Chapter 12 100 Years of Earth System Model Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Destabilizing Thermohaline Circulation–Atmosphere–Sea Ice
642 JOURNAL OF CLIMATE VOLUME 12 NOTES AND CORRESPONDENCE A Destabilizing Thermohaline Circulation±Atmosphere±Sea Ice Feedback STEVEN R. JAYNE MIT±WHOI Joint Program in Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOCHEM MAROTZKE Center for Global Change Science, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 18 November 1996 and 9 March 1998 ABSTRACT Some of the interactions and feedbacks between the atmosphere, thermohaline circulation, and sea ice are illustrated using a simple process model. A simpli®ed version of the annual-mean coupled ocean±atmosphere box model of Nakamura, Stone, and Marotzke is modi®ed to include a parameterization of sea ice. The model includes the thermodynamic effects of sea ice and allows for variable coverage. It is found that the addition of sea ice introduces feedbacks that have a destabilizing in¯uence on the thermohaline circulation: Sea ice insulates the ocean from the atmosphere, creating colder air temperatures at high latitudes, which cause larger atmospheric eddy heat and moisture transports and weaker oceanic heat transports. These in turn lead to thicker ice coverage and hence establish a positive feedback. The results indicate that generally in colder climates, the presence of sea ice may lead to a signi®cant destabilization of the thermohaline circulation. Brine rejection by sea ice plays no important role in this model's dynamics. The net destabilizing effect of sea ice in this model is the result of two positive feedbacks and one negative feedback and is shown to be model dependent. To date, the destabilizing feedback between atmospheric and oceanic heat ¯uxes, mediated by sea ice, has largely been neglected in conceptual studies of thermohaline circulation stability, but it warrants further investigation in more realistic models. -
Tropical Climate
UGAMP: A network of excellence in climate modelling and research Issue 27 October 2003 UGAMP Coordinator: Prof. Julia Slingo [email protected] Newsletter Editor: Dr. Glenn Carver [email protected] Newsletter website: acmsu.nerc.ac.uk/newsletter.html Contents NCAS News . 2 NCAS Websites . 3 NCAS Centres and Facilities . 3 UGAMP Coordinator . 4 CGAM Director . 4 ACMSU Director . 4 HPC Facilities . 5 New areas of UGAMP science 7 Chemistry-climate interactions . 19 Climate variability and predictability . 32 Atmospheric Composition . 48 Tropospheric chemistry and aerosols . 58 Climate Dynamics . 64 Model development . 72 Group News . 78 (for full contents see listing on the inside back cover) NERC Centres for Atmospheric Science, NCAS Alan Thorpe ([email protected]): Director NCAS Since the last UGAMP Newsletter there have been a significant number of NCAS developments relevant to the UK atmospheric science community. These include the following, which are particularly pertinent to the UGAMP community: • NERC have agreed to fund a new directed (new name for thematic) programme called “Surface Ocean – Lower Atmosphere Study” or SOLAS for short. • NERC have agreed to fund a “pump-priming” activity for a proposed new directed programme called Flood Risk from Extreme Events, FREE. The full proposal for FREE will be considered by NERC early in 2004. •NCAS is supporting a project to develop a new chemistry module for the HadGEM model. This is called UK-CHEM and Olaf Morgenstern at ACMSU is collaborating closely with the Hadley Centre on the project. •NCAS is supporting a project to develop the science for a new aerosol module for HadGEM. -
Results from the Implementation of the Elastic Viscous Plastic Sea Ice Rheology in Hadcm3 W
Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3 W. M. Connolley, A. B. Keen, A. J. Mclaren To cite this version: W. M. Connolley, A. B. Keen, A. J. Mclaren. Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3. Ocean Science, European Geosciences Union, 2006, 2 (2), pp.201- 211. hal-00298295 HAL Id: hal-00298295 https://hal.archives-ouvertes.fr/hal-00298295 Submitted on 23 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ocean Sci., 2, 201–211, 2006 www.ocean-sci.net/2/201/2006/ Ocean Science © Author(s) 2006. This work is licensed under a Creative Commons License. Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3 W. M. Connolley1, A. B. Keen2, and A. J. McLaren2 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 2Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK Received: 13 June 2006 – Published in Ocean Sci. Discuss.: 10 July 2006 Revised: 21 September 2006 – Accepted: 16 October 2006 – Published: 23 October 2006 Abstract. We present results of an implementation of the a full dynamical model incorporating wind stresses and in- Elastic Viscous Plastic (EVP) sea ice dynamics scheme into ternal ice stresses leads to errors in the detailed representa- the Hadley Centre coupled ocean-atmosphere climate model tion of sea ice and limits our confidence in its future predic- HadCM3. -
3. CICE-Mixed Layer Model 4. Mixed Layer/ Sea Ice Results 5. Surface
The ocean mixed layer, buoyancy fluxes, and sea ice over the Antarctic continental shelf Alek Petty1, Daniel Feltham2 & Paul Holland3 1. Centre for Polar Observation and Modelling, Department of Earth Sciences, UCL, London, WC1E6BT 2. Centre for Polar Observation and Modelling, Department of Meteorology, Reading University, Reading, RG6 6BB 2. British Antarctic Survey, High Cross, Cambridge, CB3 0ET A sea ice-mixed layer model has been used to investigate regional variations in the surface-driven formation of Antarctic shelf sea waters. The model captures well the expected sea ice thickness distribution, and produces deep mixed layers in the Weddell and Ross shelf seas each winter (1985-2011). By deconstructing the surface power input to the mixed layer, we have shown that the salt/fresh water flux from sea ice growth/melt dominates the evolution of the mixed layer in all shelf sea regions, with a smaller contribution from the mixed layer-surface heat flux. An analysis of the sea ice mass balance has demonstrated the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas expereince the highest annual ice growth, with a large fraction of this ice exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, despite the low annual ice growth. Cur- rent work (not shown) is focussed on atmospheric forcing trends and the resultant trends in the sea ice and mixed layer evolution using both ERA-I hindcast forcing and hadGEM2 future climate projections. 1. Introduction The continental shelf seas surround- ing Antarctica are a crucial compo- nent of the Earth’s climate system, with the Weddell and Ross (WR) shelf seas cooling and ventilating the deep ocean and feeding the global thermohaline circulation, whereas the warm waters in the Amundsen and Bellingshausen (AB) shelf seas (see Figure 1) are implicit in the recent ocean-driven melting of the Antarctic ice sheet. -
Ocean Circulation Models and Modeling
2512-5 Fundamentals of Ocean Climate Modelling at Global and Regional Scales (Hyderabad - India) 5 - 14 August 2013 Ocean Circulation Models and Modeling GRIFFIES Stephen Princeton University U.S. Department of Commerce N.O.A.A., Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Forrestal Campus P.O. Box 308, 08542-6649 Princeton NJ U.S.A. 5.1: Ocean Circulation Models and Modeling Stephen.Griffi[email protected] NOAA/Geophysical Fluid Dynamics Laboratory Princeton, USA [email protected] Laboratoire de Physique des Oceans,´ LPO Brest, France Draft from May 24, 2013 1 5.1.1. Scope of this chapter 2 We focus in this chapter on numerical models used to understand and predict large- 3 scale ocean circulation, such as the circulation comprising basin and global scales. It 4 is organized according to two themes, which we consider the “pillars” of numerical 5 oceanography. The first addresses physical and numerical topics forming a foundation 6 for ocean models. We focus here on the science of ocean models, in which we ask 7 questions about fundamental processes and develop the mathematical equations for 8 ocean thermo-hydrodynamics. We also touch upon various methods used to represent 9 the continuum ocean fluid with a discrete computer model, raising such topics as the 10 finite volume formulation of the ocean equations; the choice for vertical coordinate; 11 the complementary issues related to horizontal gridding; and the pervasive questions 12 of subgrid scale parameterizations. The second theme of this chapter concerns the 13 applications of ocean models, in particular how to design an experiment and how to 14 analyze results. -
UNIVERSITY of CALIFORNIA Los Angeles Exploring the Wind-Driven
UNIVERSITY OF CALIFORNIA Los Angeles Exploring the Wind-Driven Near-Antarctic Circulation A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Atmospheric and Oceanic Sciences by Julia Eileen Hazel 2019 c Copyright by Julia Eileen Hazel 2019 ABSTRACT OF THE DISSERTATION Exploring the Wind-Driven Near-Antarctic Circulation by Julia Eileen Hazel Doctor of Philosophy in Atmospheric and Oceanic Sciences University of California, Los Angeles, 2019 Professor Andrew Leslie Stewart, Chair The circulation at the margins of Antarctica closes the meridional overturning circulation, venti- lating the abyssal ocean with 02 and modulating deep CO2 storage on millennial timescales. This circulation also mediates the melt rates of Antarctica’s floating ice shelves, and thereby exerts a strong influence on future global sea level rise. The near-Antarctic circulation has been hypothe- sized to respond sensitively to changes in the easterly winds that encircle the Antarctic coastline. In particular, the easterlies may be expected to weaken in response to the ongoing strengthening and poleward shifting of the mid-latitude westerlies, associated with a trend toward the positive index of the Southern Annular Mode (SAM). However, multi-decadal changes in the easterlies have not been systematically quantified, and previous studies have yielded limited insight into the oceanic response to such changes. In this work we first quantify multi-decadal changes in wind forcing of the near-Antarctic ocean using a suite of reanalysis products that compare favorably with local meteorological mea- surements. Contrary to expectations, we find that the circumpolar-averaged easterly wind stress has not weakened over the past 3-4 decades, and if anything has slightly strengthened. -
Whither the Weather Analysis and Forecasting Process?
520 WEATHER AND FORECASTING VOLUME 18 FORECASTER'S FORUM Whither the Weather Analysis and Forecasting Process? LANCE F. B OSART Department of Earth and Atmospheric Sciences, The University at Albany, State University of New York, Albany, New York 5 December 2002 and 19 December 2002 ABSTRACT An argument is made that if human forecasters are to continue to maintain a skill advantage over steadily improving model and guidance forecasts, then ways have to be found to prevent the deterioration of forecaster skills through disuse. The argument is extended to suggest that the absence of real-time, high quality mesoscale surface analyses is a signi®cant roadblock to forecaster ability to detect, track, diagnose, and predict important mesoscale circulation features associated with a rich variety of weather of interest to the general public. 1. Introduction h day-1 QPF scores made by selected NCEP models, By any objective or subjective measure, weather fore- including the Nested Grid Model (NGM; Hoke et al. casting skill has improved signi®cantly over the last 40 1989), the Eta Model (Black 1994), and the Aviation years. By way of illustration, Fig. 1 shows the annual Model [AVN, now called the Global Forecast System threat score for 24-h quantitative precipitation forecast (GFS); Kanamitsu et al. (1991); Kalnay et al. (1998)]. (QPF) amounts of 1.00 in. (2.5 cm) or more over the The key point to be made from Fig. 2 is that HPC contiguous United States for 1961±2001 as produced by forecasters have been able to sustain approximately a forecasters at the Hydrometeorological Prediction Cen- 0.05 threat score advantage over the NCEP numerical ter (HPC) of the National Centers for Environmental models during this 12-yr period (and longer, not shown) Prediction (NCEP). -
Test Plan: CICE Sea Ice Model for NGGPS
Test Plan: CICE Sea Ice Model for NGGPS Final 16 March 2016 POC: Shan Sun – NOAA ESRL/GSD/GMTB – [email protected] Introduction After reviewing several sea ice models at the Sea Ice Workshop organized by Global Modeling Test Bed (GMTB) in February 2016, the committee has selected the Los Alamos Community Ice CodE (CICE) as the sea ice model to be incorporated as a component of Next-Generation Global Prediction System (NGGPS). The GMTB is proposing to carry out testing and evaluations with this model in two phases as the next step. Testing framework Hebert et al. (2015) showed that the Arctic Cap Nowcast/Forecast System (ACNFS) demonstrated a high level of skill compared to persistence in 1-7 day forecasts over a period of one year. ACNFS uses CICE version 4.0 [Hunke and Lipscomb, 2008] as the sea ice model two-way coupled to the HYbrid Coordinate Ocean Model (HYCOM) [Bleck, 2002; Metzger et al., 2014, 2015]. Building on this study, we propose to base the test on a similar configuration. In order to make the test most relevant for NGGPS, there will be three important differences with respect to the Herbert et al. (2015) configuration. First, CICE will be upgraded to its latest version v5, [in which both the code structure and the state variables are similar to v4. The CICE5 code does include a number of new physics options such as the mushy-layer thermodynamics and two new melt pond parameterizations.] V5.1.2 is available at http://oceans11.lanl.gov/svn/CICE/tags/release-5.1.2. -
A New Dynamical Downscaling Approach with GCM Bias
PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE A new dynamical downscaling approach with GCM 10.1002/2014JD022958 bias corrections and spectral nudging Key Points: Zhongfeng Xu1 and Zong-Liang Yang2,3 • Both GCM and RCM biases should be constrained in regional climate 1RCE-TEA and Young Scientist Laboratory, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, projection 2 3 • The NDD approach significantly RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, Department of Geological improves the downscaled climate Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA • NDD is designed for regional climate projection at various time scales Abstract To improve confidence in regional projections of future climate, a new dynamical downscaling Supporting Information: (NDD) approach with both general circulation model (GCM) bias corrections and spectral nudging is developed • Figures S1–S4 and assessed over North America. GCM biases are corrected by adjusting GCM climatological means and • Figure S1 variances based on reanalysis data before the GCM output is used to drive a regional climate model (RCM). • Figure S2 • Figure S3 Spectral nudging is also applied to constrain RCM-based biases. Three sets of RCM experiments are integrated • Figure S4 over a 31 year period. In the first set of experiments, the model configurations are identical except that the initial and lateral boundary conditions are derived from either the original GCM output, the bias-corrected GCM output, Correspondence to: orthereanalysisdata.Thesecondset of experiments is the same as the first set except spectral nudging is applied. Z.-L. Yang, [email protected] The third set of experiments includes two sensitivity runs with both GCM bias corrections and nudging where the nudging strength is progressively reduced. -
The Operational CMC–MRB Global Environmental Multiscale (GEM)
VOLUME 126 MONTHLY WEATHER REVIEW JUNE 1998 The Operational CMC±MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation JEAN COÃ TEÂ AND SYLVIE GRAVEL Meteorological Research Branch, Atmospheric Environment Service, Dorval, Quebec, Canada ANDREÂ MEÂ THOT AND ALAIN PATOINE Canadian Meteorological Centre, Atmospheric Environment Service, Dorval, Quebec, Canada MICHEL ROCH AND ANDREW STANIFORTH Meteorological Research Branch, Atmospheric Environment Service, Dorval, Quebec, Canada (Manuscript received 31 March 1997, in ®nal form 3 October 1997) ABSTRACT An integrated forecasting and data assimilation system has been and is continuing to be developed by the Meteorological Research Branch (MRB) in partnership with the Canadian Meteorological Centre (CMC) of Environment Canada. Part I of this two-part paper motivates the development of the new system, summarizes various considerations taken into its design, and describes its main characteristics. 1. Introduction time and space scales that are commensurate with those An integrated atmospheric environmental forecasting associated with the phenomena of interest, and this im- and simulation system, described herein, has been and poses serious practical constraints and compromises on is continuing to be developed by the Meteorological their formulation. Research Branch (MRB) in partnership with the Ca- Emphasis is placed in this two-part paper on the con- nadian Meteorological Centre (CMC) of Environment cepts underlying the long-term developmental strategy, -
Assimila Blank
NERC NERC Strategy for Earth System Modelling: Technical Support Audit Report Version 1.1 December 2009 Contact Details Dr Zofia Stott Assimila Ltd 1 Earley Gate The University of Reading Reading, RG6 6AT Tel: +44 (0)118 966 0554 Mobile: +44 (0)7932 565822 email: [email protected] NERC STRATEGY FOR ESM – AUDIT REPORT VERSION1.1, DECEMBER 2009 Contents 1. BACKGROUND ....................................................................................................................... 4 1.1 Introduction .............................................................................................................. 4 1.2 Context .................................................................................................................... 4 1.3 Scope of the ESM audit ............................................................................................ 4 1.4 Methodology ............................................................................................................ 5 2. Scene setting ........................................................................................................................... 7 2.1 NERC Strategy......................................................................................................... 7 2.2 Definition of Earth system modelling ........................................................................ 8 2.3 Broad categories of activities supported by NERC ................................................. 10 2.4 Structure of the report ........................................................................................... -
Executive Summary Workshop on Improving ALE Ocean Modeling NOAA Center for Weather and Climate Prediction College Park, MD October 3-4, 2016
Executive Summary Workshop on Improving ALE Ocean Modeling NOAA Center for Weather and Climate Prediction College Park, MD October 3-4, 2016 A one-and-a-half-day workshop on ocean models that employ the ALE (Arbitrary Lagrangian-Eulerian) method to permit general vertical coordinates was held at NCWCP on October 3-4, 2016. Four different ALE models (GO2, HYCOM, MOM6, and MPAS-Ocean) were discussed. Workshop participants included users and developers of these models, from academia and from seven different national modeling centers (ESRL, GFDL, GISS, LANL, NCAR, NCEP, NRL). A more detailed report on the workshop follows this executive summary, and a workshop agenda with a list of workshop speakers is attached as an appendix. A number of recommendations for future action were developed during the meeting. The recommendations fall into four broad categories: Code Sharing, Community Building, Code Merger and Performance and Future Development. The recommendations are listed below. 1. Code Sharing Sharing of common codes for the equation of state, grid generation and remapping, and column physics such as mixing parameterizations, is recommended. The group suggested making vertical remapping/grid generator routines an open source package that can be shared in the manner of CVMix. a. The development of prognostic equations for the grid generator based upon physical mixing should be considered. b. We recommend open-source GIT repositories (hosted on code-sharing sites such as Github) for submodules such as CVMix. c. We recommend the development of common tests for self-consistency, conservation, and known solutions. 2. Community Building d. The ALE modeling group should consider whether semi-regular meetings similar to this workshop should be undertaken; perhaps via merger/inclusion with the Layered Ocean Model workshop.