k

v

Contents

List of Contributors xxiii Foreword: Nanosatellite Space Experiment xxix Introduction by the Editors xxxv

1 I-1 A Brief History of Nanosatellites 1 Siegfried W. Janson 1.1 Introduction 1 1.2 Historical Nanosatellite Launch Rates 1 1.3 The First Nanosatellites 3 k 1.4 The Large Space Era 8 k 1.5 The New Space Era 12 1.5.1 Technology Development 18 1.5.2 Commercial Nanosatellites and Constellations 22 1.6 Summary 23 References 24

2 I-2a On-board Computer and Data Handling 31 Jaime Estela and Sergio Montenegro 2.1 Introduction 31 2.2 History 31 2.3 Special Requirements for Space Applications 34 2.4 Hardware 35 2.4.1 Components 35 2.4.2 Brief HistoryCOPYRIGHTED of On-board Computers 36 MATERIAL 2.4.3 Processors 37 2.4.3.1 Field Programmable Gate Array (FPGA) 38 2.4.4 Mass Memory 39 2.4.5 Bus 40 2.5 Design 41 2.5.1 System Architecture 41 2.5.2 Central Versus Distributed Processing 43 2.5.3 Design Criteria 44 2.5.4 Definition of Requirements 45

k k

vi Contents

2.5.5 Resource Estimation and Data Budget 45 2.5.5.1 Data Budget Analysis 47 2.5.6 Commanding 47 2.5.7 Telemetry 48 2.5.8 Time Generation 48 2.5.9 Handling of Errors 48 2.5.10 Radiation Effects 49 References 49

3 I-2b Operational Systems 51 Lucas Ramos Hissa and Rogerio Atem de Carvalho 3.1 Introduction 51 3.2 RTOS Overview 51 3.3 RTOS on On-board Computers (OBCs): Requirements for a Small Satellite 52 3.3.1 Requirements 54 3.4 Example Projects 55 3.5 Conclusions 56 References 59

4 I-2c Attitude Control and Determination 61 Willem H. Steyn and Vaios J. Lappas k 4.1 Introduction 61 k 4.2 ADCS Fundamentals 61 4.3 ADCS Requirements and Stabilization Methods 62 4.4 ADCS Background Theory 65 4.4.1 Coordinate Frame Definitions 65 4.4.2 Attitude Kinematics 65 4.4.3 Attitude Dynamics 66 4.5 Attitude and Angular Rate Determination 66 4.5.1 TRIAD Quaternion Determination 67 4.5.2 Kalman Rate Estimator 67 4.5.2.1 System Model 68 4.5.2.2 Measurement Model 68 4.5.3 Full-State Extended Kalman Filter Estimator 70 4.6 Attitude and Angular Rate Controllers 72 4.6.1 Detumbling Magnetic Controllers 72 4.6.2 Y-Momentum Wheel Controller 73 4.6.3 Three-axis Reaction Wheel Controller 74 4.7 ADCS Sensor and Actuator Hardware 75 4.7.1 Three-Axis Magnetometers 75 4.7.2 Sun Sensors 77 4.7.3 Star Trackers 77 4.7.4 MEMS Rate Sensors 78 4.7.5 Magnetorquers 79 4.7.6 Reaction/Momentum Wheels 80

k k

Contents vii

4.7.7 Orbit Control Sensors and Actuators 81 4.7.8 Integrated ADCS Modules 81 References 83

5 I-2d Propulsion Systems 85 Flavia Tata Nardini, Michele Coletti, Alexander Reissner, and David Krejci 5.1 Introduction 85 5.2 Propulsion Elements 86 5.3 Key Elements in the Development of Micropropulsion Systems 87 5.4 Propulsion System Technologies 90 5.4.1 Chemical Propulsion Technologies 90 5.4.1.1 Cold Gas Thruster 90 5.4.1.2 Monopropellant Engines 90 5.4.1.3 Bipropellant Engines 92 5.4.1.4 Solid Propellant Engines 92 5.4.2 Electric Propulsion Technologies 93 5.4.2.1 Resistojet 93 5.4.2.2 Gridded Ion Engine (GIE) 93 5.4.2.3 Hall Effect Thruster 94 5.4.2.4 Pulsed Plasma Thruster (PPT) and Vacuum Arc Thruster (VAT) 95 5.4.2.5 Colloid/Electrospray and Field-emission Thruster 96 k 5.5 Mission Elements 98 k 5.5.1 Orbit Change 98 5.5.2 Drag Compensation 99 5.5.3 Deorbiting 100 5.5.4 Attitude Control 101 5.6 Survey of All Existing Systems 101 5.7 Future Prospect 113 References 113

6 I-2e Communications 115 Nicolas Appel, Sebastian Rückerl, Martin Langer, and Rolf-Dieter Klein 6.1 Introduction 115 6.2 Regulatory Considerations 116 6.3 Satellite Link Characteristics 117 6.3.1 Digital Modulation 121 6.4 Channel Coding 123 6.4.1 Convolutional Codes 125 6.4.2 Block Codes 125 6.5 Data Link Layer 126 6.6 Hardware 128 6.6.1 Antennas 128 6.6.2 Oscillators 130 6.6.3 PLLs and Synthesizers 132 6.6.4 Mixers 135

k k

viii Contents

6.6.5 Receiver 137 6.6.6 Transmitter 137 6.6.7 Transceivers 138 6.7 Testing 138 6.7.1 Modulation Quality 138 6.7.2 Power Measurement 139 6.7.3 Spectrum Analysis 140 References 140

7 I-2f Structural Subsystem 143 Kenan Y.Sanl ¸ 𝚤türk, Murat Süer, and A. Rüstem Aslan 7.1 Definition and Tasks 143 7.2 Existing State-of-the-Art Structures for CubeSats 145 7.3 Materials and Thermal Considerations for Structural Design 150 7.4 Design Parameters and Tools 152 7.4.1 Structural Design Parameters 153 7.4.2 Thermal Design Considerations 157 7.5 Design Challenges 162 7.6 Future Prospects 163 References 164 k 8 I-2g Power Systems 167 k Marcos Compadre, Ausias Garrigós, and Andrew Strain 8.1 Introduction 167 8.2 Power Source: Photovoltaic Solar Cells and Solar Array 170 8.3 Energy Storage: Lithium-ion Batteries 172 8.4 SA-battery Power Conditioning: DET and MPPT 175 8.5 Battery Charging Control Loops 178 8.6 Bus Power Conditioning and Distribution: Load Converters and Distribution Switches 179 8.7 Flight Switch Subsystem 183 8.8 DC/DC Converters 183 8.8.1 Buck Converter 184 8.8.2 Boost Converter 185 8.8.3 SEPIC Converter 186 8.9 Power System Sizing: Power Budget, Solar Array, and Battery Selection 187 8.10 Conclusions 191 References 191

9 I-2h Thermal Design, Analysis, and Test 193 Philipp Reiss, Matthias Killian, and Philipp Hager 9.1 Introduction 193 9.1.1 Thermal Challenges 194 9.2 Typical Thermal Loads 194 9.2.1 Heat Exchange Calculation 195

k k

Contents ix

9.2.2 Thermal Environment in Earth Orbit 197 9.2.2.1 Direct Solar Radiation 197 9.2.2.2 Albedo Radiation 199 9.2.2.3 Earth Infrared Radiation 199 9.3 Active and Passive Designs 200 9.3.1 Surface Finishes 200 9.3.2 Insulation 201 9.3.3 Radiators 202 9.3.4 Interface Connections and Heat Pipes 203 9.3.5 Electrical Heaters 204 9.4 Design Approach and Tools 204 9.4.1 Numerical Methods 204 9.4.2 Modeling Approaches 205 9.4.2.1 Top-Down Approach 205 9.4.2.2 Bottom-Up Approach 206 9.4.3 Model Uncertainty and Margins 207 9.4.3.1 Modeling Uncertainty 207 9.4.3.2 Temperature Margins 208 9.4.4 Thermal Design Tools 208 9.5 Thermal Tests 208 9.5.1 Types of Thermal Test 209 k 9.5.1.1 Thermal Balance Test 209 k 9.5.1.2 Thermal-Vacuum Test 210 9.5.1.3 Thermal Cycle Test 210 9.5.2 Guidelines for Thermal-Vacuum Test Preparations 211 References 212

10 I-2i Systems Engineering and Quality Assessment 215 Lucas Lopes Costa, Geilson Loureiro, Eduardo Escobar Bürger, and Franciele Carlesso 10.1 Introduction 215 10.2 Systems Engineering Definition and Process 216 10.2.1 Architecture Development Process 219 10.3 Space Project Management: Role of Systems Engineers 222 10.4 ECSS and Other Standards 225 10.5 Document, Risk Control, and Resources 228 10.6 Changing Trends in SE and Quality Assessment for Nanosatellites 233 References 233

11 I-2j Integration and Testing 235 Eduardo Escobar Bürger, Geilson Loureiro, and Lucas Lopes Costa 11.1 Introduction 235 11.1.1 Integration 236 11.1.2 Testing 236 11.2 Overall Tasks 236 11.2.1 Integration Tasks 237

k k

x Contents

11.2.2 Testing Tasks 239 11.2.2.1 Functional Tests 239 11.2.2.2 Mass Properties 240 11.2.2.3 Environmental Tests 240 11.3 Typical Flow 241 11.4 Test Philosophies 242 11.4.1 Test Stages 242 11.4.2 Test Models 242 11.4.3 Test Philosophies 243 11.5 Typical System Integration Process 244 11.6 Typical Test Parameters and Facilities 244 11.6.1 Typical Test Parameters 244 11.6.2 Typical Test Facilities 245 11.7 Burden of Integration and Testing 245 11.7.1 I&T Costs 245 11.7.2 I&T Schedule 248 11.8 Changing Trends in Nanosatellite Testing 249 References 250

12 I-3a Scientific Payloads 251 Anna Gregorio k 12.1 Introduction 251 k 12.2 Categorization 252 12.3 Imagers 254 12.3.1 MCubed-2/COVE 254 12.3.2 SwissCube 254 12.3.3 AAReST 255 12.4 X-ray Detectors 256 12.4.1 MinXSS 256 12.4.2 HaloSat 257 12.4.3 HERMES 257 12.4.4 CXBN 257 12.4.5 MiSolFA 258 12.5 Spectrometers 259 12.5.1 SOLSTICE 259 12.5.2 OPAL 259 12.5.3 Lunar IceCube/BIRCHES 261 12.5.4 GRIFEX 261 12.5.5 HyperCube 262 12.6 Photometers 262 12.6.1 XPS 262 12.6.2 BRITE – Photometer 263 12.6.3 ExoPlanet and ASTERIA 264 12.7 GNSS Receivers 265 12.7.1 CYGNSS 266

k k

Contents xi

12.7.2 CADRE 267 12.7.3 3Cat 2 267 12.8 Microbolometers 267 12.8.1 CSIM 268 12.9 Radiometers 269 12.9.1 TEMPEST 269 12.10 Radar Systems 270 12.10.1 RAX 270 12.10.2 Radar Altimeters and SAR (EO) 272 12.10.3 SRI-Cooperative Institute for Research in Environmental Sciences (CIRES) 274 12.11 Particle Detectors 274 12.11.1 REPTile 274 12.11.2 EPISEM 275 12.11.3 FIRE 276 12.12 Plasma Wave Analyzers 277 12.12.1 CADRE/WINCS 277 12.12.2 Dynamic Ionosphere CubeSat Experiment (DICE) 278 12.12.3 INSPIRE/CVHM 279 12.13 Biological Detectors 280 12.13.1 OREOS 280 12.14 Solar Sails 283 k 12.15 Conclusions 283 k References 283

13 I-3b In-orbit Technology Demonstration 291 Jaime Estela 13.1 Introduction 291 13.2 Activities of Space Agencies 292 13.2.1 NASA 292 13.2.2 ESA 292 13.2.3 DLR 295 13.3 Nanosatellites 295 13.3.1 IOV/IOD Providers 296 13.3.2 SSTL 296 13.3.3 Alba Orbital 296 13.3.4 GAUSS Srl 297 13.3.5 Open Cosmos 297 13.3.6 Deep Space ESA Calls 297 13.4 Microsatellites 298 13.4.1 BIRD and TET 299 13.4.2 TDS 300 13.4.3 Euro IOD 301 13.5 ISS 301 13.5.1 NanoRacks 301 13.5.2 Bartolomeo 304

k k

xii Contents

13.5.3 ICE Cubes 305 13.5.4 Starlab 305 References 306

14 I-3c Nanosatellites as Educational Projects 309 Merlin F. Barschke 14.1 Introduction 309 14.2 Satellites and Project-based Learning 309 14.2.1 A Brief History of Educational Satellite Projects 310 14.2.2 Project Classification 311 14.3 University Satellite Programs 312 14.3.1 Aalborg University 312 14.3.2 Technische Universität Berlin 313 14.3.3 University of Tokyo 315 14.4 Outcome and Success Criteria 316 14.5 Teams and Organizational Structure 318 14.6 Challenges and Practical Experiences 318 14.6.1 Staff Turnover 319 14.6.2 Development of Multidisciplinary Skills 319 14.6.3 External Experts 319 14.6.4 Project Documentation 319 k 14.6.5 Testing 320 k 14.6.6 Software 320 14.6.7 Ground Station 320 14.7 From Pure Education to Powerful Research Tools 321 References 321

15 I-3d Formations of Small Satellites 327 Klaus Schilling 15.1 Introduction 327 15.2 Constellations and Formations 327 15.2.1 Definitions for Multivehicle Systems 328 15.3 Orbit Dynamics 328 15.4 Satellite Configurations 331 15.4.1 Definition of Walker Delta Pattern Constellation 331 15.5 Relevant Specific Small Satellite Technologies to Enable Formations 332 15.5.1 Intersatellite Communication 332 15.5.2 Relative Navigation 333 15.5.3 Attitude and Orbit Control 333 15.6 Application Examples 334 15.7 Test Environment for Multisatellite Systems 336 15.8 Conclusions for Distributed Nanosatellite Systems 337 Acknowledgments 338 References 338

k k

Contents xiii

16 I-3e Precise, Autonomous Formation Flight at Low Cost 341 Niels Roth, Ben Risi, Robert E. Zee, Grant Bonin, Scott Armitage, and Josh Newman 16.1 Introduction 341 16.1.1 Formation Flight Background 341 16.2 Mission Overview 342 16.3 System Overview 343 16.3.1 Propulsion 346 16.3.2 Intersatellite Link 347 16.3.3 Algorithms 348 16.3.4 OASYS 348 16.3.5 RelNav 349 16.3.6 FIONA 349 16.4 Launch and Early Operations 350 16.4.1 Drift Recovery and Station Keeping 350 16.5 Formation Control Results 353 16.6 Conclusion 360 Acknowledgments 360 References 360

17 I-4a Launch Vehicles—Challenges and Solutions 363 Kaitlyn Kelley k 17.1 Introduction 363 k 17.2 Past Nanosatellite Launches 365 17.3 Launch Vehicles Commonly Used by Nanosatellites 367 17.4 Overview of a Typical Launch Campaign 368 17.5 Launch Demand 371 17.6 Future Launch Concepts 372 References 374

18 I-4b Deployment Systems 375 A. Rüstem Aslan, Cesar Bernal, and Jordi Puig-Suari 18.1 Introduction 375 18.2 Definition and Tasks 375 18.3 Basics of Deployment Systems 376 18.3.1 POD Technical Requirements 376 18.3.2 POD Testing Requirements 377 18.4 State of the Art 377 18.4.1 P-POD 377 18.4.2 T-POD 379 18.4.3 XPOD Separation System 380 18.4.4 ISIPOD CubeSat Deployers 382 18.4.5 QuadPack ISIS Deployer 384 18.4.6 SPL/DPL/TPL/6U/12U of Astro- Und Feinwerktechnik Adlershof GmbH (Astrofein) 386 18.4.7 Canisterized Satellite Dispenser (CSD) 389

k k

xiv Contents

18.4.8 JEM-Small Satellite Orbital Deployer (J-SSOD) 392 18.4.9 Tokyo Tech Separation System and AxelShooter 394 18.5 Future Prospects 395 Acknowledgments 396 References 396

19 I-4c Mission Operations 399 Chantal Cappelletti 19.1 Introduction 399 19.2 Organization of Mission Operations 400 19.3 Goals and Functions of Mission Operations 401 19.3.1 Mission Database Operations Functions 403 19.3.2 Mission Operations Support Functions 403 19.4 Input and Output of Mission Operations 404 19.4.1 MAR 404 19.4.2 MOCD 405 19.4.3 SSUM 405 19.5 MOP 406 19.5.1 Suggestions to Write a MOP 407 19.6 Costs and Operations 409 References 414 k Further Reading 415 k

20 I-5 Mission Examples 417 Kelly Antonini, Nicolò Carletti, Kevin Cuevas, Matteo Emanuelli, Per Koch, Laura León Pérez, and Daniel Smith 20.1 Introduction 417 20.2 Mission Types 418 20.2.1 Educational Missions 418 20.2.2 Technology Demonstration Missions 418 20.2.3 Science Missions 419 20.2.4 Commercial Missions 419 20.3 Mission Examples 420 20.3.1 Educational Missions 420 20.3.1.1 Delphini-1 420 20.3.1.2 FACSAT 420 20.3.2 Technology Demonstration 422 20.3.2.1 GOMX-3 422 20.3.2.2 GOMX-4 424 20.3.2.3 CubeL 426 20.3.3 Science Missions 429 20.3.3.1 DISCOVERER 429 20.3.3.2 TESER 429 20.3.4 Commercial Missions 431 20.3.4.1 STARLING 431

k k

Contents xv

20.3.4.2 Three Diamonds and Pearls 432 20.4 Constellations 433 20.4.1 STARLING 433 20.4.1.1 Constellation’s Operational System 433 20.4.1.2 Orbit Determination and Propagators 435 20.4.1.3 Constellation Control System 435 20.4.2 Sky and Space Global 436 20.5 Perspective 437 References 438

21 II-1 Ground Segment 441 Fernando Aguado Agelet and Alberto González Muíño 21.1 Introduction 441 21.2 Ground Segment Functionalities 441 21.3 Ground Segment Architecture 442 21.4 Ground Station Elements 444 21.4.1 Radio Frequency Equipment 444 21.4.2 Structural Elements and Rotor 447 21.5 Ground Segment Software 449 21.5.1 Orbit Propagation Software 449 21.5.2 Tracking Software 450 k 21.5.3 Communications Software 450 k 21.5.4 Mission Planning Tools 450 21.5.5 Mission Operations Console 450 21.5.6 Telemetry Analysis Tools 451 21.6 Ground Segment Operation 451 21.6.1 Usage Planning 451 21.6.2 Communication Access Execution 451 21.7 Future Prospects 452 21.7.1 SDR 452 21.7.2 Ground Station Automation 453 References 455

22 II-2 Ground Station Networks 457 Lucas Rodrigues Amaduro and Rogerio Atem de Carvalho 22.1 Introduction 457 22.2 Technological Challenges 457 22.3 Visibility Clash Problems of Stations and Satellites 458 22.4 The Distributed Ground Station Network 459 22.5 Infrastructure 459 22.6 Planning and Scheduling 460 22.7 Generic Software Architecture 460 22.8 Example Networks 462 22.9 Traditional Ground Station Approach 462 22.10 Heterogeneous Ground Station Approach 464

k k

xvi Contents

22.11 Homogeneous Ground Station Approach 466 22.11.1 Automation and Optimization 466 22.12 Conclusions 469 References 469

23 II-3 Ground-based Satellite Tracking 471 Enrico Stoll, Jürgen Letschnik, and Christopher Kebschull 23.1 Introduction 471 23.2 Orbital Element Sets 472 23.2.1 State Vectors 472 23.2.2 Two-line Elements 473 23.2.3 Keplerian Elements 474 23.3 Tracklet Generation from Ground Measurements 475 23.3.1 Perturbations 475 23.3.2 Sensor Types 476 23.3.3 Orbit Determination 478 23.4 Tracking CubeSats with Ground Stations 481 23.4.1 Vector Rotations 481 23.4.2 TLE to Keplerian Elements 482 23.4.3 Keplerian Elements to Perifocal Coordinates 482 23.4.4 Perifocal to ECI Coordinates 483 k 23.4.5 ECI to ECF coordinates 483 k 23.4.6 ECF to Ground Station AzEl Coordinates 484 23.5 Orbit Propagation 485 23.5.1 Numerical Orbit Propagation 485 23.5.2 Analytical Orbit Propagation 486 23.6 Principle of Operations of Ground Stations 487 23.6.1 Fundamentals of Antenna Technology 487 23.6.2 Tracking Software Examples and Features 489 23.6.3 Challenges in CubeSat Tracking 491 23.7 Summary 492 References 493

24 II-4a AMSAT 495 Andrew Barron (ZL3DW) 24.1 Introduction 495 24.2 Project OSCAR 496 24.2.1 OSCAR 1 Satellite (1961) 496 24.2.2 OSCAR 2 Satellite (1962) 497 24.2.3 OSCAR 3 Satellite (1965) 497 24.2.4 OSCAR 4 Satellite (1965) 498 24.3 AMSAT Satellite Designations 499 24.4 Other Notable AMSAT and OSCAR Satellites 500 24.4.1 OSCAR 7 Satellite, AO-7 (1974) 500 24.4.2 UoSAT-1 Satellite (UO-9) (1981) 500

k k

Contents xvii

24.4.3 ISS (ARISS) (1998–Present) 501 24.4.4 OSCAR 40 (AO-40) (2000) 502 24.4.5 SuitSat (AO-54) (2006) 502 24.5 The Development of CubeSats 503 24.6 FUNcube Satellites 504 24.7 Fox Satellites 505 24.8 GOLF Satellites 505 24.9 The IARU and ITU Resolution 659 506 References 507

24 II-4b New Radio Technologies 508 Andrew Barron (ZL3DW) 24.10 Introduction 508 24.11 SDR Space Segment 509 24.12 SDR Ground Segment 510 24.13 Modern Transmitter Design 511 Reference 513

25 III-1a Cost Breakdown for the Development of Nanosatellites 515 Katharine Brumbaugh Gamble 25.1 Introduction 515 k 25.2 Recurring Costs 517 k 25.2.1 Spacecraft Hardware 517 25.2.1.1 Attitude Determination and Control System (ADACS) 517 25.2.1.2 Avionics 519 25.2.1.3 Structure and Payload 520 25.2.2 Integration and Testing 520 25.2.3 Launch, Operations, and Personnel 521 25.3 Nonrecurring Costs 521 25.3.1 Spacecraft Testing 522 25.3.2 Integration and Testing Facilities 522 25.3.3 Ground Station 523 25.3.4 Personnel 523 25.4 Satellite Cost-estimating Models 523 25.4.1 Nonparametric Cost-estimating Methods 524 25.4.2 Small Satellite Cost Model 525 25.4.3 NASA Air Force Cost Model (NAFCOM) 526 25.4.4 Other Models 527 25.5 Risk Estimation and Reduction 528 25.6 Conclusions 530 References 530

26 III-1b Launch Costs 533 Merlin F. Barschke 26.1 Introduction 533

k k

xviii Contents

26.2 Launching Nanosatellites 533 26.2.1 Dedicated Launch 534 26.2.2 Piggyback Launch 534 26.2.3 Rideshare or Cluster Launch 535 26.2.4 ISS Deployment 535 26.2.4.1 Present Launches 535 26.2.4.2 Future Developments 537 26.3 Launch Sites 539 26.4 Launch Milestones 539 26.4.1 Launch Contract 539 26.4.2 Payload ICD 540 26.4.3 Hardware Delivery and Launch Campaign 540 26.5 Launch Cost 540 References 541

27 III-2a Policies and Regulations in Europe 545 Neta Palkovitz 27.1 Introduction 545 27.2 International Space Law 545 27.2.1 General – What Is International Space Law? 545 27.2.2 Key Treaty Provisions 546 k 27.2.2.1 Freedom of Exploration and Use of Outer Space and Possible Restrictions 546 k 27.2.2.2 State Responsibility 547 27.2.2.3 International Liability 548 27.2.2.4 Registration of Space Objects 549 27.3 National Laws and Practices in EU Member States 550 27.3.1 General – What are National Space Laws? 550 27.3.2 Regulations, Official Forms, and Interpreting Guidelines 551 27.3.3 Additional International Legal Instruments and Their Relevance to National Space Laws 551 27.3.4 Applicability 552 27.3.5 Examples of European States that Made Specific Consideration for Small Satellite Missions in Their National Space Laws and Policies, with Respect to Third-party Liability Insurance 552 27.3.5.1 Third-party Liability Insurance and Other Insurance Policies 552 27.3.5.2 Examples for National Space Laws and Policies in Europe, Focusing on Small Satellites and Insurance Requirements 553 27.4 Future Regulation and Prospects 554 References 555

28 III-2b Policies and Regulations in North America 557 Mike Miller and Kirk Woellert 28.1 Introduction 557 28.2 Governing Treaties and Laws 558 28.2.1 The Space Treaties and International Conventions 558

k k

Contents xix

28.2.2 International Telecommunications Union/International Organization 560 28.2.3 Domestic Policy Within the USA 561 28.3 Orbital Debris Mitigation 561 28.4 Space Traffic Management 563 28.5 Licensing of Radio Transmission from Space 566 28.5.1 Licensing Authorities 566 28.5.2 NTIA Origins and Range of Authority 566 28.5.3 FCC Origins and License Types 566 28.5.4 Choosing a Frequency 567 28.5.5 FCC License Fee Exemption – Government Entities 568 28.5.6 Coordination of Use of Amateur Frequencies 568 28.5.7 Amateur Licensing for Satellite Transmitters 568 28.5.8 Experimental Licensing for Satellite Transmitters 569 28.5.9 Part 25 Licensing for Satellite Transmitters 569 28.6 Licensing for Remote Sensing Activities from Space 570 28.6.1 Licensing Requirements 571 28.6.2 Fees, Timeline, and Post Issuance Obligations 571 28.7 Export Control Laws 571 28.7.1 General Principles, Requirements, and Common Misconceptions 572 28.7.2 Export Control Reform 573 28.8 Conclusion 575 k 28.8.1 International Efforts 575 k 28.8.2 US Efforts 576 28.8.3 New Space 576 References 577

29 III-2c International Organizations and International Cooperation 583 Jean-Francois Mayence 29.1 Introduction 583 29.2 The United Nations and Affiliated Organizations 584 29.2.1 General Considerations 584 29.2.2 UNCOPUOS and Space Law 585 29.3 International Telecommunications Union 589 29.4 Other United Nations Agencies and Bodies 590 29.4.1 UNITAR/UNOSAT 591 29.4.2 UNESCO 591 29.4.3 UNDP 592 29.4.4 UNEP 592 29.4.5 Other UN Agencies and Bodies 592 29.5 Non-UN Organizations 593 29.5.1 UNIDROIT 593 29.5.2 NATO and Military Nanosatellites 594 29.5.3 Intergovernmental Agreement on the International Space Station 595 29.6 Main Non-European Spacefaring Nations 597 29.6.1 USA 598

k k

xx Contents

29.6.2 Russia 598 29.6.3 India 598 29.6.4 Canada 599 29.6.5 Japan 599 29.6.6 China 599 29.6.7 Developing Countries 599 29.7 Conclusions 600 References 601

30 III-3a Economy of Small Satellites 603 Richard Joye 30.1 Introduction 603 30.2 Rethinking the Value Chain 603 30.3 A Hybrid Small Satellite Value Chain 604 30.3.1 Irreplaceability of Key Players 605 30.3.2 Interdependencies Between Small Satellite Industry Players 606 30.3.2.1 Startups Doing Business with Startups 607 30.3.3 Some Segments are Passive or Only Planting Seeds 608 30.4 Evolution, Not Revolution? 611 30.5 The Economics at Play 612 30.6 Satellite Manufacturers 612 k 30.7 Launch Service Providers 614 k 30.8 Satellite Operators 615 30.9 Satellite Servicing Providers 616 30.10 Data and Solution Providers 616 30.11 A Shift Toward New Models 617 References 618 Further Reading 618

31 III-3b Economics and the Future 621 Richard Joye 31.1 Introduction 621 31.2 Themes Shaping the Space Industry 622 31.2.1 Privatization of Space Activities 622 31.2.2 Making Space Accessible and Affordable 623 31.3 Megatrends 624 31.3.1 Launchers 624 31.3.2 Constellations 627 31.3.3 On-orbit and In-space Operations 628 31.3.4 Data 631 31.4 Conclusion: The Space Industry Is in Mutation 632 Further Reading 632

k k

Contents xxi

32 III-3c Networks of Nanosatellites 635 Richard Joye 32.1 Introduction 635 32.2 Why Networks? 635 32.2.1 Background: Networks are Not New 636 32.2.2 LEO and MEO Networks 637 32.2.3 Constellations: One Type of Network 637 32.2.4 The Raison d’être of Networks of Small Satellites 639 32.2.5 Existing Networks 640 32.3 Opportunities for Networks of Nanosatellites 641 32.3.1 Network Trends 641 32.3.1.1 Telecommunication 641 32.3.1.2 Earth Observation/Monitoring (EO) 643 32.3.2 Nanosatellites in This Framework 644 32.4 Challenges and Issues 646 32.4.1 Overcapacity 646 32.4.2 Lack of Launch Opportunities 646 32.4.3 Space Debris 647 32.4.4 Regulatory 647 32.4.4.1 Conclusion: Networks of Nanosatellites are a Game-changing Technology 648 Reference 648 k Further Reading 648 k List of Existing and Upcoming Networks of Satellites – January 2018, Updated March 2019 649

Index 663

k k

k k

k