Ultracategories Seminar Talk 1: Sheafs on Topological Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Ultracategories Seminar Talk 1: Sheafs on Topological Spaces Ultracategories seminar Talk 1: Sheafs on topological spaces Julie Zangenberg Rasmusen February 2019 Contents 1 Introduction to sheaves 1 2 Sheaf of cross-sections 3 3 Bundles of germs 4 4 Étale spaces 6 5 Stalks 10 6 Direct and inverse image sheaves 12 These notes are based on chapter 2 of "Sheaves in Geometry and Logic" by Saunders Mac Lane and leke Moerdijk. 1 Introduction to sheaves Denition 1.1. Let X be a topological space. Then we dene the category O(X) to have all open subsets U of X as objects and dening the morphisms V ! U to be the inclusion V ⊂ U. Denition 1.2. A presheaf is a functor P : O(X)op ! Sets. This means that every inclusion of open sets V ⊂ U in X determines a functor P (V ⊂ U): P (U) ! P (V ) which we will often denote as t 7! tjV for each t 2 P (U) (as if they were restriction of ordinary maps) 1 1 INTRODUCTION TO SHEAVES Denition 1.3. A sheaf of sets on a topological space X is a presheaf F : O(X)op ! Sets, such that each open covering U = [iUi; i 2 I of an open set U of X yields an equalizer diagram p e Q / Q FU / FUi / F (Ui \ Uj) i q i;j where for t 2 FU e(t) = ftjUi ji 2 Ig and for a family ti 2 FUi, pftig = ftijUi\Uj g; qftig = ftjjUi\Uj g Denition 1.4. Let X be a topological space. We dene a new category Sh(X): Objects: All sheaves F of sets on X Morphisms F ! G: Natural transformations F ) G. Note that Sh(X) is a full subcategory of the functor category O\(X) := SetsO(X)op which is the category of presheaves on X. Example 1.5. Let X be a topological space and U ⊆ X an open subset. Dene CU := ffjf : U ! R is continuous g: If V ⊆ U then restricting each f 7! fjV gives us a function CU ! CV . This restriction is transitive in the sense that if W ⊆ V ⊆ U are three nested open subsets, then (fjV )jW = fjW . This gives us that the assignments U 7! CU; fC ⊆ Ug 7! fCU ! CV by f 7! fjV g denes a presheaf C : O(X)op ! Sets. We will prove that this is indeed a sheaf. Let U = Ui be an open covering with index set I. Then an I-indexed family of continuous functions fi : Ui ! R is an element of the product set ΠiCUi. The assignments and ffig 7! ffijUi\Uj g; ffig 7! ffjjUi\Uj g gives two maps p and q from I-indexed set to I × I-indexed set as in q Q / Q CUi / C(Ui \ Uj): i p i;j Since being continuous is a local property this gives us an equalizer diagram q e Q / Q CU / CUi / C(Ui \ Uj): i p i;j where maps to the -indexed set . This proves that is a sheaf on . e f I ffijUi g C X 2 2 SHEAF OF CROSS-SECTIONS Example 1.6. Let X be a locally connected space, then a sheaf F on X is locally constant if each point x 2 X has a basis of open neighbourhoods Nx such that whenever U; V 2 Nx with U ⊂ V , the restriction FV ! FU is a bijection. Example 1.7. Let X be a topological space, x 2 X a point and S 2 Set a set. We op dene the skyscraper sheaf concentrated at x, denoted by Skyx(A): O(X) ! Sets, by ( A ; x 2 U Skyx(A)(U) = 1 ; otherwise where 1 denotes a xed point and U an open subset of X. We can turn this into a functor Skyx : Sets ! Sh(X) by saying that for an inclusion V,! U of open sets, the restriction map Skyx(A)(U) ! Skyx(A)(V ) is the evident maps: A −!id A if x 2 V ⊆ U unique A −−−−! 1 if x2 = V ⊆ U: Proposition 1.8. Let X be a topological space, then the category Sh(X) has all small limits and the inclusion of sheaves into presheaves Sh(X) ! O\(X) preserve all small limits. 2 Sheaf of cross-sections Denition 2.1. Let X be a topological space. A continuous map p : Y ! X is called a bundle over X. Denition 2.2. Let p : Y ! X be a bundle and U an open subset of X, then pU : p−1U ! U is a bundle over U. Moreover the square diagram −1 incl: / p U < Y s pU p U / X incl: is a pullback diagram in Top. A cross-section s of the bundle pU is a continuous map s : U ! Y such that p ◦ s is the inclusion i : U ! X. Let ΓpU = fsjs : U ! Y and p ◦ s = incl:g denote the set of all such cross-sections over U. 3 3 BUNDLES OF GERMS If we have V ⊆ U in the above context, then we have a restriction ΓpU ! ΓpV so we get a functor op Γp(−): O(X) ! Sets This can be proven to be a sheaf since it's sucient to check locally if a given function is a cross-section. Hence Γp is a sheaf of sets X, called the sheaf of cross-sections of the bundle p. So we have a functor Γ: Bund(X) ! Sh(X): 3 Bundles of germs Denition 3.1. Let P : O(X)op ! Sets be a presheaf, x a point and U; V two open neighbourhoods of x. Further let u 2 PU and v 2 PV . We say that u and v has the same germ if there exists an open set W ⊂ U \ V such that ujW = vjW 2 PW . This is an equivalence. The equivalence class of any one such u is called the germ of u at x. This will be denoted germxu. Further let Px = fgermxu j u 2 P U; x 2 U with U open in Xg be the set of all germs at x. This is called the stalk of P at x. The denition of stalks allow us to consider our sheaf locally. 4 3 BUNDLES OF GERMS Example 3.2. Let X be a topological space. A constant sheaf F associated to some set A is a sheaf F 2 Sh(X) for which it is true that Fx = A for all x 2 X. A sheaf F 2 Sh(X) is locally constant if for each x 2 X there exists an open neighbourhood U ⊆ X of x such that the restriction F jU is a constant sheaf on U. Denition 3.3. ` ΛP := x Px = fgermxs j x 2 X; s 2 PUg Let p :Λp ! X, p(germxs) = x Let s 2 PU. This determines a function s_ by s_ : U ! ΛP ; sx_ = germxs which is a section of p. Topologize ΛP by taking as a base of open sets all the images s_(U) ⊂ ΛP , so an open set in ΛP is a union of images of s_. This makes every p and every s_ continuous - in particular is s_ : U ! s_(U) a homeomorphism. Using this above construction we get a functor Λ: O\(X) ! Bund(X) P 7! ΛP where we by ΛP mean the bundle p :ΛP ! X as dened above (We will often use this abuse of notation). We note that for a given presheaf P , ΓΛP is a sheaf of sections of bundles, since we have O\(X) Λ / Bund(X) Γ / Sh(X) : Denition 3.4. Let P be a presheaf over X. Then for each open subset U ⊆ X there is a function ηU : PU ! ΓΛP (U) s 7! s_ Note that η : P ! ΓΛP is a natural transformation of functors. Will only state the following theorem: op Theorem 3.5. If F : O(X) ! Sets is a sheaf, then η : F ! ΓΛF is an isomorphism. This means that every sheaf is a sheaf of cross-sections. Theorem 3.6. Let P be a presheaf. Then η is universal from P to sheaves. 5 4 ÉTALE SPACES This means that if F is a sheaf and θ : P ! F is any map of presheafes, then there exists a unique map σ : ΛΓP ! F of sheafs, such that the triangle commutes: η P / ΛΓP 9!σ θ ! F Proof of Theorem 3.6. By theorem 3.5 we know that η : F ! ΓΛF is an isomorphism, −1 so we may dene a map σ : ΛΓP ! F of sheaves as σ = η ΓΛθ such that the lower triangle in the following commutes: η P / ΓΛP σ θ ΓΛθ } / F η ΓΛF Since η is natural (as noted before it is a natural transformation) we know that the outer square commutes as well. But again, by theorem 3.5, we know that η : F ! ΓΛF is an isomorphism, so the upper triangle commutes. It remains to prove that this is indeed unique. Corollary 3.7. For any topological space X the inclusion functor Sh(X) ,! O\(X) admits a left adjoint. Proof. From theorem 3.6 we get that ΓΛ is a left adjoint to the inclusion with η as the unit. Denition 3.8. A left adjoint functor to the inclusion functor Sh(X) ,! O\(X) is called a sheacation functor. so we have that ΓΛ is a sheacation functor, and in particular a sheacation functor preserves all nite colimits. 4 Étale spaces Denition 4.1. A bundle P : E ! X is said to be étale when P is a local homeomor- phism in the following sense: To each e 2 E there is an open set V with e 2 V ⊂ E such that PV is open in X and P jV is a homeomorphism.
Recommended publications
  • Derived Categories. Winter 2008/09
    Derived categories. Winter 2008/09 Igor V. Dolgachev May 5, 2009 ii Contents 1 Derived categories 1 1.1 Abelian categories .......................... 1 1.2 Derived categories .......................... 9 1.3 Derived functors ........................... 24 1.4 Spectral sequences .......................... 38 1.5 Exercises ............................... 44 2 Derived McKay correspondence 47 2.1 Derived category of coherent sheaves ................ 47 2.2 Fourier-Mukai Transform ...................... 59 2.3 Equivariant derived categories .................... 75 2.4 The Bridgeland-King-Reid Theorem ................ 86 2.5 Exercises ............................... 100 3 Reconstruction Theorems 105 3.1 Bondal-Orlov Theorem ........................ 105 3.2 Spherical objects ........................... 113 3.3 Semi-orthogonal decomposition ................... 121 3.4 Tilting objects ............................ 128 3.5 Exercises ............................... 131 iii iv CONTENTS Lecture 1 Derived categories 1.1 Abelian categories We assume that the reader is familiar with the concepts of categories and func- tors. We will assume that all categories are small, i.e. the class of objects Ob(C) in a category C is a set. A small category can be defined by two sets Mor(C) and Ob(C) together with two maps s, t : Mor(C) → Ob(C) defined by the source and the target of a morphism. There is a section e : Ob(C) → Mor(C) for both maps defined by the identity morphism. We identify Ob(C) with its image under e. The composition of morphisms is a map c : Mor(C) ×s,t Mor(C) → Mor(C). There are obvious properties of the maps (s, t, e, c) expressing the axioms of associativity and the identity of a category. For any A, B ∈ Ob(C) we denote −1 −1 by MorC(A, B) the subset s (A) ∩ t (B) and we denote by idA the element e(A) ∈ MorC(A, A).
    [Show full text]
  • Representations of Semisimple Lie Algebras in Prime Characteristic and the Noncommutative Springer Resolution
    Annals of Mathematics 178 (2013), 835{919 http://dx.doi.org/10.4007/annals.2013.178.3.2 Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution By Roman Bezrukavnikov and Ivan Mirkovic´ To Joseph Bernstein with admiration and gratitude Abstract We prove most of Lusztig's conjectures on the canonical basis in homol- ogy of a Springer fiber. The conjectures predict that this basis controls numerics of representations of the Lie algebra of a semisimple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a noncom- mutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is closely related to the positive characteristic derived localization equiva- lences obtained earlier by the present authors and Rumynin. On the other hand, it is compatible with the t-structure arising from an equivalence with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group. This equivalence established by Arkhipov and the first author fits the framework of local geometric Langlands duality. The latter compatibility allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality. Contents 0. Introduction 837 0.1. Notations and conventions 841 1. t-structures on cotangent bundles of flag varieties: statements and preliminaries 842 R.B.
    [Show full text]
  • The Calabi Complex and Killing Sheaf Cohomology
    The Calabi complex and Killing sheaf cohomology Igor Khavkine Department of Mathematics, University of Trento, and TIFPA-INFN, Trento, I{38123 Povo (TN) Italy [email protected] September 26, 2014 Abstract It has recently been noticed that the degeneracies of the Poisson bra- cket of linearized gravity on constant curvature Lorentzian manifold can be described in terms of the cohomologies of a certain complex of dif- ferential operators. This complex was first introduced by Calabi and its cohomology is known to be isomorphic to that of the (locally constant) sheaf of Killing vectors. We review the structure of the Calabi complex in a novel way, with explicit calculations based on representation theory of GL(n), and also some tools for studying its cohomology in terms of of lo- cally constant sheaves. We also conjecture how these tools would adapt to linearized gravity on other backgrounds and to other gauge theories. The presentation includes explicit formulas for the differential operators in the Calabi complex, arguments for its local exactness, discussion of general- ized Poincar´eduality, methods of computing the cohomology of locally constant sheaves, and example calculations of Killing sheaf cohomologies of some black hole and cosmological Lorentzian manifolds. Contents 1 Introduction2 2 The Calabi complex4 2.1 Tensor bundles and Young symmetrizers..............5 2.2 Differential operators.........................7 2.3 Formal adjoint complex....................... 11 2.4 Equations of finite type, twisted de Rham complex........ 14 3 Cohomology of locally constant sheaves 16 3.1 Locally constant sheaves....................... 16 3.2 Acyclic resolution by a differential complex............ 18 3.3 Generalized Poincar´eduality...................
    [Show full text]
  • Topics in Noncommutative Algebraic Geometry, Homological Algebra and K-Theory
    Topics in Noncommutative Algebraic Geometry, Homological Algebra and K-Theory Introduction This text is based on my lectures delivered at the School on Algebraic K-Theory and Applications which took place at the International Center for Theoretical Physics (ICTP) in Trieste during the last two weeks of May of 2007. It might be regarded as an introduction to some basic facts of noncommutative algebraic geometry and the related chapters of homological algebra and (as a part of it) a non-conventional version of higher K-theory of noncommutative 'spaces'. Arguments are mostly replaced by sketches of the main steps, or references to complete proofs, which makes the text an easier reading than the ample accounts on different topics discussed here indicated in the bibliography. Lecture 1 is dedicated to the first notions of noncommutative algebraic geometry { preliminaries on 'spaces' represented by categories and morphisms of 'spaces' represented by (isomorphism classes of) functors. We introduce continuous, affine, and locally affine morphisms which lead to definitions of noncommutative schemes and more general locally affine 'spaces'. The notion of a noncommutative scheme is illustrated with important examples related to quantized enveloping algebras: the quantum base affine spaces and flag varieties and the associated quantum D-schemes represented by the categories of (twisted) quantum D-modules introduced in [LR] (see also [T]). Noncommutative projective 'spaces' introduced in [KR1] and more general Grassmannians and flag varieties studied in [KR3] are examples of smooth locally affine noncommutative 'spaces' which are not schemes. In Lecture 2, we recover some fragments of geometry behind the pseudo-geometric picture outlined in the first lecture.
    [Show full text]
  • Sheaf Theory
    Sheaf Theory Anne Vaugon December 20, 2013 The goals of this talk are • to define a generalization denoted by RΓ(F) of de Rham cohomology; • to explain the notation RΓ(F) (here F is a sheaf and RΓ is a derived functor). 1 Presheaves and sheaves 1.1 Definitions and examples Let X be a topological space. Definition 1.1. A presheaf of k-modules F on X is defined by the following data: • a k-module F(U) for each open set U of X; • a map rUV : F(U) → F(V ) for each pair V ⊂ U of open subsets such that – rWV ◦ rVU = rWU for all open subsets W ⊂ V ⊂ U; – rUU = Id for all open subsets U. Therefore, a presheaf is a functor from the opposite category of open sets to the category of k-modules. If F is a presheaf, F(U) is called the set of sections of U and rVU the restriction from U to V . Definition 1.2. A presheaf F is a sheaf if • for any family (Ui)i∈I of open subsets of X • for any family of elements si ∈ F(Ui) such that rUi∩Uj ,Ui (si) = rUi∩Uj ,Uj (sj) for all i, j ∈ I there exists a unique s ∈ F(U) where U = ∪i∈I Ui such that rUi,U (s) = si for all i ∈ I. This means that we can extend a locally defined section. Definition 1.3. A morphism of presheaves f : F → G is a natural trans- formation between the functors F and G: for each open set U, there exists a morphism f(U): F(U) → G(U) such that the following diagram is commutative for V ⊂ U.
    [Show full text]
  • The Smooth Locus in Infinite-Level Rapoport-Zink Spaces
    The smooth locus in infinite-level Rapoport-Zink spaces Alexander Ivanov and Jared Weinstein February 25, 2020 Abstract Rapoport-Zink spaces are deformation spaces for p-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let M8 be an infinite-level Rapoport-Zink space of ˝ ˝ EL type, and let M8 be one connected component of its geometric fiber. We show that M8 contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of p-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve Xpp8q˝ is exactly the locus of elliptic curves E with supersingular reduction, such that the formal group of E has no extra endomorphisms. 1 Main theorem Let p be a prime number. Rapoport-Zink spaces [RZ96] are deformation spaces of p-divisible groups equipped with some extra structure. This article concerns the geometry of Rapoport-Zink spaces of EL type (endomor- phisms + level structure). In particular we consider the infinite-level spaces MD;8, which are preperfectoid spaces [SW13]. An example is the space MH;8, where H{Fp is a p-divisible group of height n. The points of MH;8 over a nonarchimedean field K containing W pFpq are in correspondence with isogeny classes of p-divisible groups G{O equipped with a quasi-isogeny G b O {p Ñ H b O {p and an isomorphism K OK K Fp K n Qp – VG (where VG is the rational Tate module).
    [Show full text]
  • Bertini's Theorem on Generic Smoothness
    U.F.R. Mathematiques´ et Informatique Universite´ Bordeaux 1 351, Cours de la Liberation´ Master Thesis in Mathematics BERTINI1S THEOREM ON GENERIC SMOOTHNESS Academic year 2011/2012 Supervisor: Candidate: Prof.Qing Liu Andrea Ricolfi ii Introduction Bertini was an Italian mathematician, who lived and worked in the second half of the nineteenth century. The present disser- tation concerns his most celebrated theorem, which appeared for the first time in 1882 in the paper [5], and whose proof can also be found in Introduzione alla Geometria Proiettiva degli Iperspazi (E. Bertini, 1907, or 1923 for the latest edition). The present introduction aims to informally introduce Bertini’s Theorem on generic smoothness, with special attention to its re- cent improvements and its relationships with other kind of re- sults. Just to set the following discussion in an historical perspec- tive, recall that at Bertini’s time the situation was more or less the following: ¥ there were no schemes, ¥ almost all varieties were defined over the complex numbers, ¥ all varieties were embedded in some projective space, that is, they were not intrinsic. On the contrary, this dissertation will cope with Bertini’s the- orem by exploiting the powerful tools of modern algebraic ge- ometry, by working with schemes defined over any field (mostly, but not necessarily, algebraically closed). In addition, our vari- eties will be thought of as abstract varieties (at least when over a field of characteristic zero). This fact does not mean that we are neglecting Bertini’s original work, containing already all the rele- vant ideas: the proof we shall present in this exposition, over the complex numbers, is quite close to the one he gave.
    [Show full text]
  • Sheaves with Values in a Category7
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology Vol. 3, pp. l-18, Pergamon Press. 196s. F’rinted in Great Britain SHEAVES WITH VALUES IN A CATEGORY7 JOHN W. GRAY (Received 3 September 1963) $4. IN’IXODUCTION LET T be a topology (i.e., a collection of open sets) on a set X. Consider T as a category in which the objects are the open sets and such that there is a unique ‘restriction’ morphism U -+ V if and only if V c U. For any category A, the functor category F(T, A) (i.e., objects are covariant functors from T to A and morphisms are natural transformations) is called the category ofpresheaces on X (really, on T) with values in A. A presheaf F is called a sheaf if for every open set UE T and for every strong open covering {U,) of U(strong means {U,} is closed under finite, non-empty intersections) we have F(U) = Llim F( U,) (Urn means ‘generalized’ inverse limit. See $4.) The category S(T, A) of sheares on X with values in A is the full subcategory (i.e., morphisms the same as in F(T, A)) determined by the sheaves. In this paper we shall demonstrate several properties of S(T, A): (i) S(T, A) is left closed in F(T, A). (Theorem l(i), $8). This says that if a left limit (generalized inverse limit) of sheaves exists as a presheaf then that presheaf is a sheaf.
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • Smoothness, Semi-Stability and Alterations
    PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. A. J. DE JONG Smoothness, semi-stability and alterations Publications mathématiques de l’I.H.É.S., tome 83 (1996), p. 51-93 <http://www.numdam.org/item?id=PMIHES_1996__83__51_0> © Publications mathématiques de l’I.H.É.S., 1996, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SMOOTHNESS, SEMI-STABILITY AND ALTERATIONS by A. J. DE JONG* CONTENTS 1. Introduction .............................................................................. 51 2. Notations, conventions and terminology ...................................................... 54 3. Semi-stable curves and normal crossing divisors................................................ 62 4. Varieties.................................................................................. QQ 5. Alterations and curves ..................................................................... 76 6. Semi-stable alterations ..................................................................... 82 7. Group actions and alterations .............................................................
    [Show full text]
  • 2 Sheaves and Cohomology
    2 Sheaves and Cohomology 2.1 Sheaves and Presheaves We fix a topological space X. Later we will include assumptions that are satisfied by smooth manifolds. 2.1.1 Definitions and Examples Definition 2.1. A presheaf of abelian groups F on X assigns to each open U ⊆ X an abelian group F (U) = Γ(U; F ) and for every inclusion of open sets V ⊆ U a homomorphism of abelian groups F ρUV : F (U) ! F (V ), often called the restriction map, satisfying F 1 [P1] ρUU = F(U) F F F [P2] for W ⊆ V ⊆ U, we have ρVW ◦ ρUV = ρUW . If F and G are two presheaves (of abelian groups) on X, then a morphism ' : F ! G consists of the data of a morphism 'U : F (U) ! G (U) for each open set U ⊆ X such that if V ⊆ U is an inclusion, then we have commutative diagrams 'U F (U) / G (U) F G ρUV ρUV (V ) / (V ): F 'V G Remark 2.2. We may form a category TopX whose objects are open sets in X and whose mor- phisms are simply inclusions of open sets. Then the above definition says that a presheaf is a ◦ contravariant functor TopX ! Ab, and that a morphism of presheaves is a natural transforma- tion of the associated functors. Definition 2.3. A sheaf F of abelian groups on X is a presheaf which, for any open set U ⊆ X and any open covering fUigi2I of U, satisfies the two additional properties: [S1] if s 2 F (U) is such that sjUi = 0 for all i 2 I, then s = 0; [S2] if si 2 F (Ui) such that sijUi\Uj = sjjUi\Uj for all i; j 2 I, then there exists s 2 F (U) such that sjUi = si for each i.
    [Show full text]
  • Lecture 18: April 15 Direct Images and Coherence. Last Time, We Defined
    89 Lecture 18: April 15 Direct images and coherence. Last time, we defined the direct image functor (for right D-modules) as the composition L op DX Y op Rf op b ⌦ ! b 1 ⇤ b D (DX ) D (f − DY ) D (DY ) f+ where f : X Y is any morphism between nonsingular algebraic varieties. We also ! showed that g+ f+ ⇠= (g f)+. Today, our first◦ task is to◦ prove that direct images preserve quasi-coherence and, in the case when f is proper, coherence. The definition of the derived category b op D (DX )didnot include any quasi-coherence assumptions. We are going to denote b op b op by Dqc(DX ) the full subcategory of D (DX ), consisting of those complexes of right DX -modules whose cohomology sheaves are quasi-coherent as OX -modules. Recall that we included the condition of quasi-coherence into our definition of algebraic b op D-modules in Lecture 10. Similarly, we denote by Dcoh (DX ) the full subcategory b op of D (DX ), consisting of those complexes of right DX -modules whose cohomology sheaves are coherent DX -modules (and therefore quasi-coherent OX -modules). This b op category is of course contained in Dqc(DX ). Theorem 18.1. Let f : X Y be a morphism between nonsingular algebraic ! b op b op varieties. Then the functor f+ takes Dqc(DX ) into Dqc(DY ). When f is proper, b op b op it also takes Dcoh (DX ) into Dcoh (DY ). We are going to deduce this from the analogous result for OX -modules. Recall that if F is a quasi-coherent OX -module, then the higher direct image sheaves j R f F are again quasi-coherent OY -modules.
    [Show full text]