Reducing Landsat MSS Scene Variability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Landsat Collection 2
Landsat Collection 2 Landsat Collection 2 marks the second major reprocessing of the U.S. Geological Top of atmosphere Surface reflectance Surface temperature Survey (USGS) Landsat archive. In 2016, the USGS formally reorganized the Landsat archive into a tiered collection inventory structure in recognition of the need for consis- tent Landsat 1–8 sensor data and in anticipa- tion of future periodic reprocessing of the archive to reflect new sensor calibration and geolocation knowledge. Landsat Collections ensure that all Landsat Level-1 data are con- sistently calibrated and processed and retain traceability of data quality provenance. Bremerton Landsat Collection 2 introduces improvements that harness recent advance- ments in data processing, algorithm develop- ment, data access, and distribution capabili- N ties. Collection 2 includes Landsat Level-1 data for all sensors (including Landsat 9, Figure 1. Landsat 5 Collection 2 Level-1 top of atmosphere (TOA; left). Corresponding when launched) since 1972 and global Collection 2 Level-2 surface reflectance (SR; center) and surface temperature (ST [K]; right) Level-2 surface reflectance and surface images. temperature scene-based products for data acquired since 1982 starting with the Landsat Digital Elevation Models Thematic Mapper (TM) sensor era (fig. 1). The primary improvements of Collection 2 data include Collection 2 uses the 3-arc-second (90-meter) digital eleva- • rebaselining the Landsat 8 Operational Landsat Imager tion modeling sources listed and illustrated below. (OLI) Ground -
A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth
remote sensing Review A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth MohammadAli Hemati 1 , Mahdi Hasanlou 1 , Masoud Mahdianpari 2,3,* and Fariba Mohammadimanesh 2 1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14174-66191, Iran; [email protected] (M.H.); [email protected] (M.H.) 2 C-CORE, 1 Morrissey Road, St. John’s, NL A1B 3X5, Canada; [email protected] 3 Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada * Correspondence: [email protected] Abstract: With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection Citation: Hemati, M.; Hasanlou, M.; studies. -
NOAA TM GLERL-33. Categorization of Northern Green Bay Ice Cover
NOAA Technical Memorandum ERL GLERL-33 CATEGORIZATION OF NORTHERN GREEN BAY ICE COVER USING LANDSAT 1 DIGITAL DATA - A CASE STUDY George A. Leshkevich Great Lakes Environmental Research Laboratory Ann Arbor, Michigan January 1981 UNITED STATES NATIONAL OCEANIC AND Environmental Research DEPARTMENT OF COMMERCE AlMOSPHERlC ADMINISTRATION Laboratofks Philip M. Klutznick, Sacratary Richard A Frank, Administrator Joseph 0. Fletcher, Acting Director NOTICE The NOAA Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the NOAA Environmental Research Laboratories, or to this publication furnished by the NOAA Environmental Research Laboratories, in any advertising or sales promotion which would indicate or imply that the NOAA Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material men- tioned herein, or which has as its purpose an intent to cause directly or indirectly the advertized product to be used or purchased because of this NOAA Environmental Research Laboratories publication. ii TABLE OF CONTENTS Page Abstract 1. INTRODUCTION 2. DATA SOURCE AND DESCRIPTION OF STUDY AREA 2.1 Data Source 2.2 Description of Study Area 3. DATA ANALYSIS 3.1 Equipment 3.2 Approach 5 4. RESULTS 8 5. CONCLUSIONS AND RECOMMENDATIONS 15 6. ACKNOWLEDGEMENTS 17 7. REFERENCES 17 8. SELECTED BIBLIOGRAPHY 19 iii FIGURES Page 1. Area covered by LANDSAT 1 scene, February 13, 1975. 3 2. LANDSAT 1 false-color image, February 13, 1975, and trainin:: set locations (by group number). 4 3. Transformed variables (1 and 2) for snow covered land (group 13) plotted arouwl the group means for snow- covered ice (group 15). -
Panagiotis Karampelas Thirimachos Bourlai Editors Technologies for Civilian, Military and Cyber Surveillance
Advanced Sciences and Technologies for Security Applications Panagiotis Karampelas Thirimachos Bourlai Editors Surveillance in Action Technologies for Civilian, Military and Cyber Surveillance Advanced Sciences and Technologies for Security Applications Series editor Anthony J. Masys, Centre for Security Science, Ottawa, ON, Canada Advisory Board Gisela Bichler, California State University, San Bernardino, CA, USA Thirimachos Bourlai, WVU - Statler College of Engineering and Mineral Resources, Morgantown, WV, USA Chris Johnson, University of Glasgow, UK Panagiotis Karampelas, Hellenic Air Force Academy, Attica, Greece Christian Leuprecht, Royal Military College of Canada, Kingston, ON, Canada Edward C. Morse, University of California, Berkeley, CA, USA David Skillicorn, Queen’s University, Kingston, ON, Canada Yoshiki Yamagata, National Institute for Environmental Studies, Tsukuba, Japan The series Advanced Sciences and Technologies for Security Applications comprises interdisciplinary research covering the theory, foundations and domain-specific topics pertaining to security. Publications within the series are peer-reviewed monographs and edited works in the areas of: – biological and chemical threat recognition and detection (e.g., biosensors, aerosols, forensics) – crisis and disaster management – terrorism – cyber security and secure information systems (e.g., encryption, optical and photonic systems) – traditional and non-traditional security – energy, food and resource security – economic security and securitization (including associated -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
The Space-Based Global Observing System in 2010 (GOS-2010)
WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available. -
NASA Process for Limiting Orbital Debris
NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions ......................................................................................................................... -
Automated Cloud and Cloud Shadow Identification in Landsat MSS Imagery for Temperate Ecosystems
Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems Braaten, J. D., Cohen, W. B., & Yang, Z. (2015). Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems. Remote Sensing of Environment, 169, 128-138. doi:10.1016/j.rse.2015.08.006 10.1016/j.rse.2015.08.006 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Remote Sensing of Environment 169 (2015) 128–138 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems Justin D. Braaten a,⁎,WarrenB.Cohenb, Zhiqiang Yang a a Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, United States b Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR 97331, United States article info abstract Article history: Automated cloud and cloud shadow identification algorithms designed for Landsat Thematic Mapper (TM) and Received 14 October 2014 Thematic Mapper Plus (ETM+) satellite images have greatly expanded the use of these Earth observation data Received in revised form 27 July 2015 by providing a means of including only clear-view pixels in image analysis and efficient cloud-free compositing. Accepted 6 August 2015 In an effort to extend these capabilities to Landsat Multispectal Scanner (MSS) imagery, we introduce MSS clear- Available online 21 August 2015 view-mask (MSScvm), an automated cloud and shadow identification algorithm for MSS imagery. The algorithm fi Keywords: is speci c to the unique spectral characteristics of MSS data, relying on a simple, rule-based approach. -
Photographs Written Historical and Descriptive
CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District. -
A Global Land-Observing Program, Fact Sheet 023-03 (March 2003) 05/31/2006 12:58 PM
Landsat: A Global Land-Observing Program, Fact Sheet 023-03 (March 2003) 05/31/2006 12:58 PM Landsat: A Global Land-Observing Program Fact Sheet 023-03 (March 2003) || A Brief History of the Landsat Program || Characteristics of the Landsat System || || Applications of Landsat Data || Landsat Data Continuity Mission || Information || The Landsat Program is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) to gather Earth resource data using a series of satellites. NASA was responsible for developing and launching the spacecrafts. The USGS is responsible for flight operations, maintenance, and management of all ground data reception, processing, archiving, product generation, and distribution. A primary objective of the Landsat Program is to ensure a collection of consistently calibrated Earth imagery. Landsat's mission is to establish and execute a data acquisition strategy that ensures the repetitive acquisition of observations over the Earth's land mass, coastal boundaries, and coral reefs and to ensure that the data acquired are of maximum utility in supporting the scientific objective of monitoring changes in the Earth's land surface. || Top || Main Table of Contents || A Brief History of the Landsat Program In the mid-1960s, stimulated by success in planetary exploration using unmanned remote sensing satellites, the Department of the Interior, NASA, the Department of Agriculture, and others embarked on an ambitious initiative to develop and launch the first civilian Earth-observing satellite to meet the needs of resource managers and earth scientists. The USGS assumed responsibility for archiving the data acquired by the new program and for distributing the anticipated data product. -
Press Kit Pr°I§£L LANDSAT D RELEASE NO: 82-100
News National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 For Release IMMEDIATE Press Kit Pr°i§£L LANDSAT D RELEASE NO: 82-100 (NASA-News-Belease-82-100)- 1ANDSAT D TO ' • N82-26741 TEST THEHATIC HAPPEE, INAUGURATE -. CPEKATIONAL SYSTEM (National Aeronautics and Space f , Administration) 43 p...Avail;r ;> NASA .. ' ^ unclfa;s\. VW Scientific_and. Technical Inf CSCX_22A -00/43 _ 24227v V Contents GENERAL RELEASE 1 THE LANDSAT STORY 5 DESCRI PTION OF OPERATIONAL SYSTEM 16 PLANNING TO MEET USER NEEDS 17 MISSION DESCRIPTION. 18 LAUNCH VEHICLE DESCRIPTION 19 LANDSAT D FLIGHT SEQUENCE OF EVENTS 22 SPACECRAFT ACTI VATION . 24 SPACECRAFT DESCRI PTION 27 MULTI SPECTRAL SCANNER 32 THEMATIC MAPPER ............ 35 LANDSAT D GROUND PROCESSING SYSTEM 38 NASA LANDSAT D PROGRAM MANAGEMENT 40 CONTRACTORS 42 IWNSANews National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 For Release. Charles Redmond IMMEDIATE Headquarters, Washington, D.C. (Phone: 202/755-3680) James C. Elliott Goddard Space Flight Center, Greenbelt, Md. (Phone: 301/344-8955) Hugh Harris Kennedy Space Center, Fla. (Phone: 305/867-2468) RELEASE NO: 82-100 LANDSAT D TO TEST THEMATIC MAPPER, INAUGURATE OPERATIONAL SYSTEM NASA will launch the Landsat D spacecraft, a new generation Earth resources satellite, from the Western Space and Missile Center, Vandenberg Air Force Base, Calif., no earlier than 1:59 p.m. EOT July 9, 1982, aboard a new, up-rated Delta 3920 expend- able launch vehicle. Landsat D will incorporate two highly sophisticated sensors: the flight proven multispectral scanner (MSS), one of the sensors on the Landsat 1, 2 and 3 spacecraft; and a new instrument ex- pected to advance considerably the remote sensing capabilities of Earth resources satellites. -
Civilian Satellite Remote Sensing: a Strategic Approach
Civilian Satellite Remote Sensing: A Strategic Approach September 1994 OTA-ISS-607 NTIS order #PB95-109633 GPO stock #052-003-01395-9 Recommended citation: U.S. Congress, Office of Technology Assessment, Civilian Satellite Remote Sensing: A Strategic Approach, OTA-ISS-607 (Washington, DC: U.S. Government Printing Office, September 1994). For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP. Washington, DC 20402-9328 ISBN 0-16 -045310-0 Foreword ver the next two decades, Earth observations from space prom- ise to become increasingly important for predicting the weather, studying global change, and managing global resources. How the U.S. government responds to the political, economic, and technical0 challenges posed by the growing interest in satellite remote sensing could have a major impact on the use and management of global resources. The United States and other countries now collect Earth data by means of several civilian remote sensing systems. These data assist fed- eral and state agencies in carrying out their legislatively mandated pro- grams and offer numerous additional benefits to commerce, science, and the public welfare. Existing U.S. and foreign satellite remote sensing programs often have overlapping requirements and redundant instru- ments and spacecraft. This report, the final one of the Office of Technolo- gy Assessment analysis of Earth Observations Systems, analyzes the case for developing a long-term, comprehensive strategic plan for civil- ian satellite remote sensing, and explores the elements of such a plan, if it were adopted. The report also enumerates many of the congressional de- cisions needed to ensure that future data needs will be satisfied.