Genetic Testing for Familial Hypercholesterolemia AHS – M2137
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Educational Booklet for Patients with Familial Hypercholesterolemia
Illustrations > Jean Lambert Illustrations graphic design > www.mine-de-rien.net graphic Chol/29/P030/01-01/10 NLA An educational booklet for patients with familial hypercholesterolemia This brochure was provided by Genzyme Corporation for use by the Foundation of the National Lipid Association. DR. LEIV OSE www.learnyourlipids.com CONTENTS PART 1 What will you learn from this booklet? 02 FAMILIAL HYPERCHOLESTEROLEMIA PART 1: FAMILIAL HYPERCHOLESTEROLEMIA 03 1 - What is Familial Hypercholesterolemia? 03 WHAT WILL YOU 2 - What is LDL-Cholesterol? 04 3 - What are the causes of FH? 05 LEARN FROM THIS GREAT GRANDMOTHER GREAT GRANDFATHER 4 - When should FH be suspected? 07 FH NON FH BOOKLET? 5 - How is FH diagnosed? 09 6 - How early can FH be diagnosed? 09 Woman You will learn about Familial PART 2: TREATMENT 10 GRANDMOTHER GRANDFATHER Hypercholesterolemia, NON FH FH Woman with FH 1 - How can LDL-Cholesterol be reduced? 10 its cause, and the potential 2 - Step 1: Dietary management of FH 11 Man consequences of this a) How does diet affect LDL-Cholesterol? 11 disease. You will learn b) What sort of diet? 11 Man with FH about high cholesterol 3 - Step 2: Using medication 12 AUNT MOTHER FATHER UNCLE and what this might mean a) How does medication affect LDL-Cholesterol? 12 NON FH FH NON FH FH for your heart and blood b) Which drug treatments reduce LDL-Cholesterol and how? 13 FIGURE 1: 4 - Why is lifelong treatment important? vessels. Most importantly 15 FH is an inherited disease, you will learn how to find PART 3: CARDIOVASCULAR DISEASE AND LIPOPROTEINS 16 which can usually be traced out whether someone in 1 - What is cardiovascular disease? 16 DAUGTER SON over several generations. -
Core Laboratory
Performance of the vast majority of Hematology, Coagulation, Urinalysis, Clinical Chemistry and Toxicology testing procedures is conducted in the CORE LABORATORY - an advanced, highly automated area where whole blood, serum, plasma, urine and other biological fluid specimens are tested for a comprehensive menu of state-of-the-art laboratory procedures. Significant testing procedures for Clinical Chemistry and Toxicology includes panels currently approved by the Centers for Medicare and Medicaid Services: Basic Metabolic Panel; Comprehensive Metabolic Panel; Liver Function Panel; Renal Function Panel; and Electrolyte Panel. Other key tests include the Lipid Profile (Cholesterol, Triglyceride, HDL- Cholesterol and LDL-Cholesterol), major markers of cardiovascular disease and risk [such as Troponin I, Myoglobin and Beta-type natriuretic peptide (commonly referred to as BNAT or BNP)], critical care analytes, beta-HCG, and significant therapeutic drug levels. Urinary toxicology screens for major drugs of abuse (and/or key metabolites) are also performed. The cornerstones of Hematology testing are analyses of the complete blood count (CBC) and the differential (DIFF). These include evaluation of: (1) white blood cell count and differential with percentage and absolute value given for the leukocyte components; (2) circulating erythrocytes by means of hemoglobin, hematocrit, red blood cell count, and red blood cell indices; and (3) measurement of platelet concentration by count and/or estimation. Morphological variations and changes of cellular constituents are reported. Alteration of any aspect of the hemostatic mechanism may cause abnormal bleeding in a wide variety of familial and acquired disorders. These defects may be differentiated by a profile of significant Coagulation laboratory tests that includes PT, PTT, Fibrinogen, FDP, and D-Dimer for monitoring anticoagulant therapy. -
Lipodystrophy Due to Adipose Tissue Specific Insulin Receptor
Page 1 of 50 Diabetes Lipodystrophy Due to Adipose Tissue Specific Insulin Receptor Knockout Results in Progressive NAFLD Samir Softic1,2,#, Jeremie Boucher1,3,#, Marie H. Solheim1,4, Shiho Fujisaka1, Max-Felix Haering1, Erica P. Homan1, Jonathon Winnay1, Antonio R. Perez-Atayde5, and C. Ronald Kahn1. 1 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 2 Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA 3 Cardiovascular and Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden (current address) 4 KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway 5 Department of Pathology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA # These authors contributed equally to this work. Corresponding author: C. Ronald Kahn, MD Joslin Diabetes Center One Joslin Place Boston, MA 02215 Phone: (617)732-2635 Fax:(617)732-2487 E-mail: [email protected] Keywords: Insulin receptors, IGF-1 receptors, lipodystrophy, diabetes, dyslipidemia, fatty liver, liver tumor, NAFLD, NASH. Running title: Lipodystrophic mice develop progressive NAFLD 1 Diabetes Publish Ahead of Print, published online May 10, 2016 Diabetes Page 2 of 50 SUMMARY Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and also is a common feature of type 2 diabetes, obesity and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor-1 receptor (F- IR/IGF1RKO). -
Inflammatory Mechanisms Affecting the Lipid Profile in Patients with Systemic Lupus Erythematosus CECILIA P
Inflammatory Mechanisms Affecting the Lipid Profile in Patients with Systemic Lupus Erythematosus CECILIA P. CHUNG, ANNETTE OESER, JOSEPH SOLUS, INGRID AVALOS, TEBEB GEBRETSADIK, AYUMI SHINTANI, MacRAE F. LINTON, SERGIO FAZIO, and C. MICHAEL STEIN ABSTRACT. Objective. Increased low density lipoprotein (LDL) cholesterol and triglycerides, and decreased high density lipoprotein (HDL) cholesterol concentrations are associated with adverse cardiovascular risk in the general population. Patients with systemic lupus erythematosus (SLE) have an altered lipid profile characterized by increased triglycerides and decreased HDL cholesterol concentrations. We examined the relationships between lipid concentrations, cytokines, and inflammatory markers in patients with SLE. Methods. Fasting lipid concentrations, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were measured in 110 patients with SLE. Disease activity was quantified by the SLE Disease Activity Index (SLEDAI), and disease damage by the Systemic Lupus International Collaborating Clinics (SLICC) score. Concentrations of circulating tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and insulin were measured and insulin sensitivity calculated. Results. Lower concentrations of HDL cholesterol were independently associated with higher ESR (p < 0.001), IL-6 (p = 0.02), SLEDAI (p = 0.04), and TNF-α (p = 0.04) after adjustment for age, sex, race, body mass index, insulin sensitivity, and current use of corticosteroids or hydroxychloroquine. Triglyceride concentrations were -
Lipid Profile and Its Relationship with Blood
Onkar Singh et al. Lipid profile and blood glucose levels in MetS National Journal of Physiology, DOI: 10.5455/njppp.2015.5.051120141 NJPPP Pharmacy & Pharmacology http://www.njppp.com/ RESEARCH ARTICLE Correspondence LIPID PROFILE AND ITS RELATIONSHIP Onkar Singh ([email protected]) WITH BLOOD GLUCOSE LEVELS IN Received 27.08.2014 METABOLIC SYNDROME Accepted 09.09.2014 1 1 2 Onkar Singh , Mrityunjay Gupta , Vijay Khajuria Key Words Metabolic Syndrome; 1 Department of Physiology, Government Medical College, Jammu, India Dyslipidemia; Lipid Pattern; 2 Department of Pharmacology, Government Medical College, Jammu, India Type 2 Diabetes Mellitus Background: Metabolic syndrome (MetS) and its associated factors such as dyslipidemia and hyperglycemia are associated with increased risk of cardiovascular disease (CVD). Aims and Objective: To assess lipid profile and its relation with blood glucose levels in patients with MetS. Materials and Methods: This cross-sectional study included 72 male patients with MetS. Anthropometry, lipid profile, blood glucose, and presence of MetS (JIS criteria) were determined. Results: High triglyceride (TG) level (>200 mg/dL, 44.4%) was the most common dyslipidemia followed by low levels of high-density lipoprotein cholesterol (<40 mg/dL, 19.4%). High total cholesterol levels (>240 mg/dL, 13.8%) and high low- density lipoprotein cholesterol levels (>160 mg/dL, 9.7%) were observed. On comparison, no significant differences in lipid levels of MetS patients with normal fasting glucose, impaired fasting glucose, and type 2 diabetes mellitus were observed. Conclusions: Dyslipidemia was frequent in patients with MetS. High TG was the most common lipid abnormality, and a large number of patients had more than one abnormal lipid parameter. -
Community Lab Costs
Sickle Cell This tests for the genetic trait which may lead to sickle cell anemia. Osteoporosis Screening This uses ultrasound to screen people for low bone density or osteoporosis and is completed by painlessly scanning the heel. Because osteoporosis rarely causes signs or symptoms until it’s advanced, the National Osteoporosis Foundation recommends a bone density test if you are: • A woman older than age 65 or a man older than age 70 • A postmenopausal woman with at least one risk factor for osteoporosis Community Lab Costs • A man between age 50 and 70 who has at least one osteoporosis (greatly reduced rates) risk factor • Older than age 50 with a history of a broken bone • Taking medications, such as prednisone, aromatase inhibitors or Wellness Panel........................................................................ $20 Fasting anti-seizure drugs, that are associated with osteoporosis Includes screening for glucose, electrolytes, kidney, liver and • A postmenopausal woman who has recently stopped taking thyroid, plus complete blood count and lipid profile hormone therapy • A woman who experienced early menopause Diabetic Screening (A1c)...................................................... $5 The results of this test will indicate if you have or at risk for osteoporosis. Sickle Cell................................................................................ $6 If so, your doctor can offer treatment. PSA (Prostate Screening)...................................................... $8 Breathing Test This measures airflow and lung -
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes *This is not an all inclusive list of ICD-10 codes R.LaForge 11/2015 E78.0 (272.0) Pure hypercholesterolemia E78.3 (272.3) Hyperchylomicronemia (Group A) (Group D) Familial hypercholesterolemia Grütz syndrome Fredrickson Type IIa Chylomicronemia (fasting) (with hyperlipoproteinemia hyperprebetalipoproteinemia) Hyperbetalipoproteinemia Fredrickson type I or V Hyperlipidemia, Group A hyperlipoproteinemia Low-density-lipoid-type [LDL] Lipemia hyperlipoproteinemia Mixed hyperglyceridemia E78.4 (272.4) Other hyperlipidemia E78.1 (272.1) Pure hyperglyceridemia Type 1 Diabetes Mellitus (DM) with (Group B) hyperlipidemia Elevated fasting triglycerides Type 1 DM w diabetic hyperlipidemia Endogenous hyperglyceridemia Familial hyperalphalipoproteinemia Fredrickson Type IV Hyperalphalipoproteinemia, familial hyperlipoproteinemia Hyperlipidemia due to type 1 DM Hyperlipidemia, Group B Hyperprebetalipoproteinemia Hypertriglyceridemia, essential E78.5 (272.5) Hyperlipidemia, unspecified Very-low-density-lipoid-type [VLDL] Complex dyslipidemia hyperlipoproteinemia Elevated fasting lipid profile Elevated lipid profile fasting Hyperlipidemia E78.2 (272.2) Mixed hyperlipidemia (Group C) Hyperlipidemia (high blood fats) Broad- or floating-betalipoproteinemia Hyperlipidemia due to steroid Combined hyperlipidemia NOS Hyperlipidemia due to type 2 diabetes Elevated cholesterol with elevated mellitus triglycerides NEC Fredrickson Type IIb or III hyperlipoproteinemia with E78.6 (272.6) -
Lipid Profile Abnormalities Seen in T2DM Patients in Primary Healthcare in Turkey: a Cross-Sectional Study Aclan Ozder
Ozder Lipids in Health and Disease 2014, 13:183 http://www.lipidworld.com/content/13/1/183 RESEARCH Open Access Lipid profile abnormalities seen in T2DM patients in primary healthcare in Turkey: a cross-sectional study Aclan Ozder Abstract Background: Diabetes is characterized by chronic hyperglycemia and disturbances of carbohydrate, lipid and protein metabolism. We aimed to research association between serum lipid profile and blood glucose, hypothesizing that early detection and treatment of lipid abnormalities can minimize the risk for atherogenic cardiovascular disorder and cerebrovascular accident in patients with type 2 diabetes mellitus. Methods: Fasting blood glucose (FBG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), triglyceride (TG) and glycated haemoglobin (HbA1c) levels were evaluated. A hepatic ultrasound was performed for every diabetic to evaluate hepatosteatosis. The study was done from January 2014 to June 2014 among 132 patients with T2DM who were admitted to outpatient clinic of Family Medicine department in a university hospital. The patients whose taking multi-vitamin supplementation or having hepatic, renal or metabolic bone disorders (including parathyroid related problems) were excluded from the study for the reason that those conditions might affect the carbohydrate and lipid metabolism in diabetes. Test of significance was calculated by unpaired student’s t test between cases and controls. Correlation studies (Pearson’s correlation) were performed between the variables of blood glucose and serum lipid profile. Significance was set at p<0.05. Results: Results of serum lipid profile showed that the mean values for TC, TG, HDL and LDL in female patients were 227.6 ± 57.7 mg/dl, 221.6 ± 101.1 mg/dl, 31.5 ± 6.7 mg/dl and 136.5 ± 43.7 mg/dl, respectively. -
Pathophysiology of Adipocyte Defects and Dyslipidemia in HIV Lipodystrophy: New Evidence from Metabolic and Molecular Studies
American Journal of Infectious Diseases 2 (3): 167-172, 2006 ISSN 1553-6203 © 2006 Science Publications Pathophysiology of Adipocyte Defects and Dyslipidemia in HIV Lipodystrophy: New Evidence from Metabolic and Molecular Studies 1,6Ashok Balasubramanyam, 1,6Rajagopal V. Sekhar, 2,3Farook Jahoor 4Henry J. Pownall and 5Dorothy Lewis 1Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, 2Department of Pediatrics, 3Children’s Nutrition Research Center 4Section of Atherosclerosis and Lipoprotein Metabolism, 5Department of Immunology Baylor College of Medicine; 6Endocrine Service, Ben Taub General Hospital, Houston, Texas Abstract: Despite a burgeoning mass of descriptive information regarding the epidemiology, clinical features, body composition changes, hormonal alterations and dyslipidemic patterns in patients with HIV lipodystrophy syndrome (HLS), the specific biochemical pathways that are dysregulated in the condition and the molecular mechanisms that lead to their dysfunction, remain relatively unexplored. In this paper, we review studies that detail the metabolic basis of the dyslipidemia - specifically, the hypertriglyceridemia - that is the serologic hallmark of HLS and present new data relevant to mechanisms of dyslipidemia in the postprandial state. We also describe preliminary experiments showing that in addition to the well-known effects of highly-active antiretroviral drugs, the functional disruption of adipocytes and preadipocytes by factors intrinsic to HIV-infected immunocytes may play a role in the pathogenesis of HLS. Key words: Triglycerides, cholesterol, lipoprotein lipase, lipolysis, lymphocyte INTRODUCTION Metabolic basis of HLS - studies in the fasting and fed state: Whole body kinetic studies have Characteristics of dyslipidemia and its relationship demonstrated defects in specific lipid metabolic [19-21] to lipodystrophy: A characteristic dyslipidemic pattern pathways in HLS patients in both the fasting and observed in the majority of patients with HLS is fed (25) states. -
Lipoprotein Lipase: a General Review Moacir Couto De Andrade Júnior1,2*
Review Article iMedPub Journals Insights in Enzyme Research 2018 www.imedpub.com Vol.2 No.1:3 ISSN 2573-4466 DOI: 10.21767/2573-4466.100013 Lipoprotein Lipase: A General Review Moacir Couto de Andrade Júnior1,2* 1Post-Graduation Department, Nilton Lins University, Manaus, Amazonas, Brazil 2Department of Food Technology, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil *Corresponding author: MC Andrade Jr, Post-Graduation Department, Nilton Lins University, Manaus, Amazonas, Brazil, Tel: +55 (92) 3633-8028; E-mail: [email protected] Rec date: March 07, 2018; Acc date: April 10, 2018; Pub date: April 17, 2018 Copyright: © 2018 Andrade Jr MC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Andrade Jr MC (2018) Lipoprotein Lipase: A General Review. Insights Enzyme Res Vol.2 No.1:3 Abstract Lipoprotein Lipase: Historical Hallmarks, Enzymatic Activity, Characterization, and Carbohydrates (e.g., glucose) and lipids (e.g., free fatty acids or FFAs) are the most important sources of energy Present Relevance in Human for most organisms, including humans. Lipoprotein lipase (LPL) is an extracellular enzyme (EC 3.1.1.34) that is Pathophysiology and Therapeutics essential in lipoprotein metabolism. LPL is a glycoprotein that is synthesized and secreted in several tissues (e.g., Macheboeuf, in 1929, first described chemical procedures adipose tissue, skeletal muscle, cardiac muscle, and for the isolation of a plasma protein fraction that was very rich macrophages). At the luminal surface of the vascular in lipids but readily soluble in water, such as a lipoprotein [1]. -
Other Types of Primary Hyperlipoproteinemia
82 Journal of Atherosclerosis and Thrombosis Vol.21, No.2 Committee Report 10 Other Types of Primary Hyperlipoproteinemia (Hyperlipidemia) Executive Summary of the Japan Atherosclerosis Society (JAS) Guidelines for the Diagnosis and Prevention of Atherosclerotic Cardiovascular Diseases in Japan ― 2012 Version Tamio Teramoto, Jun Sasaki, Shun Ishibashi, Sadatoshi Birou, Hiroyuki Daida, Seitaro Dohi, Genshi Egusa, Takafumi Hiro, Kazuhiko Hirobe, Mami Iida, Shinji Kihara, Makoto Kinoshita, Chizuko Maruyama, Takao Ohta, Tomonori Okamura, Shizuya Yamashita, Masayuki Yokode and Koutaro Yokote Committee for Epidemiology and Clinical Management of Atherosclerosis 1. Primary Hyperlipoproteinemias (Hyperlipidemias) enhanced hepatic apolipoprotein (apo) B-100 synthe- Other Than Familial Hypercholesterolemia sis, decreased LPL activity, increased very-low-density There are various types of primary hyperlipopro- lipoprotein (VLDL) secretion from the liver and the teinemias (hyperlipidemias) other than familial hyper- accumulation of visceral fat as factors for the develop- cholesterolemia (FH). These types are clinically ment of symptoms and has been reported to be related important and classified according to their associated to abnormalities of the LPL and APOC-Ⅱ genes or pathophysiology and genetic abnormalities (Table 1)1). APOA-Ⅰ/C-Ⅲ/A-Ⅳ gene cluster. However, none of Familial lipoprotein lipase (LPL) deficiency manifests these findings have been proven to be definitive. It has as severe hyperchylomicronemia and may present with also been suggested that FCHL is caused by a poly- eruptive cutaneous xanthomas or acute pancreatitis, genic background that tends to induce hyperlipopro- although it does not necessarily accompany atheroscle- teinemia due to environmental factors, such as over- rotic cardiovascular disease (CVD). On the other nutrition and a low level of physical activity. -
Hyperlipidemia
Hyperlipidemia Overview Hyperlipidemia (HLP) is a condition in which there are high levels of lipid (or fat) in the blood. The two main types of fat that are found in the blood are cholesterol and triglycerides. Nutrition and lifestyle factors such as maintaining a healthy weight, limiting alcohol consumption, avoiding tobacco, and adequate physical activity play a role in both the prevention and treatment of hyperlipidemia. Hyperlipidemia is the most common risk factor for the development of cardiovascular disease, which is why it is important to manage your blood lipid levels by implementing a heart healthy lifestyle. LDL Cholesterol Cholesterol is an essential component found in all human cell membranes and is required for healthy bodily functions. Your body makes all the cholesterol it needs to function and therefore the amount consumed in the diet should be limited. High levels of cholesterol in the blood increases your risk for heart disease by sticking to the walls of your arteries and causing plaque to build-up. Over time, this plaque can narrow your arteries and prevent adequate blood flow. This condition is called atherosclerosis and it is one of the primary causes of heart attack and stroke. There are two types of cholesterol, low-density lipoprotein (LDL) or “bad” cholesterol, and high-density lipoprotein (HDL) or “good” cholesterol. High levels of LDL are associated with the formation of atherosclerotic plaque. High levels of HDL have been shown to decrease the risk for heart disease and stroke by removing excess cholesterol from the bloodstream. Triglycerides Triglycerides are the most common type of fat in the body.