiological and Anatomical Studies of the Interactions Between Purkinje Cells and Basket Cells in the Cat’s Cerebellar Cortex: Evidence for a Unitary Relationship Daniel L. O’Donoghue,a James S. King, and Georgia A. Bishop Department of Anatomy and Neuroscience Program, The Ohio State University, Columbus, Ohio 43210 Intracellular recordings have been obtained from neurons in tions of these units with HRP revealed that the responseswere lobule V of the cat’s vermis, which were identified as basket obtained from basket cells. cells following intracellular injections of HRP. Stimulation of Basket cells are interneurons that are located in the lower the inferior cerebellar peduncle or peripheral nerves elicited molecular layer of the cerebellar cortex (Fox et al., 1967; Mug- an initial depolarizing and subsequent hyperpolarizing re- naini, 1972; Palay and Chan-Palay, 1974). Their somata are sponse. Neither potential could be graded with changes in interspersedbetween and within the dendritic trees of Purkinje stimulus intensity; both displayed all-or-none properties at cells (Fox et al., 1967; Palay and Chan-Palay, 1974); their den- threshold levels of stimulation. The depolarization and hy- drites extend toward the pial surface, and their axons are pri- perpolarization were confirmed as an excitatory postsyn- marily oriented in the sagittal plane. Descendingcollaterals of aptic potential and an inhibitory postsynaptic potential (IPSP), theseaxons form a unique pericellular basket around the somata respectively, on the basis of their response to intracellular and axon hillocks of Purkinje cells, defined as the pinceau by injections of hyperpolarizing and depolarizing currents into Ram6n y Cajal (19 11).
    [Show full text]
  • Synaptic Remodeling Between Climbing Fibers and Purkinje Cells in the Developing Cerebellum Begins with Positive Feedback Addition of Synapses
    bioRxiv preprint doi: https://doi.org/10.1101/627299; this version posted May 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The rich get richer: synaptic remodeling between climbing fibers and Purkinje cells in the developing cerebellum begins with positive feedback addition of synapses. AUTHORS Alyssa Michelle Wilson1*✝, Richard Schalek2, Adi Suissa-Peleg2,3, Thouis Ray Jones4, Seymour Knowles-Barley5, Hanspeter Pfister3, Jeff William Lichtman6*. 1Department of Physics, Harvard University, Cambridge, MA 02138, USA 2Center for Brain Science, Harvard University, Cambridge, MA 02138, USA 3School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA 4Broad Institute, Cambridge, MA 02142, USA 5Volpara Health Technologies, Wellington, 6011, New Zealand 6Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA *Correspondence: [email protected] (A.M.W.), [email protected] (J.W.L.) ✝Lead Contact SUMMARY During postnatal development, cerebellar climbing fibers strongly innervate a subset of their original Purkinje cell targets and eliminate their connections from the rest. In the adult, each climbing fiber innervates a small number of Purkinje cells and each Purkinje cell is innervated by a single climbing fiber. To get insight about the processes responsible for this remapping, we reconstructed serial electron microscopy datasets from mice during the first postnatal week. In contrast to adult connectivity, individual neonatal climbing fibers innervate many nearby Purkinje cells, and multiple climbing fibers innervate each Purkinje cell.
    [Show full text]
  • Regulation of Striatal Cells and Goal-Directed Behavior by Cerebellar Outputs
    ARTICLE DOI: 10.1038/s41467-018-05565-y OPEN Regulation of striatal cells and goal-directed behavior by cerebellar outputs Le Xiao1, Caroline Bornmann1, Laetitia Hatstatt-Burklé1 & Peter Scheiffele 1 The cerebellum integrates descending motor commands and sensory information to generate predictions and detect errors during ongoing behaviors. Cerebellar computation has been proposed to control motor but also non-motor behaviors, including reward expectation and fl 1234567890():,; cognitive exibility. However, the organization and functional contribution of cerebellar output channels are incompletely understood. Here, we elaborate the cell-type specificity of a broad connectivity matrix from the deep cerebellar nuclei (DCN) to the dorsal striatum in mice. Cerebello-striatal connections arise from all deep cerebellar subnuclei and are relayed through intralaminar thalamic nuclei (ILN). In the dorsal striatum, these connections target medium spiny neurons, but also ChAT-positive interneurons, a class of tonically active interneurons implicated in shifting and updating behavioral strategies. Chemogenetic silen- cing of cerebello-striatal connectivity modifies function of striatal ChAT-positive inter- neurons. We propose that cerebello-striatal connections relay cerebellar computation to striatal circuits for goal-directed behaviors. 1 Biozentrum, University of Basel, 4056 Basel, Switzerland. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:3133 | DOI: 10.1038/s41467-018-05565-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05565-y he cerebellum is a major site of multisensory integration reminiscent of processes controlled by cerebellar computation, it Tthat controls sensorimotor function1,2. Current models for is unknown whether thalamo-striatal inputs to ChAT cells are cerebellar function pose that cerebellar computation inte- linked anatomically or functionally to cerebellar outputs.
    [Show full text]
  • Multiple Climbing Fibers Signal to Molecular Layer Interneurons
    ARTICLES Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover Germa´n Szapiro & Boris Barbour Spillover of glutamate under physiological conditions has only been established as an adjunct to conventional synaptic transmission. Here we describe a pure spillover connection between the climbing fiber and molecular layer interneurons in the rat cerebellar cortex. We show that, instead of acting via conventional synapses, multiple climbing fibers activate AMPA- and NMDA- type glutamate receptors on interneurons exclusively via spillover. Spillover from the climbing fiber represents a form of glutamatergic volume transmission that could be triggered in a regionalized manner by experimentally observed synchronous climbing fiber activity. Climbing fibers are known to direct parallel fiber synaptic plasticity in interneurons, so one function of this spillover is likely to involve controlling synaptic plasticity. http://www.nature.com/natureneuroscience Spillover of neurotransmitter—action at synaptic contacts other than unknown type of axodendritic (or axosomatic) contact17. Despite those where it was released—has proved to be a controversial subject. extensive and tight apposition between axonal (climbing fiber) and For simple, small glutamatergic synapses, spillover has only rarely been somatodendritic (interneuron) membranes, the apparent absence of reported1,2 at activity levels that are physiologically plausible, and vesicles and glutamate receptors argues against classical synaptic modeling suggests that the spillover of glutamate at simple synapses transmission occurring at these junctions. is probably not significant3 (but see ref. 4). It has been argued that Here we confirm the existence of the climbing fiber–interneuron spillover would reduce synaptic independence and thus reduce the connection and characterize its mechanism of transmission.
    [Show full text]
  • Cerebellum and Activation of the Cerebellum IO ST During Nonmotor Tasks
    Cerebellum (Kandel & Schwartz & Jessell, 4th ed.) Granule186 cells are irreducibly smallChapter (6-8 7 μm) stellate cell basket cell outer synaptic layer PC rs cap PC layer grc Go inner 6 μm synaptic layer Figure 7.15 Largest cerebellar neuron occupies more than a 1,000-fold greater volume than smallest neuron. Thin section (~1 μ m) through monkey cerebellar cortex. Purkinje cell body (PC) and nucleus are far larger than those of granule cell (grc). The latter cluster to leave space for mossy fiber terminals to form glomeruli with grc dendritic claws and space for Golgi cells (Go). Note rich network of capillaries (cap). Fine, scat- tered dots are mitochondria. Courtesy of E. Mugnaini. brain ’ s most numerous neuron, this small cost grows large (see also chapter 13). Much of the inner synaptic layer is occupied by the large axon terminals of mossy fibers (figures 7.1 and 7.16). A terminal interlaces with multiple (~15) dendritic claws, each from a different but neighboring granule cell, and forms a complex knot (glomerulus ), nearly as large as a granule cell body (figures 7.1 and 7.16). The mossy fiber axon fires at an unusually high mean rate (up to 200 Hz) and is therefore among the brain’ s thickest (figure 4.6). To match the axon’ s high rate, a terminal expresses 150 active zones, 10 per postsynaptic granule cell (figure 7.16). These sites are capable of driving … and most expensive. 190 Chapter 7 10 4 8 3 9 19 10 10 × 6 × 2 2 4 ATP/s/cell ATP/s/cell ATP/s/m 1 2 0 0 astrocyte astrocyte Golgi cell Golgi cell basket cell basket cell stellate cell stellate cell granule cell granule cell mossy fiber mossy fiber Purkinje cell Purkinje Purkinje cell Purkinje Bergman glia Bergman glia climbing fiber climbing fiber Figure 7.18 Energy costs by cell type.
    [Show full text]