Lipodystrophy Due to Adipose Tissue Specific Insulin Receptor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 7: Monogenic Forms of Diabetes
CHAPTER 7 MONOGENIC FORMS OF DIABETES Mark A. Sperling, MD, and Abhimanyu Garg, MD Dr. Mark A. Sperling is Emeritus Professor and Chair, University of Pittsburgh, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA. Dr. Abhimanyu Garg is Professor of Internal Medicine and Chief of the Division of Nutrition and Metabolic Diseases at University of Texas Southwestern Medical Center, Dallas, TX. SUMMARY Types 1 and 2 diabetes have multiple and complex genetic influences that interact with environmental triggers, such as viral infections or nutritional excesses, to result in their respective phenotypes: young, lean, and insulin-dependence for type 1 diabetes patients or older, overweight, and often manageable by lifestyle interventions and oral medications for type 2 diabetes patients. A small subset of patients, comprising ~2%–3% of all those diagnosed with diabetes, may have characteristics of either type 1 or type 2 diabetes but have single gene defects that interfere with insulin production, secretion, or action, resulting in clinical diabetes. These types of diabetes are known as MODY, originally defined as maturity-onset diabetes of youth, and severe early-onset forms, such as neonatal diabetes mellitus (NDM). Defects in genes involved in adipocyte development, differentiation, and death pathways cause lipodystrophy syndromes, which are also associated with insulin resistance and diabetes. Although these syndromes are considered rare, more awareness of these disorders and increased availability of genetic testing in clinical and research laboratories, as well as growing use of next generation, whole genome, or exome sequencing for clinically challenging phenotypes, are resulting in increased recognition. A correct diagnosis of MODY, NDM, or lipodystrophy syndromes has profound implications for treatment, genetic counseling, and prognosis. -
Genetic Testing for Familial Hypercholesterolemia AHS – M2137
Corporate Medical Policy Genetic Testing for Familial Hypercholesterolemia AHS – M2137 File Name: genetic_testing_for_familial_hypercholesterolemia Origination: 01/01/2019 Last CAP Review: 07/2021 Next CAP Review: 07/2022 Last Review: 07/2021 Description of Procedure or Service Definitions Familial hypercholesterolemia (FH) is a genetic condition that results in premature atherosclerotic cardiovascular disease due to lifelong exposure to elevated low-density lipoprotein cholesterol (LDL-C) levels (Sturm et al., 2018). FH encompasses multiple clinical phenotypes associated with distinct molecular etiologies. The most common is an autosomal dominant disorder caused by mutations in one of three genes, low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), and proprotein convertase subtilisin-like kexin type 9 (PCSK9) (Ahmad et al., 2016; Goldberg et al., 2011). Rare autosomal recessive disease results from mutation in low-density lipoprotein receptor adaptor protein (LDLRAP) (Garcia et al., 2001). Related Policies Cardiovascular Disease Risk Assessment AHS – G2050 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for familial hypercholesterolemia when it is determined the medical criteria or reimbursement guidelines below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Genetic Testing for Familial Hypercholesterolemia is covered 1. Genetic testing to establish a molecular diagnosis of Familial Hypercholesterolemia is considered medically necessary when BOTH of the following criteria are met: A. -
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes *This is not an all inclusive list of ICD-10 codes R.LaForge 11/2015 E78.0 (272.0) Pure hypercholesterolemia E78.3 (272.3) Hyperchylomicronemia (Group A) (Group D) Familial hypercholesterolemia Grütz syndrome Fredrickson Type IIa Chylomicronemia (fasting) (with hyperlipoproteinemia hyperprebetalipoproteinemia) Hyperbetalipoproteinemia Fredrickson type I or V Hyperlipidemia, Group A hyperlipoproteinemia Low-density-lipoid-type [LDL] Lipemia hyperlipoproteinemia Mixed hyperglyceridemia E78.4 (272.4) Other hyperlipidemia E78.1 (272.1) Pure hyperglyceridemia Type 1 Diabetes Mellitus (DM) with (Group B) hyperlipidemia Elevated fasting triglycerides Type 1 DM w diabetic hyperlipidemia Endogenous hyperglyceridemia Familial hyperalphalipoproteinemia Fredrickson Type IV Hyperalphalipoproteinemia, familial hyperlipoproteinemia Hyperlipidemia due to type 1 DM Hyperlipidemia, Group B Hyperprebetalipoproteinemia Hypertriglyceridemia, essential E78.5 (272.5) Hyperlipidemia, unspecified Very-low-density-lipoid-type [VLDL] Complex dyslipidemia hyperlipoproteinemia Elevated fasting lipid profile Elevated lipid profile fasting Hyperlipidemia E78.2 (272.2) Mixed hyperlipidemia (Group C) Hyperlipidemia (high blood fats) Broad- or floating-betalipoproteinemia Hyperlipidemia due to steroid Combined hyperlipidemia NOS Hyperlipidemia due to type 2 diabetes Elevated cholesterol with elevated mellitus triglycerides NEC Fredrickson Type IIb or III hyperlipoproteinemia with E78.6 (272.6) -
Pathophysiology of Adipocyte Defects and Dyslipidemia in HIV Lipodystrophy: New Evidence from Metabolic and Molecular Studies
American Journal of Infectious Diseases 2 (3): 167-172, 2006 ISSN 1553-6203 © 2006 Science Publications Pathophysiology of Adipocyte Defects and Dyslipidemia in HIV Lipodystrophy: New Evidence from Metabolic and Molecular Studies 1,6Ashok Balasubramanyam, 1,6Rajagopal V. Sekhar, 2,3Farook Jahoor 4Henry J. Pownall and 5Dorothy Lewis 1Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, 2Department of Pediatrics, 3Children’s Nutrition Research Center 4Section of Atherosclerosis and Lipoprotein Metabolism, 5Department of Immunology Baylor College of Medicine; 6Endocrine Service, Ben Taub General Hospital, Houston, Texas Abstract: Despite a burgeoning mass of descriptive information regarding the epidemiology, clinical features, body composition changes, hormonal alterations and dyslipidemic patterns in patients with HIV lipodystrophy syndrome (HLS), the specific biochemical pathways that are dysregulated in the condition and the molecular mechanisms that lead to their dysfunction, remain relatively unexplored. In this paper, we review studies that detail the metabolic basis of the dyslipidemia - specifically, the hypertriglyceridemia - that is the serologic hallmark of HLS and present new data relevant to mechanisms of dyslipidemia in the postprandial state. We also describe preliminary experiments showing that in addition to the well-known effects of highly-active antiretroviral drugs, the functional disruption of adipocytes and preadipocytes by factors intrinsic to HIV-infected immunocytes may play a role in the pathogenesis of HLS. Key words: Triglycerides, cholesterol, lipoprotein lipase, lipolysis, lymphocyte INTRODUCTION Metabolic basis of HLS - studies in the fasting and fed state: Whole body kinetic studies have Characteristics of dyslipidemia and its relationship demonstrated defects in specific lipid metabolic [19-21] to lipodystrophy: A characteristic dyslipidemic pattern pathways in HLS patients in both the fasting and observed in the majority of patients with HLS is fed (25) states. -
Phenotypic and Clinical Outcome Studies in Amyloidosis and Associated Autoinflammatory Diseases
Phenotypic and clinical outcome studies in amyloidosis and associated autoinflammatory diseases Taryn Alessandra Beth Youngstein Doctor of Medicine 2019 University College London UK National Amyloidosis Centre Centre for Acute Phase Protein Research Department of Medicine Royal Free Hospital Rowland Hill Street London NW3 2PF MD(Res)Thesis 1 Declaration I, Taryn Alessandra Beth Youngstein, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, it has been declared within the thesis. 2 Abstract Background: Systemic Amyloidosis results from the deposition of insoluble proteins as amyloid that disrupt organ function with time. Over 30 proteins are known to form amyloid and the identification of the precursor protein is essential as it guides treatment strategies. In AA amyloidosis, the precursor protein is Serum Amyloid A (SAA) which forms amyloid when raised in the blood over time. Thus, AA amyloidosis is a feared complication of the hereditary periodic fever syndromes and other autoinflammatory diseases. Aims: 1. To investigate transthyretin (TTR) amyloid and describe non-cardiac TTR deposition 2. To determine the role of carpal tunnel biopsy in diagnosis of TTR amyloid 3. Investigate and define the changing aetiology of AA amyloidosis 4. To investigate the safety of IL-1 antagonism for autoinflammatory disease in pregnancy 5. Delphi consensus study to define phenotype and management approaches in the autoinflammatory disease Deficiency of ADA2 (DADA2). Results and Conclusions 1. Non-cardiac TTR deposits were identified in 25 biopsies from the tissues of the bladder, duodenum, bone marrow, carpal tunnel tenosynovium, colon, stomach, lung, prostate, muscle. 84% had concurrent evidence of cardiac amyloid and 64% fulfilled consensus criteria for cardiac amyloidosis at presentation. -
Lipoprotein Lipase: a General Review Moacir Couto De Andrade Júnior1,2*
Review Article iMedPub Journals Insights in Enzyme Research 2018 www.imedpub.com Vol.2 No.1:3 ISSN 2573-4466 DOI: 10.21767/2573-4466.100013 Lipoprotein Lipase: A General Review Moacir Couto de Andrade Júnior1,2* 1Post-Graduation Department, Nilton Lins University, Manaus, Amazonas, Brazil 2Department of Food Technology, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil *Corresponding author: MC Andrade Jr, Post-Graduation Department, Nilton Lins University, Manaus, Amazonas, Brazil, Tel: +55 (92) 3633-8028; E-mail: [email protected] Rec date: March 07, 2018; Acc date: April 10, 2018; Pub date: April 17, 2018 Copyright: © 2018 Andrade Jr MC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Andrade Jr MC (2018) Lipoprotein Lipase: A General Review. Insights Enzyme Res Vol.2 No.1:3 Abstract Lipoprotein Lipase: Historical Hallmarks, Enzymatic Activity, Characterization, and Carbohydrates (e.g., glucose) and lipids (e.g., free fatty acids or FFAs) are the most important sources of energy Present Relevance in Human for most organisms, including humans. Lipoprotein lipase (LPL) is an extracellular enzyme (EC 3.1.1.34) that is Pathophysiology and Therapeutics essential in lipoprotein metabolism. LPL is a glycoprotein that is synthesized and secreted in several tissues (e.g., Macheboeuf, in 1929, first described chemical procedures adipose tissue, skeletal muscle, cardiac muscle, and for the isolation of a plasma protein fraction that was very rich macrophages). At the luminal surface of the vascular in lipids but readily soluble in water, such as a lipoprotein [1]. -
Other Types of Primary Hyperlipoproteinemia
82 Journal of Atherosclerosis and Thrombosis Vol.21, No.2 Committee Report 10 Other Types of Primary Hyperlipoproteinemia (Hyperlipidemia) Executive Summary of the Japan Atherosclerosis Society (JAS) Guidelines for the Diagnosis and Prevention of Atherosclerotic Cardiovascular Diseases in Japan ― 2012 Version Tamio Teramoto, Jun Sasaki, Shun Ishibashi, Sadatoshi Birou, Hiroyuki Daida, Seitaro Dohi, Genshi Egusa, Takafumi Hiro, Kazuhiko Hirobe, Mami Iida, Shinji Kihara, Makoto Kinoshita, Chizuko Maruyama, Takao Ohta, Tomonori Okamura, Shizuya Yamashita, Masayuki Yokode and Koutaro Yokote Committee for Epidemiology and Clinical Management of Atherosclerosis 1. Primary Hyperlipoproteinemias (Hyperlipidemias) enhanced hepatic apolipoprotein (apo) B-100 synthe- Other Than Familial Hypercholesterolemia sis, decreased LPL activity, increased very-low-density There are various types of primary hyperlipopro- lipoprotein (VLDL) secretion from the liver and the teinemias (hyperlipidemias) other than familial hyper- accumulation of visceral fat as factors for the develop- cholesterolemia (FH). These types are clinically ment of symptoms and has been reported to be related important and classified according to their associated to abnormalities of the LPL and APOC-Ⅱ genes or pathophysiology and genetic abnormalities (Table 1)1). APOA-Ⅰ/C-Ⅲ/A-Ⅳ gene cluster. However, none of Familial lipoprotein lipase (LPL) deficiency manifests these findings have been proven to be definitive. It has as severe hyperchylomicronemia and may present with also been suggested that FCHL is caused by a poly- eruptive cutaneous xanthomas or acute pancreatitis, genic background that tends to induce hyperlipopro- although it does not necessarily accompany atheroscle- teinemia due to environmental factors, such as over- rotic cardiovascular disease (CVD). On the other nutrition and a low level of physical activity. -
A Case Report of a Chinese Familial Partial Lipodystrophic Patient with Lamin A/C Gene R482Q Mutation and Polycystic Ovary Syndr
s Case Re te po e r b t Su et al., Diabetes Case Rep 2017,2:1 s ia D Diabetes Case Reports DOI: 10.4172/2572-5629.1000117 ISSN: 2572-5629 ResearchCase Report Article Open Access A Case Report of a Chinese Familial Partial Lipodystrophic Patient with Lamin A/C Gene R482Q Mutation and Polycystic Ovary Syndrome Benli Su1*, Nan Liu1, Jia Liu2, Wei Sun1, Xia Zhang1 and Ping Zhang1 1Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian 116027, China 2Department of Endocrinology and Metabolism, Dalian Fifth Hospital, Dalian 116023, China Abstract Individuals with Familial partial lipodystrophy (FPLD), Dunnigan variety is a rare autosomal dominant disorder caused by missense mutations in Lamin gene are predisposed to insulin resistance and its complications including features of polycystic ovarian syndrome. We present a single case report about a 26-year-old Chinese woman consulted for infertility. On physical examination acanthosis nigricans and central distribution of fat were found. Her masculine type morphology, muscular appearance of the limbs and excess fat deposits in the face and neck promote us to suspect the existence of partial lipodystrophy. Biochemistry testing confirmed glucose intolerance associated with a severe insulin resistance, hypertriglyceridemia, and polycystic ovary syndrome. The detection of a heterozygous missense mutation in LAMIN A/C gene at position 482 confirmed the diagnosis of FPLD2. In conclusion, characteristic features of FPLD and mutation screening allow early diagnosis of this disorder, and facilitate appropriate clinical treatment. Keywords: Familial partial lipodystrophy; Lamin; Polycystic ovary but not spontaneous regular menses, and she received combined syndrome; Metabolism cyproterone acetate treatment that induced cyclical withdrawal bleeding, but oligomenorrhea recurred after interruption of this Introduction treatment. -
Familial Partial Lipodystrophy
Familial Partial Lipodystrophy Purvisha Patel; Ralph Starkey, MD; Michele Maroon, MD The lipodystrophies are rare disorders character- ized by insulin resistance and the absence or loss of body fat. The 4 subtypes of lipodystrophy are characterized by onset and distribution. Partial lipodystrophy is rare, with loss of fat from the extremities and excess fat accumulation in the face and neck; recognizing this phenotype and subsequent referral for endocrinologic care may improve outcome and reduce mortality. ipodystrophies are rare disorders characterized by insulin resistance and the absence or L loss of body fat.1 Classification of the 4 main subtypes of lipodystrophy is based on onset (congenital/familial vs acquired/sporadic) and dis- Figure not available online tribution (total/generalized vs partial). Congenital total lipodystrophy (also known as Berardinelli syndrome, Seip syndrome) is a rare autosomal- recessive disorder marked by an almost complete lack of adipose tissue from birth. Familial partial lipodystrophy (also known as Kobberling-Dunnigan syndrome) involves loss of subcutaneous fat from the extremities and accumulation of excess fat in the face and neck and to a lesser extent in the hands and feet. Acquired total lipodystrophy (also known as lipoatrophy, Lawrence-Seip syndrome) presents with generalized loss of fat beginning in childhood. Acquired partial lipodystrophy (also known as progressive lipodystrophy, partial lipoat- Figure 1. Accentuation of fat pads in the face and neck. rophy, Barraquer-Simons syndrome) is character- ized by loss of fat only from the upper extremities, face, and trunk.2 tional uterine bleeding (gravida 2, para 1, AB 1) Case Report necessitating total hysterectomy. On physical A 39-year-old white woman presented with the examination, accentuation of fat pads in the face complaint of thickened brown skin on the neck and and neck (Figure 1), central obesity, and prominent medial thighs. -
Evaluation and Management of Dyslipidemia in Patients Treated with Lorlatinib
Guidelines Evaluation and Management of Dyslipidemia in Patients Treated with Lorlatinib Normand Blais 1,* , Jean-Philippe Adam 2 , John Nguyen 2 and Jean C. Grégoire 3 1 Service d’Hématologie-Oncologie, Département de Médicine, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 3E4, Canada 2 Département de Pharmacie, Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC H2X 3E4, Canada; [email protected] (J.-P.A.); [email protected] (J.N.) 3 Département de Cardiologie, Institut de Cardiologie de Montréal, Montréal, QC H2X 3E4, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-514-890-8000 (ext. 25381); Fax: +1-514-412-7572 Received: 22 December 2020; Accepted: 23 December 2020; Published: 4 January 2021 Abstract: The use of lorlatinib, an anaplastic lymphoma kinase (ALK) inhibitor for the treatment of ALK-positive metastatic non-small cell lung cancer, is associated with dyslipidemia in over 80% of patients. Clinical trial protocols for the management of lorlatinib-associated dyslipidemia differ from clinical practice guidelines for the management of dyslipidemia to prevent cardiovascular disease, in that they are based on total cholesterol and triglyceride levels rather than on the low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol levels that form the basis of current cardiovascular guideline recommendations. In order to simplify and harmonize the management of cardiovascular risk in patients with lorlatinib, an advisory committee consisting of a medical oncologist, a cardiologist, and two pharmacists with expertise in cardiology and oncology aimed to develop a simplified algorithm, adapted from the Canadian Cardiovascular Society dyslipidemia recommendations. -
Late Ventricular Potentials in Familial Mediterranean Fever with and Without AA Amyloidosis Udi Nussinovitch1, Avi Livneh2,3
DOI: 10.5152/eurjrheum.2017.16113 Original Article Late ventricular potentials in familial Mediterranean fever with and without AA amyloidosis Udi Nussinovitch1, Avi Livneh2,3 Abstract Objective: Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by episodic and chronic inflammation that may lead to both accelerated coronary atherosclerosis and cardiac AA amyloidosis. We hypothesized that late ventricular poten- tials (LPs), an established electrocardiographic susceptibility marker of ventricular arrhythmias, will be more common in FMF than in the adjusted normal population due to these two types of inflammation-associated cardiac effects. Therefore, we aimed to evaluate the occurrence of LPs in FMF patients with and without amyloidosis. Material and Methods: Signal-averaged electrocardiography was performed in consecutive patients with FMF using the Frank corrected orthogonal lead system. At least 200 consecutive beats were digitally recorded and averaged, and the presence of LPs was determined according to acceptable thresholds. Results: There were 54 patients with colchicine-treated FMF, of whom 14 had biopsy-proven AA amyloidosis. None of the uncom- plicated FMF patients and 2 of the 14 FMF amyloidosis patients had abnormal or borderline LPs. Conclusion: Based on LPs as a susceptibility marker for arrhythmia, FMF patients, including the large majority of FMF patients with amyloidosis, are seemingly not at an increased risk to develop arrhythmias. Keywords: AA Amyloidosis, familial Mediterranean fever, late ventricular potentials, signal averaged ECG, electrocardiography, colchicine Introduction Familial Mediterranean fever (FMF) is the most common inherited periodic autoinflammatory illness, affect- ing a patient population estimated at 120,000 worldwide, mostly of a Mediterranean origin (1, 2). -
Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: the Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol
Diabetes Volume 65, July 2016 1767 Changting Xiao,1 Satya Dash,1 Cecilia Morgantini,1 Robert A. Hegele,2 and Gary F. Lewis1 Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol Diabetes 2016;65:1767–1778 | DOI: 10.2337/db16-0046 Notwithstanding the effectiveness of lowering LDL cho- has been the primary goal of dyslipidemia management, lesterol, residual CVD risk remains in high-risk popula- with statins as the treatment of choice for CVD prevention. tions, including patients with diabetes, likely contributed Large-scale, randomized, clinical trials of LDL-lowering PERSPECTIVES IN DIABETES to by non-LDL lipid abnormalities. In this Perspectives therapies have demonstrated significant reduction in CVD in Diabetes article, we emphasize that changing demo- events over a wide range of baseline LDL-C levels (2,3). graphics and lifestyles over the past few decades have However, even with LDL-C levels lowered substantially or “ resulted in an epidemic of the atherogenic dyslipidemia at treatment goals with statin therapy, CVD risks are not ” complex, the main features of which include hypertrigly- eliminated and there remains significant “residual risk.” In- ceridemia, low HDL cholesterol levels, qualitative changes tensifying statin therapy may provide additional benefits in LDL particles, accumulation of remnant lipoproteins, (4,5); this approach, however, has limited potential, owing and postprandial hyperlipidemia. We brieflyreviewthe to tolerability, side effects, and finite efficacy. Further LDL-C underlying pathophysiology of this form of dyslipidemia, lowering may also be achieved with the use of nonstatin in particular its association with insulin resistance, obe- sity, and type 2 diabetes, and the marked atherogenicity agents, such as cholesterol absorption inhibitors and PCSK9 of this condition.