The Operational CMC–MRB Global Environmental Multiscale (GEM)

Total Page:16

File Type:pdf, Size:1020Kb

The Operational CMC–MRB Global Environmental Multiscale (GEM) VOLUME 126 MONTHLY WEATHER REVIEW JUNE 1998 The Operational CMC±MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation JEAN COà TE AND SYLVIE GRAVEL Meteorological Research Branch, Atmospheric Environment Service, Dorval, Quebec, Canada ANDRE ME THOT AND ALAIN PATOINE Canadian Meteorological Centre, Atmospheric Environment Service, Dorval, Quebec, Canada MICHEL ROCH AND ANDREW STANIFORTH Meteorological Research Branch, Atmospheric Environment Service, Dorval, Quebec, Canada (Manuscript received 31 March 1997, in ®nal form 3 October 1997) ABSTRACT An integrated forecasting and data assimilation system has been and is continuing to be developed by the Meteorological Research Branch (MRB) in partnership with the Canadian Meteorological Centre (CMC) of Environment Canada. Part I of this two-part paper motivates the development of the new system, summarizes various considerations taken into its design, and describes its main characteristics. 1. Introduction time and space scales that are commensurate with those An integrated atmospheric environmental forecasting associated with the phenomena of interest, and this im- and simulation system, described herein, has been and poses serious practical constraints and compromises on is continuing to be developed by the Meteorological their formulation. Research Branch (MRB) in partnership with the Ca- Emphasis is placed in this two-part paper on the con- nadian Meteorological Centre (CMC) of Environment cepts underlying the long-term developmental strategy, Canada. The bilingual acronym GEM has been adopted and on mesoscale results obtained using the described for the model around which this system is constructed. GEM model at its present state of development. Thus in English the model is designated as ``the Global The goals of Part I are as follows: Environmental Multiscale model,'' whereas in French R Motivate and outline the staged and ongoing devel- it is referred to as ``le modeÁle Global Environmental opment of a comprehensive and fully integrated global Multi-eÂchelle.'' atmospheric environmental forecasting and simulation There are three important motivations for modeling system. the atmosphere. These are to forecast the weather, ad- R Discuss various design considerations. dress climate issues such as global change, and address R Summarize the current status of development. air quality issues such as smog, ozone depletion, and Part II (CoÃte et al. 1998) is dedicated to presenting acid rain. Modeled atmospheric phenomena cover a very mostly mesoscale results for the GEM model, in par- broad range of time and space scales, varying tempo- ticular those that led to its operational implementation rally from the subsecond scales of some chemical re- for regional forecasting on 24 February 1997 at the actions to the centuries or millennia of climate simu- CMC. lation, and spatially from the fractions of a meter of chemical reaction and molecular diffusion, right through to the global scale of tens of thousands of kilometers. 2. Rationale for developing a universal modeling Numerical models of the atmosphere must be run with system a. Operational weather forecasting considerations Two operational data assimilation and weather fore- Corresponding author address: Dr. Jean CoÃteÂ, Recherche en PreÂvi- sion NumeÂrique, 2121 Route Transcanadienne, Dorval, PQ H9P 1J3, casting cyclesÐone global and one regionalÐhave been Canada. running daily at the CMC for a number of years. The E-mail: [email protected] global cycle, based on a spectral model (Ritchie and q 1998 American Meteorological Society 1373 Unauthenticated | Downloaded 09/23/21 07:10 PM UTC 1374 MONTHLY WEATHER REVIEW VOLUME 126 Beaudoin 1994), addresses medium-range forecasting to 3 days (Yessad and BeÂnard 1996). Because of some needs and global data assimilation. The regional cycle unanticipated intrinsic limitations on resolution (Caian provides the more detailed short-range (to 2 days) fore- and Geleyn 1997) due to the use of the Schmidt (1977) casts over North America and some of its adjacent wa- coordinate transformation to achieve variable resolution ters, and was based on the Regional Finite Element with a spectral model, a limited-area nonhydrostatic ver- (RFE) model (Mailhot et al. 1997) until its recent re- sion (ALADIN) has been developed (Bubnova et al. placement by the GEM model. 1995) for higher and more-focused resolution applica- Even though the two-cycle strategy is a costly choice, tions using code shared with that of the global version. it is considered the only acceptable alternative for ful- The strategy of the UKMO is both similar and dif- ®lling the operational needs for both medium-range (and ferent. It uses the UKMO's global uniform-resolution therefore necessarily global) forecasting, and high-res- ®nite-difference uni®ed forecast/climate model (Cullen olution regional forecasting. If the two cycles are cen- 1993; Cullen et al. 1997) for medium-range forecasting tered around two distinct models, the strategy then re- and climate simulation, and a limited-area code-shared quires the maintenance, improvement, and optimization version for mesoscale forecasting. In the context of me- of two sets of libraries and procedures. This is very dium-range forecasting and climate simulation, Cullen labor intensive (Courtier et al. 1991; Cullen 1993; CoÃte et al. 1993), and is so for principally three reasons. First, (1993) remarked that ``Maintenance of two separate sys- numerical weather prediction models and data assimi- tems is no longer practicable or justi®ed.'' In the context lation systems need signi®cant recoding in order to reap of medium-range and mesoscale forecasting he further the bene®ts afforded by the new high-performance sig- noted that the uni®ed strategy ``avoids the need for two ni®cantly parallel computer platforms (Barros et al. separate teams of scientists and software systems, and 1995; Dickinson et al. 1995; Drake et al. 1995; Estrade allows the techniques used in large-scale modelling to and Birman 1995; Hack et al. 1995; Hammond et al. be rigorously tested at the higher resolution used in the 1995; Henderson et al. 1995; Isaksen and Barros 1995; mesoscale model against the detailed observations avail- Michalakes et al. 1995; von Laszewski et al. 1995; Wol- able over the United Kingdom.'' It also ensures a certain ters et al. 1995). Second, to improve the accuracy of consistency between the driven and driving models re- the initial state of the atmosphere, that is, that of the garding the numerical methods and parameterizations analysis, requires a signi®cant investment in the re- used, inasmuch as there is much communality for the search and development of new data assimilation meth- latter between the two con®gurations. ods (e.g., Daley 1991). In this regard, the development In our view, most of the considerations that led both of the tangent linear model of a forecast model and its MeÂteÂo-France and the UKMO to adopt uni®ed modeling adjoint, often needed for four-dimensional data assim- strategies also apply in the Canadian context. Our own ilation [e.g., Courtier et al. (1991), (1994)], is time con- uni®cation strategy is based on the global variable-res- suming. Third, to improve the predictive capability of olution strategy outlined in the shallow-water proof-of- a weather forecast model requires that a signi®cant effort concept work of CoÃte et al. (1993). As mentioned there- be devoted to the improvement of model parameteri- in, the adopted strategy was in¯uenced by the Courtier zations. These motivate the consolidation of both the and Geleyn (1988) work but is, as argued both in CoÃte global and regional assimilation and forecasting systems et al. (1993) and below, more ¯exible and of broader within a single ¯exible modeling framework. application. To build a model whose intrinsic versatility would allow it to be used as the axle of both forecast cycles, and therefore create a uni®ed environment, was thus the b. Air quality modeling considerations main incentive for the development of the GEM model. Using similar reasoning, both MeÂteÂo-France (Courtier A multiscale atmospheric model is also bene®cial for et al. 1991) and the U.K. Meteorological Of®ce (Cullen the study of a wide range of air quality issues. A con- 1993) have developed uni®cation strategies, which are, sistent treatment of physical processes in the atmo- however, different. At MeÂteÂo-France, the IFS/ARPEGE/ ALADIN (Integrated Forecast System/Action de Re- sphere, advection, and chemical conversions, is now cherche Petite E chelle Grande E chelle/Aire LimiteÂe Ad- recognized as essential to appropriately model the aptation Dynamique DeÂveloppement International) fore- earth's atmospheric chemistry (Dastoor and Pudykiew- cast system has been developed in collaboration with icz 1996; Rood 1996). The coupling of the GEM model the ECMWF (European Centre for Medium-Range with a comprehensive treatment of chemistry should Weather Forecasts). It is based on the use of a global provide a framework for the study of atmospheric chem- variable-resolution spectral model as proposed in Court- istry, both tropospheric and stratospheric, from the glob- ier and Geleyn (1988). For medium-range applications al scale down to the meso-g scale. The integrated system the system is run at uniform resolution by ECMWF, also potentially permits better operational forecasts due whereas it is run by MeÂteÂo-France with variable reso- to an improved radiation budget based on a reliable lution concentrated over France for regional forecasts ozone distribution. Unauthenticated | Downloaded 09/23/21 07:10 PM UTC JUNE 1998 COà TE ET AL. 1375 c. Research community modeling considerations olution over the area of interest, initial conditions, and lower boundary conditions. On the one hand, the Canadian mesoscale community needs a nonhydrostatic mesoscale research model for the development and validation of physical parameter- d. Climate modeling considerations izations, such as surface- and boundary layer phenom- As time progresses, the distinction between weather- ena, moist convection, gravity wave drag, as well as for forecast and climate models becomes ever blurred due nowcasting research.
Recommended publications
  • Whither the Weather Analysis and Forecasting Process?
    520 WEATHER AND FORECASTING VOLUME 18 FORECASTER'S FORUM Whither the Weather Analysis and Forecasting Process? LANCE F. B OSART Department of Earth and Atmospheric Sciences, The University at Albany, State University of New York, Albany, New York 5 December 2002 and 19 December 2002 ABSTRACT An argument is made that if human forecasters are to continue to maintain a skill advantage over steadily improving model and guidance forecasts, then ways have to be found to prevent the deterioration of forecaster skills through disuse. The argument is extended to suggest that the absence of real-time, high quality mesoscale surface analyses is a signi®cant roadblock to forecaster ability to detect, track, diagnose, and predict important mesoscale circulation features associated with a rich variety of weather of interest to the general public. 1. Introduction h day-1 QPF scores made by selected NCEP models, By any objective or subjective measure, weather fore- including the Nested Grid Model (NGM; Hoke et al. casting skill has improved signi®cantly over the last 40 1989), the Eta Model (Black 1994), and the Aviation years. By way of illustration, Fig. 1 shows the annual Model [AVN, now called the Global Forecast System threat score for 24-h quantitative precipitation forecast (GFS); Kanamitsu et al. (1991); Kalnay et al. (1998)]. (QPF) amounts of 1.00 in. (2.5 cm) or more over the The key point to be made from Fig. 2 is that HPC contiguous United States for 1961±2001 as produced by forecasters have been able to sustain approximately a forecasters at the Hydrometeorological Prediction Cen- 0.05 threat score advantage over the NCEP numerical ter (HPC) of the National Centers for Environmental models during this 12-yr period (and longer, not shown) Prediction (NCEP).
    [Show full text]
  • MP - Mechanistic Habitat Modeling with Multi-Model Climate Ensembles - Final - HMJ5.Docx
    MP - Mechanistic Habitat Modeling with Multi-Model Climate Ensembles - Final - HMJ5.docx Mechanistic Habitat Modeling with Multi-Model Climate Ensembles A practical guide to preparing and using Global Climate Model output for mechanistically modeling habitat, as exemplified by the modeling of the fundamental niche of a pagophilic Pinniped species through 2100. Masters project submitted in partial fulfillment of the requirements for the Master of Environmental Management degree in the Nicholas School of the Environment of Duke University, May 2013. Author: Hunter Jones Adviser: Dr. David Johnston Abstract Projections of future Sea Ice Concentration (SIC) were prepared using a 13- member ensemble of climate model output from the Coupled Model Inter- comparison Project (CMIP5). Three climate change scenarios (RCP 2.6, RCP 6.0, RCP 8.5), corresponding to low, moderate, and high climate change possibilities, were used to generate these projections for known Harp Seal whelping locations. The projections were splined and statistically downscaled via the CCAFS Delta method using satellite-derived observations from the National Sea Ice Data Center (NSIDC) to prepare a spatial representation of sea ice decline through the year 2100. Multi-Model Ensemble projections of the mean sea ice concentration anomaly for Harp Seal whelping locations under the moderate and high climate change scenarios (RCP 6.0 and RCP 8.5) show a decline of 10% to 40% by 2100 from a modern baseline climatology (average of SIC, 1988 - 2005) while sea ice concentrations under the low climate change scenario remain fairly stable. Projected year-over-year sea ice concentration variability decreases with time through 2100, but uncertainty in the prediction (model spread) increases.
    [Show full text]
  • Downscaling Geopotential Height Using Lapse Rate
    KMITL Sci. Tech. J. Vol. 12 No. 2 Jul.-Dec. 2012 Downscaling Geopotential Height Using Lapse Rate Chiranya Surawut1 and Dusadee Sukawat2* 1Earth System Science, King Mongkut ’s University of Technology Thonburi, Bangkok, Thailand 2*Department of Mathematics, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand Abstract In order to utilize the output from a global climate model, relevant information for the area of interest must be extracted. This is called "downscaling". In this paper, the derivation of a local geopotential height in terms of lapse rate is presented. The main assumptions are hydrostatic balance, perfect gas, constant gravity, and constant lapse rate. Two sets of data are required for this method, simulation outputs from the Education Global Climate Model (EdGCM) and the observed data at the points of interest (Chiangmai, Bangkok, Ubon Ratchathani, Phuket and Songkla). The results show that downscaling of the geopotential heights by using lapse rate dynamic equation are closer to the observed data than the geopotential heights from EdGCM. Keywords: Downscaling, Geopotential height, Lapse rate 1. Introduction Climate change data are simulation outputs from global climate models (GCMs). Outputs of GCMs are coarse resolution, so it must be downscaled for use in regional applications by downscaling [1]. The starting point for downscaling is a larger scale atmospheric or coupled oceanic atmospheric model run from a GCM [2]. There are two major kinds of downscaling, statistical and dynamical methods. Statistical downscaling methods use historical data and archived forecasts to produce downscaled information from large scale forecasts. Dynamical downscaling methods involve dynamical models of the atmosphere nested within the grids of the large scale forecast models [1].
    [Show full text]
  • Bias Removal and Model Consensus Forecasts of Maximum and Minimum Temperatures Using the Graphical Forecast Editor 1. Introducti
    Bias Removal and Model Consensus Forecasts of Maximum and Minimum Temperatures Using the Graphical Forecast Editor Jeffrey T. Davis National Weather Service Office Tucson, Arizona 1. Introduction Operational Numerical Weather Prediction (NWP) models have inherent biases that need to be removed either objectively or subjectively before used in official National Weather Service (NWS) forecasts. The recent shift of the NWS to the Interactive Forecast Preparation System (IFPS) to create and distribute digital weather forecasts has led to more of a dependency on the direct use of NWP models. This dependency on raw model output is mainly due to the gridded format needed to initialize digital weather forecasts. The primary tool for creating these digital forecasts is the Graphical Forecast Editor (GFE) (Lefebvre, 1995). The GFE has two design features that account for the objective and subjective adjustments of the native NWP model grid. The front-end feature is referred to as “Smart Initialization” which is used to objectively derive sensible weather elements and downscale the coarser resolution models to a higher 2.5 km or 5 km grid spacing. The second feature is interactive and accounts for both subjective and objective adjustments through the use of simple graphical editing tools and “Smart Tools”. The baseline GFE design lacks the capability to objectively remove model biases in the initialization process. This is not to say that the GFE should have this capability, but high resolution, bias-corrected model grids are not currently included in the overall IFPS design. As a result, forecasters are tasked with subjectively correcting for these model biases using the GFE tools.
    [Show full text]
  • The State-Of-The-Art in Short-Term Prediction of Wind Power. A
    Project funded by the European Commission under the 5th (EC) RTD Framework Programme (1998 - 2002) within the thematic programme "Energy, Environment and Sustainable Development" Project ANEMOS “Development of a Next Generation Wind Resource Forecasting System Contract No.: ENK5-CT-2002-00665 for the Large-Scale Integration of Onshore and Offshore Wind Farms” The State-Of-The-Art in Short-Term Prediction of Wind Power A Literature Overview Version 1.1 AUTHOR: Gregor Giebel AFFILIATION: Risø National Laboratory ADDRESS: P.O. Box 49, DK-4000 Roskilde TEL.: +45 4677 5095 EMAIL: [email protected] FURTHER AUTHORS: Richard Brownsword, RAL; George Kariniotakis, ARMINES REVIEWER: ANEMOS WP-1 members APPROVER: Gregor Giebel Document Information DOCUMENT TYPE Deliverable report D1.1 DOCUMENT NAME: ANEMOS_D1.1_StateOfTheArt_v1.1.pdf REVISION: 5 REV. DATE: 2003.08.12 CLASSIFICATION: Public STATUS: Approved Abstract: Based on an appropriate questionnaire (WP1.1) and some other works already in progress, this report details the state-of-the-art in short term prediction of wind power, mostly summarising nearly all existing literature on the topic. ANEMOS ANEMOS_D1.1_StateOfTheArt_v1.1.pdf, 2003.08.12. Contents 1. Introduction......................................................................................................... 3 1.1 The typical model chain................................................................................... 3 1.2 Typical results ................................................................................................
    [Show full text]
  • An Application to Ocean Modelling
    * Manuscript Click here to download Manuscript: paper_rev_final.tex Web-enabled Configuration and Control of Legacy Codes: an Application to Ocean Modelling ∗ C. Evangelinos a, , P.F.J. Lermusiaux b,S.K.Geigera, R.C. Chang a,N.M.Patrikalakisa aDepartment of Mechanical Engineering, MIT, Cambridge, MA 02139, USA bDivision of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139, USA Abstract For modern interdisciplinary ocean prediction and assimilation systems, a sig- nificant part of the complexity facing users is the very large number of possible setups and parameters, both at build-time and at run-time, especially for the core physical, biological and acoustical ocean predictive models. The configuration of these modeling systems for both local as well as remote execution can be a daunt- ing and error-prone task in the absence of a Graphical User Interface (GUI) and of software that automatically controls the adequacy and compatibility of options and parameters. We propose to encapsulate the configurability and requirements of ocean prediction codes using an eXtensible Markup Language (XML) based descrip- tion, thereby creating new computer-readable manuals for the executable binaries. These manuals allow us to generate a GUI, check for correctness of compilation and input parameters, and finally drive execution of the prediction system components, all in an automated and transparent manner. This web-enabled configuration and automated control software has been developed (it is currently in “beta” form) and exemplified for components of the interdisciplinary Harvard Ocean Prediction Sys- tem (HOPS) and for the uncertainty prediction components of the Error Subspace Statistical Estimation (ESSE) system.
    [Show full text]
  • Downloaded 09/28/21 03:43 PM UTC 2944 MONTHLY WEATHER REVIEW VOLUME 125
    NOVEMBER 1997 FOX-RABINOVITZ ET AL. 2943 A Finite-Difference GCM Dynamical Core with a Variable-Resolution Stretched Grid MICHAEL S. FOX-RABINOVITZ AND GEORGIY L. STENCHIKOV University of Maryland at College Park, College Park, Maryland MAX J. SUAREZ Goddard Space Flight Center, Greenbelt, Maryland LAWRENCE L. TAKACS General Sciences Corporation, Laurel, Maryland (Manuscript received 30 December 1996, in ®nal form 2 April 1997) A ®nite-difference atmospheric model dynamics,ABSTRACT or dynamical core using variable resolution, or stretched grids, is developed and used for regional±global medium-term and long-term integrations. The goal of the study is to verify whether using a variable-resolution dynamical core allows us to represent adequately the regional scales over the area of interest (and its vicinity). In other words, it is shown that a signi®cant downscaling is taking place over the area of interest, due to better-resolved regional ®elds and boundary forcings. It is true not only for short-term integrations, but also for medium-term and, most im- portantly, long-term integrations. Numerical experiments are performed with a stretched grid version of the dynamical core of the Goddard Earth Observing System (GEOS) general circulation model (GCM). The dynamical core includes the discrete (®nite-difference) model dynamics and a Newtonian-type rhs zonal forcing, which is symmetric for both hemispheres about the equator. A ¯exible, portable global stretched grid design allows one to allocate the area of interest with uniform ®ne-horizontal (latitude by longitude) resolution over any part of the globe, such as the U.S. territory used in these experiments.
    [Show full text]
  • The NOAA National Operational Model Archive and Distribution
    THE NOAA OPERATIONAL MODEL ARCHIVE AND DISTRIBUTION SYSTEM (NOMADS) G. K. RUTLEDGE† National Climatic Data Center 151 Patton Ave, Asheville, NC 28801, USA E-mail: [email protected] J. ALPERT National Centers for Environmental Prediction Camp Springs, MD 20736, USA E-mail: [email protected] R. J. STOUFFER Geophysical Fluid Dynamics Laboratory Princeton, NJ 08542, USA E-mail: [email protected] B. LAWRENCE British Atmospheric Data Centre Chilton, Didcot, OX11 0QX, U.K. E-mail: [email protected] Abstract An international collaborative project to address a growing need for remote access to real-time and retrospective high volume numerical weather prediction and global climate model data sets (Atmosphere-Ocean General Circulation Models) is described. This paper describes the framework, the goals, benefits, and collaborators of the NOAA Operational Model Archive and Distribution System (NOMADS) pilot project. The National Climatic Data Center (NCDC) initiated NOMADS, along with the National Centers for Environmental Prediction (NCEP) and the Geophysical Fluid Dynamics Laboratory (GFDL). A description of operational and research data access needs is provided as outlined in the U.S. Weather Research Program (USWRP) Implementation Plan for Research in Quantitative Precipitation Forecasting and Data Assimilation to “redeem practical value of research findings and facilitate their transfer into operations.” † Work partially supported by grant NES-444E (ESDIM) of the National Oceanic and Atmospheric Administration (NOAA). 1 2 1.0 Introduction To address a growing need for real-time and retrospective General Circulation Model (GCM) and Numerical Weather Prediction (NWP) data, the National Climatic Data Center (NCDC) along with the National Centers for Environmental Prediction (NCEP) and the Geophysical Fluid Dynamics Laboratory (GFDL) have initiated the collaborative NOAA Operational Model Archive and Distribution System (NOMADS) (Rutledge, et.
    [Show full text]
  • Performance Assessment of ERA5 Wave Data in a Swell Dominated Region
    Journal of Marine Science and Engineering Article Performance Assessment of ERA5 Wave Data in a Swell Dominated Region Maria Francesca Bruno * , Matteo Gianluca Molfetta , Vincenzo Totaro and Michele Mossa Department of Civil, Environmental, Building Engineering and Chemistry, Polytechnic University of Bari -Via E. Orabona, 4, 70125 Bari, Italy; [email protected] (M.G.M.); [email protected] (V.T.); [email protected] (M.M.) * Correspondence: [email protected]; Tel.: +39-080-4605-207 Received: 18 February 2020; Accepted: 15 March 2020; Published: 19 March 2020 Abstract: The present paper deals with a performance assessment of the ERA5 wave dataset in an ocean basin where local wind waves superimpose on swell waves. The evaluation framework relies on observed wave data collected during a coastal experimental campaign carried out offshore of the southern Oman coast in the Western Arabian Sea. The applied procedure requires a detailed investigation on the observed waves, and aims at classifying wave regimes: observed wave spectra have been split using a 2D partition scheme and wave characteristics have been evaluated for each wave component. Once the wave climate was defined, a detailed wave model assessment was performed. The results revealed that during the analyzed time span the ERA5 wave model overestimates the swell wave heights, whereas the wind waves’ height prediction is highly influenced by the wave developing conditions. The collected field dataset is also useful for a discussion on spectral wave characteristics during monsoon and post-monsoon season in the examined region; the recorded wave data do not suffice yet to adequately describe wave fields generated by the interaction of monsoon and local winds.
    [Show full text]
  • Portfolio of Operational and Development Marine
    U. S. Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Centers for Environmental Prediction Office Note 412 PORTFOLIO OF OPERATIONAL AND DEVELOPMENTAL MARINE METEOROLOGICAL AND OCEANOGRAPHIC PRODUCTS* Lawrence D. Burroughs Ocean Modeling Branch Environmental Modeling Center December 1995 THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR INFORMAL EXCHANGE OF INFORMATION AMONG THE NCEP STAFF MEMBERS *OPC Contribution No. 87 TABLE OF CONTENTS ABSTRACT ........................................................... 1 I. INTRODUCTION ................................................... 1 II. PRODUCT DESCRIPTIONS .......................................... 2 A. Marine Meteorology ............................................. 2 1. Ocean Surface Winds ...................................... 2 2. Coastal and Great Lakes MPP Wind forecasts ..................... 3 3. Santa Ana Regime and Wind Forecasts .......................... 4 4. Superstructure Icing ........................................ 4 5. Open Ocean Sea Fog ....................................... 6 6. Coastal Sea Fog .......................................... 7 7. Marine Significant Weather Chart ............................. 7 8. Satellite Ocean Surface Wind and Wave Products ..................... 8 B. Waves ................................................... 9 1. Global Spectral Wave Model (NOAAIWAM). ....................... 9 2. Regional Wave Models ......................................... 11 a. Gulf of Mexico Regional Spectral
    [Show full text]
  • New Nested Grids Technique for 2D Shallow Water Equations Huda Altaie
    New nested grids technique for 2D shallow water equations Huda Altaie To cite this version: Huda Altaie. New nested grids technique for 2D shallow water equations. Numerical Analysis [math.NA]. Université Côte d’Azur, 2018. English. NNT : 2018AZUR4220. tel-02271260 HAL Id: tel-02271260 https://tel.archives-ouvertes.fr/tel-02271260 Submitted on 26 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Nouvelle Technique de Grilles Imbriquées pour les équations de Saint- Venant 2D New Nested Grids Technique For 2D Shallow Water Equations Huda Omran ALTAIE Laboratoire Jean Alexandre Dieudonné LJAD Présentée en vue de l'obtention Devant le jury, composé de : du grade de docteur en Science Xavier Antoine, Professeur- Université de Lorraine, Mathématiques de l'Université cote d'Azur Rapporteur Stéphane Clain, Associate Professeur HDR- Université Dirigée par : Fabrice Planchon / Pierre de Minho (Portugal), Rapporteur Dreyfuss Isabelle Gallagher, Professeur- Ecole Normale Soutenue le : 17/12 2018 Supérieure de Paris, Examinatrice Marjolaine Puel, Professeur- Université Nice Sophia- Antipolis, Examinatrice Fabrice Planchon, Professeur-Université Nice Sophia- Antipolis, Directeur de thèse Pierre Dreyfuss, Maître de conférences-Université Nice Sophia-Antipolis, Co-Directeur de thèse 2 ABSTRACT Most flows in the rivers, seas, and ocean are shallow water flow in which the horizontal lengthand velocity scales are much larger than the vertical ones.
    [Show full text]
  • A Two-Way Nested Global-Regional Dynamical Core on the Cubed
    Generated using version 3.1.2 of the official AMS LATEX template 1 A two-way nested global-regional dynamical core on the 2 cubed-sphere grid 3 Lucas M. Harris ∗ Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ Shian-Jiann Lin NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ ∗Corresponding author address: Lucas Harris, Geophysical Fluid Dynamics Laboratory, Princeton Uni- versity, Forrestal Campus, 201 Forrestal Road, Princeton, NJ, 08540-6649 E-mail: [email protected] 1 4 ABSTRACT 5 A nested-grid model is constructed using the Finite-Volume dynamical core on the cubed 6 sphere. The use of a global grid avoids the need for externally-imposed lateral boundary 7 conditions, and a consistent solution is produced by using the same governing equations 8 and discretization on the global and regional domains. A simple interpolated nested-grid 9 boundary condition is used, and two-way updates use a finite-volume averaging method 10 that conserves scalar quantities and vorticity. In particular, mass conservation in a two- 11 way nested simulation is achieved by simply not updating the mass field, which eliminates 12 the need for carefully-constructed flux boundary conditions. Despite the simplicity of the 13 nesting methodology, nested-grid simulations of a series of common idealized test cases show 14 favorable results, as the large-scale solutions are not corrupted by the nested grid. We also 15 show evidence that the nested grid is able to improve the coarse-grid solution, even beyond 16 the boundaries of the nest. 1 17 1. Introduction 18 Global models have many advantages for climate simulation and medium-range weather 19 prediction.
    [Show full text]