Housefly As Vector

Total Page:16

File Type:pdf, Size:1020Kb

Housefly As Vector Housefly as Vector Geetanjali Mishra Associate Professor Department of Zoology University of Lucknow Lucknow VECTORS AND THEIR CONTROL Vectors may be simply defined as any agent that acts as an intermediate carrier or alternative host for a pathogenic organism and transmits it to a susceptible host. Two types: • Mechanical: Physically transmit • Biological: Life cycle of the organism should be advanced in the host or they should multiply in numbers Thus, a large number of animals including several insects work as vectors and facilitate the transmission of disease causing organisms from one host to another. Some of the common insect vectors: Musca, Anopheles, Culex, Aedes, Pediculus, Cimex, Phlebolomus, Glossina, etc. 1. HOUSE FLY: (Musca nebulo domestica) Class: Insecta Divison: Endopterygota Order: Diptera Family: Muscidae It is world wide in distribution. It is abundant in hot and humid conditions and most common around human habitation, filthy and dirty places. It transmits many diseases of man and contaminates our food by its insanitary habits. External Features: It measures 6mm in length. It is dark grey dorsally with yellowish tinge ventrally. It is distinguished from other common flies by the presence of four dark longitudinal lines on the thorax and one black band on the abdomen. The body is distinctly divided into head, thorax and abdomen, head bears two compound eyes, three ocelli and two aristate antennae, consisted scape, pedicel and flagellum with three jointed hairy process, the arista. The mouth part are sponging type adapted to suck the liquid food, the food canal is formed by labrum+epipharynx and hypopharynx. Thorax bear three pairs of jointed legs located ventro -laterally on each thoracic segments. Mesothorax bears a pair of broad and transparent membranous wings. The hindwings are reduced to drumstick shaped structures, the halteres which possess sense organs and serve as balancing organ during flight. It produces buzzing sound during the flight, The abdomen is eight segmented in male and nine in female. The last four segments for the genital pouch, and accessory reproductive organs in male and tubular and retractile ovipositor in female. The entire body is covered with hairs. Life Cycle: Sexes are separate. Female is slighty bigger than male.the flies mate within 24 hours of emergence. The flight mate during spring and summer, especially during august and September. Females lay eggs 6-8 days of mating, in clusters on decaying organic matter. Single female lays 500-600 eggs in 5-6 batches in one season. The eggs are small, white and elongate. The legless (apodous) and headless larvae, the maggots hatch in 8-12 hours. Newly hatched maggot is soft, transparent, white and cylindrically elongated worm like. There are three larval instars. The full grown larva is 8-12mm in length and creamy white in colour. The larval period lasts for 5-15 days. The immature larva seeks dry place shrinks his body and transforms into a cyrindrically ovoid pupa. During larval skin turns dark brown and functions as a protectivecovering, called the puparium. Pupal period lasts for 4-5 days, thereafter the adult fly emerged out. A generation is completed every two weeks. Economic Importance: Housefly is the most important agent in spreading the diseases and is one of the deadliest enemies of humanity, because of being associated with filth of all kinds (scavengers). It contaminates our food due to its insanitary habit of feeding on human excrement, sputum, exudates of sores, diseased bodies, manures etc. The rough and hairy body surface and feeding habits facilitates the transmission of disease causing organisms of: typhoid, dysentery, cholera, T.B., leprosy, trachoma, anthrax, gonorrhea and helminthic disease caused by Taenia solium, Hymenolepis nana, Enterobius, Trichocephalus, Ascaris and viral disease (Poliomyletis). It works as both the mechanical and biological carriers of disease germs; i. Because of its insanitary sitting and feeding habits; and rough and hairy body surface, they carry lots of germs of disease to human food/ drinks (mechanical carrier). A single fly may carry 8 lacs to 50 crores of bacteria. ii. Some of the disease germs are ingested by the fly with food. They and multiply in the crop of the fly and transfer them to food by regurgitation (biological carrier). Because house fly cannot ingest solid food and they release (spit) enzymes of liquify the solid food to facilitate it ingestion and in the process germs are transferred. Control Measures: 1) Prevention of breeding: This is the best approach and can be achieved by: (a) proper and quick disposal of manure, garbage, etc., (b) keeping premise clean and without accumulation of materials, (c) accumulates manures on arms should be either covered or spread in their layers to dry, (d) outdoor toilets should be either dispensed withor at least excreta be covered with soil. 2) Chemical treatment of breeding ground: Disinfectant like lime, borax, copper sulphate, crude oil, formaldehyde etc., should be sprinkled over their breeding grounds to prevent egg laying. 3) Protection of edibles: (a) all edibles should be kept covered to prevent flies sitting and contamination of food, (b) the edibles having flies sitting on them should not be bought or eaten. 4) Destruction of adults: (a) manual destruction of adults by fly swatter, (b) baiting by formaline and sweetened milk in a saucer or attracting to a mixture of fermenting banana and milk or cheese and sugar and killing with insecticide, (c) stretching a wire smeared with boiled resin and caster (flies sitting on wire will die),(d) flit/ finit, baygon, etc., should be used inside the house, (e) 5% DDT, malathion, diazinon , or 2% lindane or chlordane. 5) Biological control a. Natural enemies like entomic pathogenic fungi, nematodes, fire ants, predatory, beetles, mites, parasitic wasps (not harmful for human and animals), flies (hHdrotaea aenescens ), and birds. b. Other biological control methods include the use of MdSGHV virus, this virus infects both sexes of flies, but the rate of infection in males is rapid. Young flies are not developed in females, it is because of the inhibition of yolk protein transcription and hexamerin production. As compared to healthy flies, infected flies show shorter life span and reduced rate of successful mating,; c. Bacterial (larvae of houseflies could be controlled by feeding Bacillus thuringensis to cattle and chickens breeding sites in a manner for release exotoxin d. New strains of bacteria have been discovered in different countries of the world including Korea, Egypt, and South Africa for housefly control due to the acidic conditions (pH) of digestive system of flies or deficiency of receptors for endotoxin e. Fungi like Entomophthora muscae and E. schizophorae. f. Essential oils obtained from plant sources (the use of botanical oils, change in the behavior of houseflies like attraction, repellence, and toxicity on their contact to flies at different developmental stages have been reported. Essential oil possessing specific amounts of 1,8-cinesle, menthol, limonene, and pulegone shows effective toxicity to adult houseflies. g. The essential oils possess fumigant insecticide properties due to the presences of acetyl cholinesterase inhibition and octopaminergic action); and use if insects as predator, parasite, or parasitoid housefly (histerid beetles and macrochield mites eat up eggs and larvae of housefly population at large scale h. Pteromalid parasitoid that feeds on houseflies at the pupal stage is used as a more suitable biological control agent of housefly population for decades. Photograph of Haltere Life cycle of House fly 8-24 hours E 500-600 24 5- ho 15 ur Musca nebulo domestica da s ys (11-22 days) A 4-5 days References Jawaid Ahsan, Sinha, S. P. 2008. A Handbook of Economic Zoology. S. Chand Group Publ. Khan, A.A. (Editor), 2007. Encyclopedia of Economic Zoology. 2 vols. Anmol Publications Pvt. Ltd. (April 1, 2007) Shukla, G.S. & Upadhyay, V.B. Economic zoology. Rastogi Publs. 2005. 487 pages. Nigam, H.C. 2006. ModernTrends in Biology & Economic Zoology. Vishal Publ. Co. 444+xii pages. .
Recommended publications
  • Infectivity of Housefly, Musca Domestica
    b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 7 (2 0 1 6) 807–816 ht tp://www.bjmicrobiol.com.br/ Environmental Microbiology Infectivity of housefly, Musca domestica (Diptera: Muscidae) to different entomopathogenic fungi ∗ Muzammil Farooq, Shoaib Freed Bahauddin Zakariya University, Faculty of Agricultural Sciences and Technology, Laboratory of Insect Microbiology and Biotechnology, Multan, Punjab, Pakistan a r t i c l e i n f o a b s t r a c t Article history: The housefly Musca domestica is a worldwide insect pest that acts as a vector for many Received 26 February 2014 pathogenic diseases in both people and animals. The present study was conducted to eval- Accepted 4 March 2016 uate the virulence of different local isolates of Beauveria bassiana, Metarhizium anisopliae and Available online 4 July 2016 Isaria fumosorosea on M. domestica using two bioassay techniques: (1) adult immersion and Associate Editor: Carlos Pelleschi (2) a bait method applied to both larvae and adults. The results showed evidence of a broad Taborda range of responses by both stages (larvae and adults) to the tested isolates of B. bassiana, M. anisopliae and I. fumosorosea. These responses were concentration-dependent, with mor- Keywords: tality percentages ranging from 53.00% to 96.00%. Because it resulted in lower LC50 values and a shorter lethal time, B. bassiana (Bb-01) proved to be the most virulent isolate against Entomopathogenic fungi Fecundity both housefly larvae and adults.
    [Show full text]
  • SHOO FLY! Houseflies, Those Pesky Flying Insects That Show up Uninvited
    SHOO FLY! Houseflies, those pesky flying insects that show up uninvited at your summer picnic or slip into your house if you leave a door open too long, are so annoying. Sometimes it seems that they are everywhere! Did you know that there are more than 100,000 different kinds of flies? The housefly is frequently found around humans and on farms and ranches that raise animals. Flies are pests. Not only are they annoying, they also spread diseases to humans. Flies eat rotten things like dead animals, feces (poop), and garbage. As they crawl around on that stuff they pick up germs and spread them wherever they land. Flies are decomposers, living things (such as bacteria, fungus, or insect) that feed on and break down plant and animal matter into simpler parts. Decomposers act as a clean up crew and perform an important job, making sure all of that plant and animal matter doesn’t pile up. Fly Facts: Instead of having a skeleton inside their bodies, flies are hard on the outside and soft on the inside. Their type of skeleton is called an exoskeleton. Flies eat only liquid food. If they land on solid food, they spit on it through their proboscis (part of their mouth). This softens the food so they can eat it. A fly’s tongue is shaped like a straw to sip their food. Since they eat only liquids, flies poop a lot. It is thought that they poop every time they land, so they leave poop everywhere! Flies are very hard to swat because of their excellent eyesight, fast reaction time, and agility (the ability to move quickly and easily).
    [Show full text]
  • Mosquitos Fail at Flight in Heavy Fog 19 November 2012
    Mosquitos fail at flight in heavy fog 19 November 2012 Mosquitos have the remarkable ability to fly in clear These halteres are on a comparable size to the fog skies as well as in rain, shrugging off impacts from droplets and they flap approximately 400 times raindrops more than 50 times their body mass. But each second, striking thousands of drops per just like modern aircraft, mosquitos also are second. Though the halteres can normally repel grounded when the fog thickens. Researchers from water, repeated collisions with 5-micron fog the Georgia Institute of Technology present their particles hinders flight control, leading to flight findings at the 65th meeting of the American failure. Physical Society's (APS) Division of Fluid Dynamics, Nov. 18 - 20, in San Diego, Calif. "Thus the halteres cannot sense their position correctly and malfunction, similarly to how "Raindrop and fog impacts affect mosquitoes quite windshield wipers fail to work well when the rain is differently," said Georgia Tech researcher Andrew very heavy or if there is snow on the windshield," Dickerson. "From a mosquito's perspective, a said Dickerson. "This study shows us that insect falling raindrop is like us being struck by a small flight is similar to human flight in aircraft in that flight car. A fog particle – weighing 20 million times less is not possible when the insects cannot sense their than a mosquito – is like being struck by a crumb. surroundings." For humans, visibility hinders flight; Thus, fog is to a mosquito as rain is to a human." whereas for insects it is their gyroscopic flight sensors." On average during a rainstorm, mosquitos get struck by a drop once every 20 seconds, but fog More information: The talk, "Mosquito Flight particles surround the mosquito continuously as it Failure in Heavy Fog," is at 5 p.m.
    [Show full text]
  • A Systematic Review of Human Pathogens Carried by the Housefly
    Khamesipour et al. BMC Public Health (2018) 18:1049 https://doi.org/10.1186/s12889-018-5934-3 REVIEWARTICLE Open Access A systematic review of human pathogens carried by the housefly (Musca domestica L.) Faham Khamesipour1,2* , Kamran Bagheri Lankarani1, Behnam Honarvar1 and Tebit Emmanuel Kwenti3,4 Abstract Background: The synanthropic house fly, Musca domestica (Diptera: Muscidae), is a mechanical vector of pathogens (bacteria, fungi, viruses, and parasites), some of which cause serious diseases in humans and domestic animals. In the present study, a systematic review was done on the types and prevalence of human pathogens carried by the house fly. Methods: Major health-related electronic databases including PubMed, PubMed Central, Google Scholar, and Science Direct were searched (Last update 31/11/2017) for relevant literature on pathogens that have been isolated from the house fly. Results: Of the 1718 titles produced by bibliographic search, 99 were included in the review. Among the titles included, 69, 15, 3, 4, 1 and 7 described bacterial, fungi, bacteria+fungi, parasites, parasite+bacteria, and viral pathogens, respectively. Most of the house flies were captured in/around human habitation and animal farms. Pathogens were frequently isolated from body surfaces of the flies. Over 130 pathogens, predominantly bacteria (including some serious and life-threatening species) were identified from the house flies. Numerous publications also reported antimicrobial resistant bacteria and fungi isolated from house flies. Conclusions: This review showed that house flies carry a large number of pathogens which can cause serious infections in humans and animals. More studies are needed to identify new pathogens carried by the house fly.
    [Show full text]
  • Insect Order ID: Diptera (Flies, Gnats, Midges, Mosquitoes, Maggots)
    Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Diptera (Flies, Gnats, Midges, Mosquitoes, Maggots) Life Cycle–Complete metamorphosis: Adults lay eggs. Eggs hatch into larvae (maggots, wigglers, etc.). Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause larvae to pupate. Inside the pupal case the pupae change in form and in color and develop wings. The emerging adults look completely different from the larvae. Adults–All (except a few wingless species) have only one pair of membranous wings, thus the name Diptera meaning "two wings". The forewings are fully developed and functional, while the hindwings are reduced to knobbed clubs called halteres, which are difficult to see without magnification except for larger specimens (e.g., crane flies). They are the best fliers in the insect world and possibly beyond: they can hover, fly backwards and upside-down and turn on the spot. Their eyes are usually large and multi-faceted, with males usually having larger eyes than females. Although many mimic bees and wasps, none have stingers. The order Diptera comprises two main suborders: long-horned (Nematocera) and short-horned Brachycera). Nematocera have long legs, long antennae and look fragile (e.g., mosquitoes, gnats, and midges, etc.) while Brachycera have stout bodies and short, stout antennae (e.g., horse flies, house flies, robber flies, hover flies, etc.). (Click images to enlarge or orange text for more information.) One pair of wings One pair of halteres Large, multifaceted eyes Robust-looking Short, stubby antennae Fragile-looking Many species are tiny Brachycera (Brachycera) Nematocera (Nematocera) Return to insect order home Page 2 of 3 Eggs–Adults lay eggs, usually where larval food is plentiful.
    [Show full text]
  • June 2019 ETBA Newsletter
    East Texas Beekeepers Association June 6, 2019 June Report by Dick Counts Beekeepers should be periodically checking their hives for capped honey. You do not want to run out of space for your bees to store honey during the flow. If your super has eight frames of honey, add another super. It is time to start thinking about extracting. Soon, I will be setting up my extraction equipment in preparation for club extraction days. ETBA members are invited to use my equipment to extract their honey if they do not own or have access to another extractor. Extraction days can get pretty busy, so we have a few rules to make the process work smoothly. First you must be an ETBA member. Secondly, you must make an appointment and also tell me how many supers you will be bringing to extract. Please arrive about 15 minutes before your appointment time. My yard has limited space for parking so we try to not to have a large number of members arriving at the same time. Be aware that there will be a lot of bees flying all through the yard, so do not bring pets or unattended children. Bring a clean, dry wide-mouth container with a lid to collect your honey from the extractor. A food grade five gallon bucket works well. You can figure on two supers per bucket. You will fill your individual honey jars at home. Finally, get the bees off your supers before you arrive. Also have something to cover them or my bees will find them.
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]
  • Representation of Haltere Oscillations and Integration with Visual Inputs in the Fly Central Complex
    4100 • The Journal of Neuroscience, May 22, 2019 • 39(21):4100–4112 Systems/Circuits Representation of Haltere Oscillations and Integration with Visual Inputs in the Fly Central Complex X Nicholas D. Kathman and XJessica L. Fox Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106 The reduced hindwings of flies, known as halteres, are specialized mechanosensory organs that detect body rotations during flight. Primary afferents of the haltere encode its oscillation frequency linearly over a wide bandwidth and with precise phase-dependent spiking. However, it is not currently known whether information from haltere primary afferent neurons is sent to higher brain centers where sensory information about body position could be used in decision making, or whether precise spike timing is useful beyond the peripheral circuits that drive wing movements. We show that in cells in the central brain, the timing and rates of neural spiking can be modulatedbysensoryinputfromexperimentalhalteremovements(drivenbyaservomotor).Usingmultichannelextracellularrecording in restrained flesh flies (Sarcophaga bullata of both sexes), we examined responses of central complex cells to a range of haltere oscillation frequencies alone, and in combination with visual motion speeds and directions. Haltere-responsive units fell into multiple response classes, including those responding to any haltere motion and others with firing rates linearly related to the haltere frequency. Cells with multisensory responses showed higher firing rates than the sum of the unisensory responses at higher haltere frequencies. They also maintained visual properties, such as directional selectivity, while increasing response gain nonlinearly with haltere frequency. Although haltere inputs have been described extensively in the context of rapid locomotion control, we find haltere sensory information in a brain region known to be involved in slower, higher-order behaviors, such as navigation.
    [Show full text]
  • Common Housefly
    Facts about… The Common Housefly CLASS: Hexapoda ORDER: Diptera GENUS: Musca FAMILY: Calypterate Muscoidea SPECIES: Domesticus In the order Diptera, there are more than eighty-five thousand different species, some seventeen thousand of them in North America alone. Many types of flies (fruit fly, grass fly, horsefly, blow fly, stable fly, etc.) are annoy- ing… but the common housefly (Musca domesticus) – because of its eating habits, breeding habits and ability to exist under almost any conditions – is one of our most dangerous insects. Some little known facts about the com- mon housefly follow below: • The common housefly is a perfect host for many types of bacteria… proven carriers of such germs as gangrene, Typhoid, leprosy, tuberculosis, amoebic dysentery, bubonic plague, and listeria, just to name a few. • The common housefly has no mouth. Instead, it has an eating tube through which it vomits a drop of fluid from its stomach and deposits it on its intended meal. This fluid is then sucked up along with the nutrients it has dissolved, leaving behind untold numbers of germs. • A fly may travel as far as thirteen miles from its birthplace. • The common housefly has a maximum flying speed of five miles per hour… even though its wings beat 20 thousand times per minute. • The fly has four thousand separate lenses in each eye – eight thousand in all – providing wide angle vision which is in fact omnidirectional. • The female fly may lay as many as 21 batches of offspring, each containing up to 130 eggs. • The larvae [maggots] normally hatch in about two days.
    [Show full text]
  • Biomechanical Basis of Wing and Haltere Coordination in Flies
    Biomechanical basis of wing and haltere coordination in flies Tanvi Deora, Amit Kumar Singh, and Sanjay P. Sane1 National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India Edited by M. A. R. Koehl, University of California, Berkeley, CA, and approved December 16, 2014 (received for review June 30, 2014) The spectacular success and diversification of insects rests critically unclear, especially in its ability to mediate rapid wing movement. on two major evolutionary adaptations. First, the evolution of flight, Moreover, faster wing movements require rapid sensory motor which enhanced the ability of insects to colonize novel ecological integration by the insect nervous system. The hind wings of habitats, evade predators, or hunt prey; and second, the miniatur- Diptera have evolved into a pair of mechanosensory halteres that ization of their body size, which profoundly influenced all aspects of detect gyroscopic forces during flight (10–13). The rapid feed- their biology from development to behavior. However, miniaturi- back from halteres is essential for flies to sense and control self- zation imposes steep demands on the flight system because smaller rotations during complex aerobatic maneuvers (13–15). In the insects must flap their wings at higher frequencies to generate majority of flies, the bilateral wings move in-phase, whereas sufficient aerodynamic forces to stay aloft; it also poses challenges halteres move antiphase relative to the wings. This relative co- to the sensorimotor system because precise control of wing ordination between wings and halteres is extremely precise even kinematics and body trajectories requires fast sensory feedback. at frequencies far exceeding 100 Hz.
    [Show full text]
  • Mass Production of Insects for Food and Feed
    08/05/2018 Mass production of insects for food and feed Rui Costa 7th May 2018 Poznan, Poland 1 08/05/2018 Mass production of insects for food and feed Motivation to use insects as food and feed Edible insects as food and feed Food safety and nutrition issues Regulation issues Cultivation issues Rui Costa May 2018 Motivation to use insects as food and feed FAO prediction: 9.1 bilion people by 2050 (7.6 today) 2 billion people already eat it Cost of animal protein/EU high import of protein Sustainable alternative Can combat malnutrition Economical and social factors Rui Costa May 2018 2 08/05/2018 Food conversion Paoletti and Dreon (2005) Rui Costa May 2018 Production of greenhouse gases Rui Costa May 2018 3 08/05/2018 Insects can be used to transform food waste Image: Source: Enterra Feed Corporation Rui Costa May 2018 Current wide use of insects Commercial products • food: honey, propolis, royal jelly • others: silk, wax (cosmetics, candles), dye (Cochineal) Ecological roles • pollination, food for animals, waste decomposition, and biological control. Rui Costa May 2018 4 08/05/2018 We already eat insects in other food products! FDA - Food Defect Action Levels Rui Costa May 2018 Edible insects 5 08/05/2018 Examples of consumption by human (entomophagy) • The primate with the most diverse entomophagy • Most feel repulsion • In Japan insects are eaten as part of the traditional diet • Croatia the cheese maggot (Piophila casei L.) is regarded as a delicacy • Sugar-rich crops of Zygaena moths (Italy) Rui Costa May 2018 Figures • More than
    [Show full text]
  • Molecular Diversity and Evolution of Antimicrobial Peptides in Musca Domestica
    diversity Article Molecular Diversity and Evolution of Antimicrobial Peptides in Musca domestica Sudong Qi 1,2, Bin Gao 1 and Shunyi Zhu 1,* 1 Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; [email protected] (S.Q.); [email protected] (B.G.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-010-64807112 Abstract: As a worldwide sanitary insect pest, the housefly Musca domestica can carry and transmit more than 100 human pathogens without suffering any illness itself, indicative of the high effi- ciency of its innate immune system. Antimicrobial peptides (AMPs) are the effectors of the innate immune system of multicellular organisms and establish the first line of defense to protect hosts from microbial infection. To explore the molecular diversity of the M. domestica AMPs and related evolutionary basis, we conducted a systematic survey of its full AMP components based on a combi- nation of computational approaches. These components include the cysteine-containing peptides (MdDefensins, MdEppins, MdMuslins, MdSVWCs and MdCrustins), the linear α-helical peptides (MdCecropins) and the specific amino acid-rich peptides (MdDomesticins, MdDiptericins, MdEdins and MdAttacins). On this basis, we identified multiple genetic mechanisms that could have shaped the molecular and structural diversity of the M. domestica AMPs, including: (1) Gene duplication; (2) Exon duplication via shuffling; (3) Protein terminal variations; (4) Evolution of disulfide bridges via compensation. Our results not only enlarge the insect AMP family members, but also offer a basic platform for further studying the roles of such molecular diversity in contributing to the high Citation: Qi, S.; Gao, B.; Zhu, S.
    [Show full text]