Appendix a the Language of Differential Forms

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a the Language of Differential Forms Appendix A The Language of Differential Forms This appendix—with the only exception of Sect. A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of de- riving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where the tensor indices of the curved space–time are “hidden” inside the variables, with great formal simplifi- cations and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and op- erational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [49] of the bibliography. Let us finally notice that in this appendix we will follow the conventions intro- duced in Chap. 12, Sect. 12.1: Latin letters a,b,c,... will denote Lorentz indices in the flat tangent space, Greek letters μ,ν,α,... tensor indices in the curved man- ifold. For the matter fields we will always use natural units = c = 1. Also, un- less otherwise stated, in the first three sections (A.1, A.2, A.3) we will assume that the space–time manifold has an arbitrary number D of dimensions, with signature (+, −, −, −,...). A.1 Elements of Exterior Calculus Let us start with the observation that the infinitesimal (oriented) surface-element dx1 dx2 of a differentiable manifold is antisymmetric with respect to the exchange of → = → = the coordinates, x1 x1 x2 and x2 x2 x1, since the corresponding Jacobian M. Gasperini, Theory of Gravitational Interactions, 263 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-88-470-2691-9, © Springer-Verlag Italia 2013 264 A The Language of Differential Forms determinant of the transformation is |∂x/∂x|=−1. Hence: dx1 dx2 =− dx2 dx1. (A.1) With reference to a generic volume element dx1 dx2 ···dxD let us then introduce the composition of differentials called exterior product and denoted by the wedge symbol, dxμ ∧ dxν , which is associative and antisymmetric, dxμ ∧ dxν =−dxν ∧ dxμ. Let us define, in this context, an “exterior” differential form of degree p—or, more synthetically, a p-form—as an element of the linear vector space Λp spanned by the external composition of p differentials. Any p-form can thus be represented as a homogeneous polynomial with a degree of p in the exterior product of differentials, ∈ p =⇒ = μ1 ∧···∧ μp A Λ A A[μ1···μp] dx dx , (A.2) μi ∧ μj =− μj ∧ μi where dx dx dx dx for any pair of indices, and where A[μ1···μp] (the so-called “components” of the p form) correspond to the components of a to- tally antisymmetric tensor of rank p. A scalar φ, for instance, can be represented as μ a 0-form, a covariant vector Aμ as a 1-form A, with A = Aμ dx , an antisymmetric μ ν tensor Fμν as a 2-form F , with F = Fμν dx ∧ dx , and so on. In a D-dimensional manifold, the direct sum of the vector spaces Λp from 0 to D defines the so-called Cartan algebra Λ, D Λ = Λp. (A.3) p=0 In the linear vector space Λ the exterior product is a map Λ × Λ → Λ which, in the coordinate differential base dxμ1 ∧ dxμ2 ···, is represented by a composition law which satisfies the properties of (1) bilinearity: αdxμ1 ∧···∧dxμp + βdxμ1 ∧···∧dxμp ∧ dxμp+1 ∧···∧dxμp+q = (α + β)dxμ1 ∧···∧dxμp ∧ dxμp+1 ∧···∧dxμp+q (A.4) (α and β are arbitrary numerical coefficients); (2) associativity: dxμ1 ∧···∧dxμp ∧ dxμp+1 ∧···∧dxμp+q = dxμ1 ∧···∧dxμp+q ; (A.5) (3) skewness: [ ] dxμ1 ∧···∧dxμp = dx μ1 ∧···∧dxμp . (A.6) This last property implies that the exterior product of a number of differentials μp >Dis identically vanishing. Starting with the above definitions, we can now introduce some important oper- ations concerning the exterior forms. A.1 Elements of Exterior Calculus 265 A.1.1 Exterior Product The exterior product between a p-form A ∈ Λp and a q-form B ∈ Λq is a bilinear and associative mapping ∧:Λp × Λq → Λp+q , which defines the (p + q)-form C such that = ∧ = μ1 ∧···∧ μp+q C A B Aμ1···μp Bμp+1···μp+q dx dx . (A.7) The commutation properties of this product depend on the degrees of the forms we are considering (i.e. on the number of the components we have to switch), and in general we have the rule: A ∧ B = (−1)pqB ∧ A. (A.8) A.1.2 Exterior Derivative The exterior derivative of a p form A ∈ Λp can be interpreted (for what concerns μ the product rules) as the exterior product between the gradient 1-form dx ∂μ and the p-form A. It is thus represented by the mapping d : Λp → Λp+1, which defined the (p + 1)-form dA such that = μ1 ∧···∧ μp+1 dA ∂[μ1 Aμ2···μp+1] dx dx . (A.9) For a scalar φ, for instance, the exterior derivative is represented by the 1-form μ dφ = ∂μφdx . (A.10) The exterior derivative of the 1-form A is represented by the 2-form μ ν dA = ∂[μAν] dx ∧ dx , (A.11) and so on for higher degrees. An immediate consequence of the definition (A.9) is that the second exterior derivative is always vanishing, d2A = d ∧ dA≡ 0, (A.12) regardless of the degree of the form A. We can also recall that a p-form A is called closed if dA= 0, and exact if it satisfies the property A = dφ, where φ is a (p − 1)- form. If a form is exact then it is (obviously) closed. However, if a form is closed then it is not necessarily exact (it depends on the topological properties of the man- ifold where the form is defined). Another consequence of the definition (A.9) is that, in a space–time with a α α symmetric connection (Γμν = Γνμ ), the gradient ∂μ appearing in the exterior- derivative operator can be always replaced by the covariant gradient ∇μ. In fact, ∇ = − α − α −··· μ1 Aμ2μ3... ∂μ1 Aμ2μ3... Γμ1μ2 Aαμ3... Γμ1μ3 Aμ2α... , (A.13) 266 A The Language of Differential Forms so that all connection terms disappear after antisymmetrization, and =∇ ≡∇ μ1 ∧···∧ μp+1 dA A [μ1 Aμ2···μp+1] dx dx . (A.14) Finally, again from the definition (A.9) and from the commutation rule (A.8), we can obtain a generalized Leibnitz rule for the exterior derivative of a product. Consider, for instance, the exterior product of a p-form A and a q-form B.By recalling that d is a 1-form operator we have d(A∧ B) = dA∧ B + (−1)pA ∧ dB, (A.15) d(B ∧ A) = dB ∧ A + (−1)q B ∧ dA. And so on for multiple products. A.1.3 Duality Conjugation and Co-differential Operator Another crucial ingredient for the application of this formalism to physical models is the so-called Hodge-duality operation, which associates to each p-form its (D −p)- dimensional “complement”. The dual of a p-form A ∈ Λp is a mapping : Λp → ΛD−p, defining the (D − p)-form A such that 1 μ ···μ μ + μ A = A 1 p η ··· ··· dx p 1 ∧···∧dx D . (A.16) (D − p)! μ1 μpμp+1 μD We should recall that the fully antisymmetric tensor η is related to the Levi-Civita antisymmetric density by the relation = | | ημ1···μD g μ1···μD (A.17) √ √ (see Sect. 3.2,Eq.(3.34)). We should also note that the use of |g| instead of −g is due to the fact that the sign of det gμν , in an arbitrary number of D space–time dimensions, depends on the number (even or odd) of the D − 1 spacelike compo- nents. It may be useful to point out that the square of the duality operator does not coincides with the identity, in general. By applying the definition (A.16), in fact, we obtain 1 μ ···μ ν ν A = A ··· η 1 D η ··· ··· dx 1 ∧···∧dx p p!(D − p)! μ1 μp μp+1 μDν1 νp ··· p(D−p) D−1 1 μ1 μp ν ν = (−1) (−1) δ ··· A ··· dx 1 ∧···∧dx p p! ν1 νp μ1 μp − + − = (−1)p(D p) D 1A. (A.18) A.1 Elements of Exterior Calculus 267 The factor (−1)D−1 comes from the product rules of the totally antisymmetric ten- sors since, in D − 1 spatial dimensions (and with our conventions), D−1 012...D−1 D−1 012...D−1 = (−1) = (−1) . (A.19) The product rules thus become, in general, ··· − μ ···μ μ1 μD = − D 1 − ! 1 p ην1···νpμp+1···μD η ( 1) (D p) δν1···νp , (A.20) ··· μ1 μp − p(D−p) where δν1···νp is the determinant defined in Eq. (3.35). The factor ( 1) ,in- stead, comes from the switching of the p indices of A with the D − p indices of its dual (such a switching is needed to arrange the indices of η in a way to match the sequence of the product rule (A.20)). We also note, for later applications, that the dual of the identity operator is di- rectly related to the scalar integration measure representing the hypervolume ele- ment of the given space–time manifold.
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • Combinatorial Laplacian and Rank Aggregation
    Combinatorial Laplacian and Rank Aggregation Combinatorial Laplacian and Rank Aggregation Yuan Yao Stanford University ICIAM, Z¨urich,July 16–20, 2007 Joint work with Lek-Heng Lim Combinatorial Laplacian and Rank Aggregation Outline 1 Two Motivating Examples 2 Reflections on Ranking Ordinal vs. Cardinal Global, Local, vs. Pairwise 3 Discrete Exterior Calculus and Combinatorial Laplacian Discrete Exterior Calculus Combinatorial Laplacian Operator 4 Hodge Theory Cyclicity of Pairwise Rankings Consistency of Pairwise Rankings 5 Conclusions and Future Work Combinatorial Laplacian and Rank Aggregation Two Motivating Examples Example I: Customer-Product Rating Example (Customer-Product Rating) m×n m-by-n customer-product rating matrix X ∈ R X typically contains lots of missing values (say ≥ 90%). The first-order statistics, mean score for each product, might suffer from most customers just rate a very small portion of the products different products might have different raters, whence mean scores involve noise due to arbitrary individual rating scales Combinatorial Laplacian and Rank Aggregation Two Motivating Examples From 1st Order to 2nd Order: Pairwise Rankings The arithmetic mean of score difference between product i and j over all customers who have rated both of them, P k (Xkj − Xki ) gij = , #{k : Xki , Xkj exist} is translation invariant. If all the scores are positive, the geometric mean of score ratio over all customers who have rated both i and j, !1/#{k:Xki ,Xkj exist} Y Xkj gij = , Xki k is scale invariant. Combinatorial Laplacian and Rank Aggregation Two Motivating Examples More invariant Define the pairwise ranking gij as the probability that product j is preferred to i in excess of a purely random choice, 1 g = Pr{k : X > X } − .
    [Show full text]
  • Topology and Physics 2019 - Lecture 2
    Topology and Physics 2019 - lecture 2 Marcel Vonk February 12, 2019 2.1 Maxwell theory in differential form notation Maxwell's theory of electrodynamics is a great example of the usefulness of differential forms. A nice reference on this topic, though somewhat outdated when it comes to notation, is [1]. For notational simplicity, we will work in units where the speed of light, the vacuum permittivity and the vacuum permeability are all equal to 1: c = 0 = µ0 = 1. 2.1.1 The dual field strength In three dimensional space, Maxwell's electrodynamics describes the physics of the electric and magnetic fields E~ and B~ . These are three-dimensional vector fields, but the beauty of the theory becomes much more obvious if we (a) use a four-dimensional relativistic formulation, and (b) write it in terms of differential forms. For example, let us look at Maxwells two source-free, homogeneous equations: r · B = 0;@tB + r × E = 0: (2.1) That these equations have a relativistic flavor becomes clear if we write them out in com- ponents and organize the terms somewhat suggestively: x y z 0 + @xB + @yB + @zB = 0 x z y −@tB + 0 − @yE + @zE = 0 (2.2) y z x −@tB + @xE + 0 − @zE = 0 z y x −@tB − @xE + @yE + 0 = 0 Note that we also multiplied the last three equations by −1 to clarify the structure. All in all, we see that we have four equations (one for each space-time coordinate) which each contain terms in which the four coordinate derivatives act. Therefore, we may be tempted to write our set of equations in more \relativistic" notation as ^µν @µF = 0 (2.3) 1 with F^µν the coordinates of an antisymmetric two-tensor (i.
    [Show full text]
  • Connections on Bundles Md
    Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II.
    [Show full text]
  • LP THEORY of DIFFERENTIAL FORMS on MANIFOLDS This
    TRANSACTIONSOF THE AMERICAN MATHEMATICALSOCIETY Volume 347, Number 6, June 1995 LP THEORY OF DIFFERENTIAL FORMS ON MANIFOLDS CHAD SCOTT Abstract. In this paper, we establish a Hodge-type decomposition for the LP space of differential forms on closed (i.e., compact, oriented, smooth) Rieman- nian manifolds. Critical to the proof of this result is establishing an LP es- timate which contains, as a special case, the L2 result referred to by Morrey as Gaffney's inequality. This inequality helps us show the equivalence of the usual definition of Sobolev space with a more geometric formulation which we provide in the case of differential forms on manifolds. We also prove the LP boundedness of Green's operator which we use in developing the LP theory of the Hodge decomposition. For the calculus of variations, we rigorously verify that the spaces of exact and coexact forms are closed in the LP norm. For nonlinear analysis, we demonstrate the existence and uniqueness of a solution to the /1-harmonic equation. 1. Introduction This paper contributes primarily to the development of the LP theory of dif- ferential forms on manifolds. The reader should be aware that for the duration of this paper, manifold will refer only to those which are Riemannian, compact, oriented, C°° smooth and without boundary. For p = 2, the LP theory is well understood and the L2-Hodge decomposition can be found in [M]. However, in the case p ^ 2, the LP theory has yet to be fully developed. Recent appli- cations of the LP theory of differential forms on W to both quasiconformal mappings and nonlinear elasticity continue to motivate interest in this subject.
    [Show full text]
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
    Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities .
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • Einstein and Friedmann Equations
    Outline ● Go over homework ● Einstein equations ● Friedmann equations Homework ● For next class: – A light ray is emitted from r = 0 at time t = 0. Find an expression for r(t) in a flat universe (k=0) and in a positively curved universe (k=1). Einstein Equations ● General relativity describes gravity in terms of curved spacetime. ● Mass/energy causes the curvature – Described by mass-energy tensor – Which, in general, is a function of position ● The metric describes the spacetime – Metric determines how particles will move ● To go from Newtonian gravity to General Relativity d2 GM 8 πG ⃗r = r^ → Gμ ν(gμ ν) = T μ ν dt2 r 2 c4 ● Where G is some function of the metric Curvature ● How to calculate curvature of spacetime from metric? – “readers unfamiliar with tensor calculus can skip down to Eq. 8.22” – There are no equations with tensors after 8.23 ● Curvature of spacetime is quantified using parallel transport ● Hold a vector and keep it parallel to your direction of motion as you move around on a curved surface. ● Locally, the vector stays parallel between points that are close together, but as you move finite distances the vector rotates – in a manner depending on the path. Curvature ● Mathematically, one uses “Christoffel symbols” to calculate the “affine connection” which is how to do parallel transport. ● Christoffel symbols involve derivatives of the metric. μ 1 μρ ∂ gσ ρ ∂ gνρ ∂ g Γ = g + + σ ν σ ν 2 ( ∂ x ν ∂ xσ ∂ xρ ) ● The Reimann tensor measures “the extent to which the metric tensor is not locally isometric to that of Euclidean space”.
    [Show full text]
  • Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md
    International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 157 ISSN 2229-5518 Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md. Abdul Halim Sajal Saha Md Shafiqul Islam Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo Riemannian are tensors fields defined on a Riemannian manifold. Keywords: Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields. —————————— —————————— I. Introduction (c) { } is a family of open sets which covers , that is, 푖 = . Riemannian manifold is a pair ( , g) consisting of smooth 푈 푀 manifold and Riemannian metric g. A manifold may carry a (d) ⋃ is푈 푖푖 a homeomorphism푀 from onto an open subset of 푀 ′ further structure if it is endowed with a metric tensor, which is a 푖 . 푖 푖 휑 푈 푈 natural generation푀 of the inner product between two vectors in 푛 ℝ to an arbitrary manifold. Riemannian metrics, affine (e) Given and such that , the map = connections,푛 parallel transport, curvature tensors, torsion tensors, ( ( ) killingℝ vector fields and conformal killing vector fields play from푖 푗 ) to 푖 푗 is infinitely푖푗 −1 푈 푈 푈 ∩ 푈 ≠ ∅ 휓 important role to develop the theorem of Riemannian manifolds.
    [Show full text]
  • Curl, Divergence and Laplacian
    Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1.
    [Show full text]
  • On the Representation of Symmetric and Antisymmetric Tensors
    Max-Planck-Institut fur¨ Mathematik in den Naturwissenschaften Leipzig On the Representation of Symmetric and Antisymmetric Tensors (revised version: April 2017) by Wolfgang Hackbusch Preprint no.: 72 2016 On the Representation of Symmetric and Antisymmetric Tensors Wolfgang Hackbusch Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22–26, D-04103 Leipzig, Germany [email protected] Abstract Various tensor formats are used for the data-sparse representation of large-scale tensors. Here we investigate how symmetric or antiymmetric tensors can be represented. The analysis leads to several open questions. Mathematics Subject Classi…cation: 15A69, 65F99 Keywords: tensor representation, symmetric tensors, antisymmetric tensors, hierarchical tensor format 1 Introduction We consider tensor spaces of huge dimension exceeding the capacity of computers. Therefore the numerical treatment of such tensors requires a special representation technique which characterises the tensor by data of moderate size. These representations (or formats) should also support operations with tensors. Examples of operations are the addition, the scalar product, the componentwise product (Hadamard product), and the matrix-vector multiplication. In the latter case, the ‘matrix’belongs to the tensor space of Kronecker matrices, while the ‘vector’is a usual tensor. In certain applications the subspaces of symmetric or antisymmetric tensors are of interest. For instance, fermionic states in quantum chemistry require antisymmetry, whereas bosonic systems are described by symmetric tensors. The appropriate representation of (anti)symmetric tensors is seldom discussed in the literature. Of course, all formats are able to represent these tensors since they are particular examples of general tensors. However, the special (anti)symmetric format should exclusively produce (anti)symmetric tensors.
    [Show full text]