Paper Session I-A - Risks and Trade-Offs for Unproven Launch Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amateur-Satellite Service
Amateur-Satellite Service 1 26/11/2012 Some facts about the amateur-satellite service • Began in 1961 • Pioneered low-cost satellite technology • First privately funded space satellites • First satellite search & rescue (OSCAR 6 & 7) • First inter-satellite transmissions • Early tele-medicine transmissions • Pioneered distributed engineering 2 26/11/2012 Amateur-satellite organizations (by country) • Argentina AMSAT-LU • Australia AMSAT-Australia • Austria AMSAT-OE • Bermuda AMSAT-BDA • Brazil BRAMSAT • Chile AMSAT-CE • Denmark AMSAT-OZ • Germany AMSAT-DL • Finland AMSAT-OH • France AMSAT-France • Israel AMSAT-Israel • Italy AMSAT-Italia 3 26/11/2012 Amateur-satellite organizations (by country)…continued • Korea KITSAT Project • Mexico AMSAT-Mexico • New Zealand AMSAT-ZL • Qatar AMSAT-Qatar • Japan JAMSAT • North America AMSAT-NA • Russia AMSAT-R • South Africa AMSAT-SA • Spain AMSAT-URE • Sweden AMSAT-Sweden • United Kingdom AMSAT-UK • USA, Canada AMSAT-NA 4 26/11/2012 Co-operation with universities to develop & construct amateur-satellites Amateur satellites have been designed and constructed by university students with the help of local amateurs and amateur-satellite organizations. Some examples: ◊ Stellenbosch University (South Africa) ◊ University of Surrey (UK) ◊ University of Mexico ◊ Weber State University (USA) 5 26/11/2012 Student satellite project 6 26/11/2012 Orbiting Satellite Carrying Amateur Radio (OSCARs) Early satellite projects • April 1959 Concept of a satellite built by and for amateurs • OSCAR I Dec 1961 - Jan 1962, -
Satellite Situation Report
NASA Office of Public Affairs Satellite Situation Report VOLUME 17 NUMBER 6 DECEMBER 31, 1977 (NASA-TM-793t5) SATELLITE SITUATION~ BEPORT, N8-17131 VOLUME 17, NO. 6 (NASA) 114 F HC A06/mF A01 CSCL 05B Unclas G3/15 05059 Goddard Space Flight Center Greenbelt, Maryland NOTICE .THIS DOCUMENT HAS'BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS' ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. OFFICE OF PUBLIC AFFAIRS GCDDARD SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION VOLUME 17 NO. 6 DECEMBER 31, 1977 SATELLITE SITUATION REPORT THIS REPORT IS PUBLIShED AND DISTRIBUTED BY THE OFFICE OF PUBLIC AFFAIRS, GSFC. GODPH DRgP2 FE I T ERETAO5MUJS E SMITHSONIAN ASTRCPHYSICAL OBSERVATORY. SPACEFLIGHT TRACKING AND DATA NETWORK. NOTE: The Satellite Situation Report dated October 31, 1977, contained an entry in the "Objects Decayed Within the Reporting Period" that 1977 042P, object number 10349, decayed on September 21, 1977. That entry was in error. The object is still in orbit. SPACE OBJECTS BOX SCORE OBJECTS IN ORBIT DECAYED OBJECTS AUSTRALIA I I CANACA 8 0 ESA 4 0 ESRO 1 9 FRANCE 54 26 FRANCE/FRG 2 0 FRG 9 3 INCIA 1 0 INDONESIA 2 0 INTERNATIONAL TELECOM- MUNICATIONS SATELLITE ORGANIZATION (ITSO) 22 0 ITALY 1 4 JAPAN 27 0 NATC 4 0 NETHERLANDS 0 4 PRC 6 14 SPAIN 1 0 UK 11 4 US 2928 1523 USSR 1439 4456 TOTAL 4E21 6044 INTER- CBJECTS IN ORIT NATIONAL CATALOG PERIOD INCLI- APOGEE PERIGEE TQANSMITTTNG DESIGNATION NAME NUMBER SOURCE LAUNCH MINUTES NATION KM. -
Peter Gülzow, DB2OS 2020-06-05 © AMSAT-DL OSCAR-10 (P3-B) OSCAR-13 (P3-C) OSCAR-40 (P3-D)
Peter Gülzow, DB2OS 2020-06-05 © AMSAT-DL OSCAR-10 (P3-B) OSCAR-13 (P3-C) OSCAR-40 (P3-D) OSCAR-100 (P4-A) AMSAT Phase 4 = GEO The meaning of Es'hail “The story behind the name Es’hail (Canopus) is the name of a star which becomes visible in the night sky of the Middle East as summer turns to autumn. Traditionally, the sighting of Es’hail brings happiness as it means that winter is coming and that good weather will soon be with us. We hope that the arrival of Es’hailSat will equally be beneficial for the satellite community.” (from Es’hailSat: Follow the star) Canopus /kəˈnoʊpəs is the brightest star in the southern constellation of Carina, and is located near the western edge of the constellation around 310 light-years from the Sun. Its proper name is generally considered to originate from the mythological Canopus, who was a navigator for Menelaus, king of Sparta. H E Abdullah bin Hamad Al Attiyah, A71AU, Chairman of the Administrative Control and Time line Transparency Authority, who is also the Chairman of the Qatar Amateur Radio 1001+ arabian nights… Society (QARS) during the Qatar international amateur radio festival in December 2012. 2012 AMSAT-DL meets QARS | (DB2OS @ International Amateur Radio Festival in Qatar) | 2013 Es’hailSat - | Qatar Satellite Company | (idea, concept, design requirements, RFI, meetings with potential | suppliers, RFP, finalisiation of requirements) | 2016 Kick-Off at MELCO Japan | (Technical presentations, Requirements review, Critical Design Review, | Design Validation) | 2018 November 15th launch with SpaceX Falcon 9 2012 Qatar Ham Radio Festival Executives from Qatar’s Es’hailSat and Japan’s Mitsubishi Electric Space Systems (MELCO) in Kamakura, outside of Tokyo, Japan, to observe the vacuum chamber test of Es'hail-2. -
Low-Cost Wireless Internet System for Rural India Using Geosynchronous Satellite in an Inclined Orbit
Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Timothy Pratt, Chair Jeffrey H. Reed J. Michael Ruohoniemi April 28, 2011 Blacksburg, Virginia Keywords: Internet, Low-cost, Rural Communication, Wireless, Geostationary Satellite, Inclined Orbit Copyright 2011, Karan Desai Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai ABSTRACT Providing affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user. -
The Future of Amateur Radio Satellites in the Cubesat
The Future of Amateur Radio Satellites in the CubeSat Era The Radio Amateur Satellite Corporation (AMSAT) seeks to place an ongoing series of 3U or 6U satellites into highly elliptical orbits to provide long duration communications service to the worldwide amateur radio community. AMSAT's technical challenges in preparing a HEO satellite mission are very similar to what is required for Lunar or Interplanetary CubeSat missions, including harsh thermal and radiation environments, little or no magnetic field to torque against, and challenging communications links, which make this mission very different from the many LEO CubeSats that have been built and launched by other organizations. AMSAT is seeking partnerships with other organizations to demonstrate new technologies in High Earth Orbit, to carry low cost scientific instruments into HEO and to qualify for NASA sponsored launches into Geosynchronous Transfer Orbit or other high altitude orbits whenever such an opportunity occurs. Radio Amateurs have been building and launching small satellites for over 50 years. OSCAR-1 was launched on December 12, 1961 as a secondary payload on the Thor- Agena rocket that launched the US Air Force Discoverer-36 mission. OSCAR-1 was the first satellite to be deployed as a secondary payload from a launch vehicle. The bureaucratic efforts required to secure permission to launch OSCAR-1 greatly exceeded the effort required to build the satellite and established a precedent for all subsequent secondary payload launches of the past five decades. OSCAR stands for “Orbiting Satellite Carrying Amateur Radio”. Today many agencies, laboratories, universities and high schools are building and launching dozens of small satellites every year, but it all started with OSCAR-1 in 1961. -
Realizing Resilient Tactical Networks with Maximum Government Control on High-Throughput Satellites
WHITE PAPER Realizing Resilient Tactical Networks with Maximum Government Control on High-throughput Satellites 1 Wide-beam connectivity is an essential aspect of military satellite communications and High Throughput Satellite (HTS) technology is proving to be ideally suited for many Government applications. While most satellite operators offer closed HTS architectures that are vendor-locked with very little control offered to users, the Intelsat Epic Next Generation (Epic) HTS architecture is enterprise- grade, open architecture and vendor-agnostic. Intelsat Epic allows Government and military access to bandwidth-efficient, higher data throughputs on a global-scale via a wide variety of user-chosen waveforms, modems and antennas. Intelsat is proud to present the next generation of satellite communications that features higher data throughput rates and security while offering cost-efficiencies across the board. Introduction High Throughput Satellites (HTS) have been the center of solutions. Interoperability between the various military attention for the past five years. It is important to note that branches, allied, and coalition forces continues to be a most of these systems have been purpose-built solutions to challenge. Finally, most military and government users require service homogeneous sets of users via closed architectures. operational coverage in remote and austere regions such Systems such as ViaSat Exede, Inmarsat Global Express, Hughes as deserts, jungles, and oceans—well outside of population Jupiter, and Eutelsat KA-SAT require new investments in centers for which these closed architectures are optimized. proprietary modem technologies and service architectures. These closed systems offer star-only connectivity and keep With the disconnects between these closed HTS solutions and quality of service control with the service provider, not the end the challenges faced by the Government, it is no wonder that users. -
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12Th STREET S.W
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12th STREET S.W. WASHINGTON D.C. 20554 News media information 202-418-0500 Internet: http://www.fcc.gov (or ftp.fcc.gov) TTY (202) 418-2555 DA No. 20-883 Report No. SAT-01490 Friday August 14, 2020 Satellite Policy Branch Information Actions Taken The Commission, by its International Bureau, took the following actions pursuant to delegated authority. The effective date of these actions is the release date of this Notice, except where an effective date is specified. SAT-MPL-20200401-00029 E S3048 New Skies Satellites B.V. Modification to PDR/PPL Grant of Authority Effective Date: 06/19/2020 Nature of Service: Fixed Satellite Service On August 11, 2020, the Satellite Division reissued the market access conditions for the NSS-6 space station to reflect a 0.3º degree change in orientation of one of the satellite's beams. Grant of this change was requested pursuant to 25.117(h)(2) of the Commission's rules and became effective on June 19, 2020. SAT-STA-20200624-00082 E S2960 Intelsat License LLC, as debtor-in-possession Special Temporary Authority Grant of Authority Effective Date: 08/13/2020 On August 13, 2020, the Satellite Division granted, with conditions, the request of Intelsat License LLC as debtor-in-possession (Intelsat) for special temporary authority, for an additional period of 180 days, to continue to operate a C/Ku-band satellite, the JCSAT-RA space station, at the 168.9º E.L. orbital location to provide fixed-satellite service in the 3940-4200 MHz (space-to-Earth), 6225-6485 MHz (Earth-to-space), 12.2-12.75 GHz (space-to-Earth), and 13.75-14.5 GHz (Earth-to-space) frequency bands. -
In the Matter of ) ) Expanding Flexible Use of the ) WT Docket No
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 _______________________________________ ) In the Matter of ) ) Expanding Flexible Use of the ) WT Docket No. 20-443 12.-12.7 GHz Band ) ) Expanding Flexible Use in Mid-Band Spectrum ) GN Docket No. 17-183 Between 3.7-24 GHz ) ) ) REPLY COMMENTS OF DISH NETWORK CORPORATION Jeff Blum, Executive Vice President, Pantelis Michalopoulos External & Legislative Affairs Christopher Bjornson Alison Minea, Director & Senior Counsel Andrew M. Golodny Hadass Kogan, Director & Senior Counsel Travis West DISH NETWORK CORPORATION STEPTOE & JOHNSON LLP 1110 Vermont Avenue, N.W., Suite 450 1330 Connecticut Avenue, N.W. Washington, D.C. 20005 Washington, D.C. 20036 (202) 463-3702 (202) 429-3000 Counsel for DISH Network Corporation July 7, 2021 Table of Contents I. INTRODUCTION AND SUMMARY .............................................................................. 1 II. A BROAD SPECTRUM OF PUBLIC INTEREST AND BUSINESS ENTITIES, INCLUDING DISINTERESTED ENTITIES, SUPPORTS 5G IN THE BAND ............. 7 III. THE PROPOSAL’S FEW OPPONENTS DO NOT CLOSE THE DOOR TO 5G IN THE BAND .................................................................................................................. 9 IV. SHARING IS EMINENTLY FEASIBLE ....................................................................... 10 A. Sharing Is Possible Between Higher-Power Two-Way Terrestrial Services and DBS ............................................................................................................... 10 -
ESPA Ring Datasheet
PAYLOAD ADAPTERS | ESPA ESPA THE EVOLVED SECONDARY PAYLOAD ADAPTER ESPA mounts to the standard NSSL (formerly EELV) interface bolt pattern (Atlas V, Falcon 9, Delta IV, OmegA, Vulcan, Courtesy of Lockheed Martin New Glenn) and is a drop-in component in the launch stack. Small payloads mount to ESPA ports featuring either a Ø15-inch bolt circle with 24 fasteners or a 4-point mount with pads at each corner of a 15-inch square; both of these interfaces have become small satellite standards. ESPA is qualified to carry 567 lbs (257 kg), and a Heavy interface Courtesy of NASA (with Ø5/16” fastener hardware) has been introduced with a capacity of 991 lbs (450 kg). All small satellite mass capabilities require the center of gravity (CG) to be within 20 inches (50.8 cm) of the ESPA port surface. Alternative configurations can be accommodated. ESPA GRANDE ESPA Grande is a more capable version of ESPA with Ø24-inch ports; the ring height is typically 42 inches. The Ø24-inch port has been qualified by test to Courtesy of ORBCOMM & Sierra Nevada Corp. carry small satellites up to 1543 lb (700 kg). ESPA ESPA IS ADAPTABLE TO UNIQUE MISSION REQUIREMENTS • The Air Force’s STP-1 mission delivered multiple small satellites on an Atlas V. • NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS): ESPA was the spacecraft hub for the LCROSS shepherding satellite in 2009. • ORBCOMM Generation 2 (OG2) launched stacks of two and three ESPA Grandes on two different Falcon 9 missions and in total deployed 17 satellites. -
Spaceflight, Inc. General Payload Users Guide
Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Spaceflight, Inc. General Payload Users Guide 3415 S. 116th St, Suite 123 Tukwila, WA 98168 866.204.1707 spaceflightindustries.com i Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Document Revision History Rev Approval Changes ECN No. Sections / Approved Pages CM Date A 2011‐09‐16 Initial Release Updated electrical interfaces and launch B 2012‐03‐30 environments C 2012‐07‐18 Official release Updated electrical interfaces and launch D 2013‐03‐05 environments, reformatted, and added to sections Updated organization and formatting, E 2014‐04‐15 added content on SHERPA, Mini‐SHERPA and ISS launches, updated RPA CG F 2015‐05‐22 Overall update ii Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Table of Contents 1 Introduction ........................................................................................................................... 7 1.1 Document Overview ........................................................................................................................ 7 1.2 Spaceflight Overview ....................................................................................................................... 7 1.3 Hardware Overview ......................................................................................................................... 9 1.4 Mission Management Overview .................................................................................................... 10 2 Secondary -
Commercial Orbital Transportation Services
National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter. -
ULA Rideshare Capabilities for Providing Low-Cost Access to Space
United Launch Alliance Rideshare Capabilities for Providing Low-Cost Access to Space Keith Karuntzos United Launch Alliance PO Box 3788, MIS C4102 Centennial, CO 80155-3788 303-269-5499 [email protected] Abstract-United Launch Alliance (ULA) has a long history of REFERENCES ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9 providing launch services to high-value payloads for a variety BIOGRAPHY •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9 of customers, including the US Department of Defense, the National Reconnaissance Office, NASA, and commercial customers. These missions have deployed a wide variety of capabilities into Earth orbit and beyond, such as navigation, 1. VVHAT IS RIDESHARE? communication, R&D, observation, and science, all which have Since the dawn of the space age, spacecraft have often provided us with a tremendous amount of knowledge about Earth and our solar system. The majority of these spacecraft shared launch services with one another while being has been launched as primary payloads, and used the full delivered into space. This approach has normally been done capability of the launch vehicle; yet there is a lower-cost to support spacecraftmuch smaller than the primary payload alternative for achieving similar mission objectives: rideshare. it is launching with. By designing launch services in this manner, spacecraft operators were able to deliver more Rideshare is the approach of sharing available launch vehicle payloads to orbit for a fraction of the cost of a full-up launch performance and volume margins with two or more spacecraft service. that would otherwise go underutilized by the spacecraft community. This allows spacecraft customers the opportunity This method of launching multiple payloads into orbit on a to get their spacecraft to orbit and beyond in an inexpensive single launch vehicle is called rideshare.