The Holocene Vegetation History of an Isolated, High-Arctic Plant Diversity Hot Spot

Total Page:16

File Type:pdf, Size:1020Kb

The Holocene Vegetation History of an Isolated, High-Arctic Plant Diversity Hot Spot Master’s Thesis 2018 60 ECTS Faculty of Environmental Sciences and Natural Resource Management Kari Klanderud Pernille B. Eidesen, UNIS Inger G. Alsos, UiT The Holocene vegetation history of an isolated, high-arctic plant diversity hot spot Linn Margrethe Høeg Voldstad Master of Science in Ecology Acknowledgements This study comprises data from many different scientific fields and proved to demand experience and knowledge quite far beyond my prior experience. I owe many thanks to everyone who helped me and made this study possible: Wesley Farnsworth (The University centre in Svalbard) and Anders Schomacker (The Arctic University of Norway) for access to the sub-samples of the sediment cores and all core-related data (project 16/35 funded by the Carlsberg Foundation). The ECOGEN research group in Tromsø, and in particular Youri Lammers, Peter Heintzman and Dilli Rijal for help with bioinformatics (Youri), guidance in the aDNA lab (Peter) and for running the metabarcoding PCRs and pooling and cleaning the PCR products (Peter and Dilli). Johannes Sand Bolstad for assisting with field work. Lena Håkansson (The University Centre in Svalbard) for guidance and help with interpreting geological data. Jan Christensen’s endowment for financial support. Special thanks go to all my supervisors, and in particular Pernille B. Eidesen for giving me the opportunity to explore the flora in Ringhorndalen, and in general for her enthusiasm and advice during the whole process. Abstract Through high throughput sequencing of ancient, environmental DNA collected from lake sediment cores (sedaDNA), this study revealed postglacial vegetation change during the last ~12.000 years in a high-Arctic plant diversity hot spot in Svalbard. Geochemical proxy data for environmental variation in the catchment area obtained from high resolution X-radiographic scans were combined with the sedaDNA record to detect local Holocene climate variations. The findings were in accordance with main climatic shifts on Svalbard identified by previous studies and indicated an early warm and species-rich postglacial period followed by fluctuating cool and warming events throughout the Holocene record. Thermophilic species with their current distribution outside the catchment area of the studied lake had reoccurring presence throughout the Holocene sedaDNA record, suggesting postglacial periods when thermophilic arctic species had broader distribution ranges than today. This supports the hypothesis of isolated relict populations in Ringhorndalen, the place in Svalbard with the highest registered diversity of vascular plants and several remarkable and isolated plant populations located far north of their normal distribution range. 2 Introduction Paleoecological records provide insight into past vegetation. This information can be combined with knowledge about past climates in order to anticipate impacts from global warming on species diversity and composition in an area (Allen & Huntley 1999). Knowledge about the historic plant species composition can even be used to increase knowledge about past climates (Alsos et al. 2015). Next generation sequencing methods have drastically increased the potential for molecular investigations in paleoecological studies in the last decade (Taberlet et al. 2007; Parducci et al. 2017). In particular have ancient DNA from sediments (sedaDNA) shown to be an efficient tool for reconstructing past vegetation and species diversity in environments where more traditional paleobotanical methods can be challenging due to low pollen and plant macrofossil concentrations (Taberlet et al. 2007; Sønstebø et al. 2010; Jørgensen et al. 2012; Pedersen et al. 2013; Alsos et al. 2015; Parducci et al. 2017). Ancient DNA studies can be particularly useful to reconstruct past vegetation in the arctic regions, because low local pollen concentrations impede traditional methods (Vasil’chuk 2005) and the cold conditions ensure preservation of the genetic material (Hofreiter et al. 2001). Even if DNA is highly degraded, which is increasingly likely with older sample material (Hofreiter et al. 2001), studies from arctic regions have proven the value of modern sequencing technologies when analysing DNA directly from environmental samples, such as sediments (Sønstebø et al. 2010). Preservation and recovery of sedaDNA is particularly good in lake sediments (Parducci et al. 2017; Alsos et al. 2018). Lake sediments also hold information about regional climate change because they trap detrital and organic material as well as organic material produced within the lake (Gjerde et al. 2017). Magnetic and geochemical properties obtained from high-resolution X-radiographic scans can be used as proxies to study major patterns in abiotic environmental changes in the catchment area of the studied lake. The variation in scanned profiles of magnetic susceptibility and lithogenic, geochemically stable and conservative elements such as aluminium (Al), silica (Si), potassium (K), titanium (Ti), iron (Fe) and rubidium (Rb) can reflect changes in glacial-derived minerogenic input (Sandgren & Snowball 2001), weathering regimes (Rothwell & Croudace 2015) or the amount of inorganic detrital input to a lake (Røthe et al. 2015), thus be used to infer climate variations. The elements calsium (Ca) and silica (Si) normalized against Ti and and iron (Fe) normalized against manganese (Mn) can be used as proxies for biological productivity within the lake (Balascio et al. 2011; Kylander et al. 2011; 3 Melles et al. 2012; Alsos et al. 2015; Gjerde et al. 2017). SedaDNA and plant macrofossil records from lakes in western Spitsbergen have shown that thermophilic plant species probably had a broader distribution on Spitsbergen in early Holocene, a warmer postglacial period (Birks 1991; Alsos et al. 2015). An area that assumingly has remains from this vegetation, is Ringhorndalen (Eidesen et al. 2013). This tributary valley east of Wijdefjorden, Spitsbergen, have been described as an ‘Arctic hotspot’ as defined by Elvebakk (2005a), with numerous registrations of thermophilous species. One remarkable botanical feature of Ringhorndalen is that many of the unusual plant species observed there seem to be spatially distant from their normal distribution range. Some populations represent some of the northernmost known sites for the species worldwide and in some cases the only known location for Svalbard and even Europe (Eidesen et al., unpublished). In this study I investigated a c. 12 000-year-old sediment core from a high-arctic lake in Ringhorndalen using sedaDNA, sediment properties and geochemical proxy data, in order to reconstruct changes in vegetation composition and evaluate these changes in a context of a changing Holocene climate. It is assumed that the postglacial period c. 9000-5000 years ago was remarkably warmer than present (Hyvärinen 1970; Birks 1991; Birks et al. 1994; Salvigsen & Høgvard 2006; Miller et al. 2010; Alsos et al. 2015; Mangerud & Svendsen 2018), thus vegetation reconstructions from this period can provide information about possible future vegetation development in scenarios with anticipated warming in the Arctic. The research questions I aimed to answer were: (i) How has the composition of plants in the catchment area of the studied high-arctic lake developed during the Holocene? (ii) How does the variation in climatic conditions revealed from biotic and abiotic sources match throughout the depth of the core? (iii) How is the current vegetation around the lake represented in the modern, uppermost sediment layers? (iv) Are the unusually thermophilic vascular plant species found in Ringhorndalen today relicts from populations established during the Holocene warm periods? To address these research questions, historic postglacial plant species assemblages were obtained from amplicon high-throughput sequencing (HTS) of sedaDNA sampled chronologically throughout the core. Obtained vegetation data were compared to geochemical data acquired through high-resolution X-radiographic scans (Croudace et al. 2006). Plant species assemblages representing the current vegetation were obtained from HTS of DNA in 4 the uppermost sediment layer. The current vegetation data from modern sediments were then compared to the present floristic composition acquired from on-site vegetation analysis. Results from the sedaDNA analysis were also used to investigate the origin of unusually thermophilic species registered in Ringhorndalen. Species that matched between ancient and present plant assemblages were assumed to represent long-time presence, and to disclose these populations as remnants from a former more widespread vegetation from the warmer early Holocene (Eidesen et al. 2013). Alternatively, these isolated populations can be recent colonizers, and must be seen in context with ongoing climate change. In the latter case, the findings of this study represent an important contribution to the understanding of species immigration to Svalbard. As Ringhorndalen is rarely visited by people, any recent plant establishments here are likely to be due to natural long-distance dispersal, as former studies have shown to frequently occur in Svalbard (Alsos et al. 2007). Methods Study area Indre Wijdefjorden National Park was established in 2005 as a result of thorough botanical investigations that revealed remarkable findings at several locations in the area (Elvebakk & Nilsen 2002). These findings included populations of rare and unusually thermophilous plants in an arctic context. In addition, a new vegetation
Recommended publications
  • Ranunculus Repens
    TREATMENT OPTIONS from the book Weed Control in Natural Areas in the Western United States This does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Ranunculus repens Creeping buttercup Family: Ranunculaceae (buttercup) NON-CHEMICAL CONTROL Cultural: grazing P Cultural: prescribed burning P Mechanical: mowing and cutting P low growing plants will escape injury and quickly recover Mechanical: tillage F─G must be conducted before roots become well established Mechanical: grubbing, digging or hand F creeping roots, only effective on small patches, remove all stem pulling fragments CHEMICAL CONTROL The following specific use information is based on published papers and reports by researchers and land managers. Other trade names may be available, and other compounds also are labeled for this weed. Directions for use may vary between brands; see label before use. 2,4-D E Imazapic NIA Aminocyclopyrachlor + chlorsulfuron E Imazapyr NIA Aminopyralid G─E Metsulfuron E Paraquat NIA Chlorsulfuron E Picloram E Clopyralid NIA Rimsulfuron NIA Dicamba E Sulfometuron NIA Glyphosate E Sulfosulfuron E* Hexazinone NIA Triclopyr G E = Excellent control, generally better than 95% * = Likely based on results of observations of G = Good control, 80-95% related species FLW = flowering F = Fair control, 50-80% NIA = No information available P = Poor control, below 50% Fa = Fall Control includes effects within the season of treatment.
    [Show full text]
  • Historical Records of Climate-Related Growth in Cassiope Tetragona from the Arctic
    Historical Records of Climate-Related Growth in Cassiope Tetragona from the Arctic T. V. Callaghan; B. A. Carlsson; N. J. C. Tyler The Journal of Ecology, Vol. 77, No. 3. (Sep., 1989), pp. 823-837. Stable URL: http://links.jstor.org/sici?sici=0022-0477%28198909%2977%3A3%3C823%3AHROCGI%3E2.0.CO%3B2-U The Journal of Ecology is currently published by British Ecological Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/briteco.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected].
    [Show full text]
  • Vascular Plants of Kluane
    26 Blueleaved strawberry Fragaria virginiana 63 Greyleaf willow Salix glauca Kluane National Park and Reserve 27 Bog blueberrry Vaccinium uliginosum 64 Ground cedar, Lycopodium complanatum 28 Bog labrador-tea Ledum groenlandica Creeping jenny 65 Hairy rockcress Arabis hirsuta 29 Boreal aster Aster alpinus 30 Boreal wormwood Artemisia arctica 66 Heart-leaf listera Listera borealis Vascular 31 Bristly stickseed Lappula myosotis 67 Heartleaf arnica Arnica cordifolia 32 Broadglumed wheatgrass Agropyron trachycaulum 68 High bush cranbery Viburnum edule Plants List 33 Broadleaf lupine Lupinus arcticus 69 Holboell's rockcress Arabis holboellii 34 Buffaloberry, Soapberry Sheperdia canadensis 70 Horned dandelion Taraxacum lacerum 35 Canada butterweed Senecio pauperculus 71 Kotzebue's grass-of- Parnassia kotzebuei 36 Chestnut rush Juncus castaneus parnassus 1 Alaska moss heath Cassiope stelleriana 37 Cleft-leaf groundsel Senecio streptanthifolius 72 Kuchei's lupine Lupinus kuschei 2 Alaska willow Salix alaxensis 38 Common horsetail Equisetum arvense 73 Labrador lousewort Pedicularis labradorica 3 Alkali bluegrass Poa juncifolia 39 Common mountain Juniperus communis 74 Lance-leaved draba Draba lanceolata 4 Alkali grass Puccinellia interior juniper 75 Lanceleaved stonecrop Sedum lanceolatum 5 Alpine bluegrass Poa alpina 40 Cow parsnip Heracleum lanatum 76 Lapland cassiope Cassiope tetragona 6 Alpine fescue Festuca ovina 41 Creeping juniper Juniperus horizontalis 77 Leafless pyrola Pyrola asarifolia 7 Alpine milk-vetch Astragalus alpinus 42 Creeping
    [Show full text]
  • Czech University of Life Sciences Prague Faculty of Forestry and Wood Sciences
    Czech University of Life Sciences Prague Faculty of Forestry and Wood Sciences Ph.D. Thesis 2016 Mgr. et Ing. Jiří Lehejček Czech University of Life Sciences Prague Faculty of Forestry and Wood Sciences Department of Forest Ecology Arctic tundra dendrochronology Ph.D. thesis Author: Mgr. et Ing. Jiří Lehejček Supervisor: prof. Ing. Miroslav Svoboda, Ph.D. Consultant: doc. Mgr. Daniel Nývlt, Ph.D. 2016 „I hereby confirm that this Ph.D. thesis “Arctic tundra dendrochronology” was elaborated independently with the usage of quoted literature and based on consultations and recommendations of my supervisor. I agree with publishing this Ph.D. thesis according to Czech law n. 111/1998 Sb. about the universities in its current valid wording. This agreement is independent from the result of defence. October 15th 2016, Prague Authors signature Acknowledgement: Many thanks especially to my supervisor prof. Ing. Miroslav Svoboda, Ph.D. who has significant credit for existence of this thesis. I would like to also thank to my consultant doc. Mgr. Daniel Nývlt, Ph.D., and my colleagues Dr. Allan Buras and prof. Martin Wilmking for their useful advices. My technical-laboratory skill would not be possible without patient care of Dr. Holger Gäertner and prof. Fritz Schweingruber. Last but not least, I must thank my family for their support of my education activities during whole life. The research leading to this thesis was supported by Internal Grant Agency of Czech University of Life Sciences Prague, Project No. 20154304, and the Internal Grant Agency of Faculty of Forestry and Wood Sciences, Czech University of Life Sciences.
    [Show full text]
  • The Ranunculus Acris L. Complex in Europe S
    Watsonia, 8, 237-261 (1971). 237 The Ranunculus acris L. complex in Europe s. M. COLES Department ofBotany, Birmingham University ABSTRACT The geographical variation of the Ranunculus acris L. complex within Europe has been exam­ ined. The following taxa are recognised in this present work: Ranunculus granatensis Boiss. R. strigulosus Schur R. acris L. sensu stricto subsp. acris var. acris var. ,,;llosus (Drabble) S. M. Coles, comb. et stat. novo var. pumilus Wahlenb. subsp. borealis (Trautv.) Nyman subsp.friesanus (Jord.) Rouy & Fouc. var.friesanus var.pyrenaeus S. M. Coles, var. novo R. granatensis and R. strigulosus have a restricted distribution and are relatively uniform in appearance. R. acris sensu stricto occurs over most of Europe and is a very variable plant. The main clinal variation in R. acris is in an east-west direction. R. acris subsp. friesanus forms no part of this variational pattern although its distribution is completely overlapped by that of subsp. acris. INTRODUCTION The plants investigated in this study are those included in Ranunculus acris L. as defined by Tutin (1964). R. acris L. sensu stricto in the present study excludes R. acris subsp. granatensis (Boiss.) Nyman and subsp. strigulosus (Schur) Hyl., which are given specific status. The R. acris complex belongs to the section Ranunculus of the subgenus Ranunculus. It can be separated from most other European species of this section by having a terete pedicel, patent sepals and a glabrous receptacle. The diploid chromosome number of R. acris L. sensu stricto is 14; within the genus a basic chromosome number of 8 is more common than one of 7.
    [Show full text]
  • Ranunculus Parviflorus (Ranunculaceae) Naturalized in Kansas
    Singhurst, J.R., J.N. Mink, and W.C. Holmes. 2018. Ranunculus parviflorus (Ranunculaceae) naturalized in Kansas. Phytoneuron 2018-22: 1–3. Published 25 April 2018. ISSN 2153 733X RANUNCULUS PARVIFLORUS (RANUNCULACEAE) NATURALIZED IN KANSAS JASON R. SINGHURST Wildlife Diversity Program Texas Parks and Wildlife Department 4200 Smith School Road Austin, Texas 78744 [email protected] JEFFERY N. MINK 3229 Cole Avenue Waco, Texas 76707 [email protected] WALTER C. HOLMES Department of Biology Baylor University Waco, Texas 76798-7388 ABSTRACT Ranunculus parviflorus is documented here in the naturalized flora of southeast Kansas, where it was collected at two locations in the town of Neodesha. Ranunculus parviflorus L. (Ranunculaceae) (smallflower buttercup) (Figure 1) is a herbaceous annual native to Europe (Salisbury 1931; Fernald 1950; Fitzgerald 2002). The species is naturalized in subtropical and temperate areas of North and South America (Benson 1948; Hernandez 1993) and Australia and New Zealand (Bock 1979). Ranunculus parviflorus is now found from California north through Oregon and Washington (to British Columbia) and in the eastern USA from western Florida north to New York, west through the Midwest to central Missouri, south through eastern Oklahoma and eastern Texas, east to Florida, including Hawaii (Brouillet et al. 2006; Hickman 1993; Lowe 1921; Mohr 1901; Stone et al. 1992; Wunderlin et al. 1996). Early collections in the USA were made by Chickering at Ft. Monroe, Virginia, in 1878 (KANU) and Curtiss in Gadsden Co., Florida, in 1889 (USFH 6400) (Wunderlin et al. 2018). Ranunculus parviflorus has not been included in floras or checklists for Kansas (Brooks 1986; Haddock et al.
    [Show full text]
  • Trautvetteria Caroliniensis (Ranunculaceae), New to Texas from a Historical Collection
    Floden, A. 2011. Trautvetteria caroliniensis (Ranunculaceae), new to Texas from a historical collection. Phytoneuron 2011-9: 1–2. TRAUTVETTERIA CAROLINIENSIS (RANUNCULACEAE), NEW TO TEXAS FROM A HISTORICAL COLLECTION AARON FLODEN Herbarium TENN Department of Ecology and Evolutionary Biology University of Tennessee Knoxville, TN 37996 USA ABSTRACT Trautvetteria caroliniensis is documented to occur in Smith County, Texas; a southwestern range extension of ca. 300 km from Garland County, Arkansas. This is the westernmost known occurrence of T. caroliniensis . KEYWORDS : Trautvetteria , Texas During examination of Trautvetteria exsiccatae at MO, two sterile specimens were discovered from a historical collection by J. Reverchon. The sheets were originally identified as a Sanicula species but later identified as Trautvetteria caroliniensis (Walt.) Vail by M.E. Mathias, still later re-annotated by T. Shimizu confirming that identification. USA . Texas . [Smith Co.]: Lindale, 23 Apr 1901, J. Reverchon s.n. (MO-2 sheets). This collection documents at least a historical southwestward and eastern range extension from the opposing ends of the range of the genus. Populations of Trautvetteria taxa are distributed in three disjunct regions in North America: the eastern United States, the southwestern US in Arizona, Colorado, New Mexico, and Utah, and along the northern Pacific Coast. In eastern North America T. caroliniensis occurs from Pennsylvania south to Florida and west to Arkansas, albeit its occurrence is highly scattered west of the Cumberland Mountains and Interior Low plateau. The species is known only from a single site in Garland County, Arkansas. In Missouri it is limited to a single county. It is assumed extirpated in Indiana (Parfitt 1997) and is also likely extirpated in Illinois.
    [Show full text]
  • Rock Garden Quarterly
    ROCK GARDEN QUARTERLY VOLUME 53 NUMBER 1 WINTER 1995 COVER: Aquilegia scopulorum with vespid wasp by Cindy Nelson-Nold of Lakewood, Colorado All Material Copyright © 1995 North American Rock Garden Society ROCK GARDEN QUARTERLY BULLETIN OF THE NORTH AMERICAN ROCK GARDEN SOCIETY formerly Bulletin of the American Rock Garden Society VOLUME 53 NUMBER 1 WINTER 1995 FEATURES Alpine Gesneriads of Europe, by Darrell Trout 3 Cassiopes and Phyllodoces, by Arthur Dome 17 Plants of Mt. Hutt, a New Zealand Preview, by Ethel Doyle 29 South Africa: Part II, by Panayoti Kelaidis 33 South African Sampler: A Dozen Gems for the Rock Garden, by Panayoti Kelaidis 54 The Vole Story, by Helen Sykes 59 DEPARTMENTS Plant Portrait 62 Books 65 Ramonda nathaliae 2 ROCK GARDEN QUARTERLY VOL. 53:1 ALPINE GESNERIADS OF EUROPE by Darrell Trout J. he Gesneriaceae, or gesneriad Institution and others brings the total family, is a diverse family of mostly Gesneriaceae of China to a count of 56 tropical and subtropical plants with genera and about 413 species. These distribution throughout the world, should provide new horticultural including the north and south temper• material for the rock garden and ate and tropical zones. The 125 genera, alpine house. Yet the choicest plants 2850-plus species include terrestrial for the rock garden or alpine house and epiphytic herbs, shrubs, vines remain the European genera Ramonda, and, rarely, small trees. Botanically, Jancaea, and Haberlea. and in appearance, it is not always easy to separate the family History Gesneriaceae from the closely related The family was named for Konrad Scrophulariaceae (Verbascum, Digitalis, von Gesner, a sixteenth century natu• Calceolaria), the Orobanchaceae, and ralist.
    [Show full text]
  • Lenka Kočková
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE Velikost genomu a poměr bazí v genomu v čeledi Ranunculaceae Diplomová práce Lenka Kočková Vedoucí práce: Doc. RNDr. Petr Bureš, Ph. D. Brno 2012 Bibliografický záznam Autor: Bc. Lenka Kočková Přírodovědecká fakulta, Masarykova univerzita, Ústav botaniky a zoologie Název práce: Velikost genomu a poměr bazí v genomu v čeledi Ranunculaceae Studijní program: Biologie Studijní obor: Systematická biologie a ekologie (Botanika) Vedoucí práce: Doc. RNDr. Petr Bureš, Ph. D. Akademický rok: 2011/2012 Počet stran: 104 Klíčová slova: Ranunculaceae, průtoková cytometrie, PI/DAPI, DNA obsah, velikost genomu, GC obsah, zastoupení bazí, velikost průduchů, Pignattiho indikační hodnoty Bibliographic Entry Author: Bc. Lenka Kočková Faculty of Science, Masaryk University, Department of Botany and Zoology Title of Thesis: Genome size and genomic base composition in Ranunculaceae Programme: Biology Field of Study: Systematic Biology and Ecology (Botany) Supervisor: Doc. RNDr. Petr Bureš, Ph. D. Academic Year: 2011/2012 Number of Pages: 104 Keywords: Ranunculaceae, flow cytometry, PI/DAPI, DNA content, genome size, GC content, base composition, stomatal size, Pignatti‘s indicator values Abstrakt Pomocí průtokové cytometrie byla změřena velikost genomu a AT/GC genomový poměr u 135 druhů z čeledi Ranunculaceae. U druhů byla naměřena délka a šířka průduchů a z literatury byly získány údaje o počtu chromozomů a ekologii druhů. Velikost genomu se v rámci čeledi liší 63-krát. Nejmenší genom byl naměřen u Aquilegia canadensis (2C = 0,75 pg), největší u Ranunculus lingua (2C = 47,93 pg). Mezi dvěma hlavními podčeleděmi Ranunculoideae a Thalictroideae je ve velikosti genomu markantní rozdíl (2C = 2,48 – 47,94 pg a 0,75 – 4,04 pg).
    [Show full text]
  • Ranunculus Ficaria (Ranunculaceae) Naturalized in Texas: Update
    Nesom, G.L. 2015. Ranunculus ficaria (Ranunculaceae) naturalized in Texas: Update. Phytoneuron 2015-27: 1–7. Published 29 April 2015. ISSN 2153 733X RANUNCULUS FICARIA (RANUNCULACEAE) NATURALIZED IN TEXAS: UPDATE GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 [email protected] ABSTRACT In the 7 years since a report of its naturalization along a creek in Tarrant County, Texas, Ranunculus ficaria (now treated within the genus Ficaria as F. verna ) has increased in number of plants and coverage at that locality. The Texas plants produce axillary bulbils and flowers apparently are sterile, producing only unexpanded achenes. Photos show population structure and characteristics of the habitat. Ranunculus ficaria L. was earlier observed (Nesom 2008) to be naturalized along Overton Creek within Overton Park in Fort Worth, Texas. It was noted that "Thirty discrete plants, clearly naturalized, grow in an area of about 30 square feet ... A second population of five scattered plants occurs on the stream terrace about 300 yards downstream." In 2015, areal coverage of plants of Ranunculus ficaria has increased by about 6 times; the original larger population has expanded, additional colonies have formed downstream between 20 and 50 yards from the original, and an additional large population has arisen downstream of plants seen in 2008, increasing the linear extent of the total population to about 400 yards. Photos of subgroups of the Overton Park population (Figs. 1–7) show the characteristic habitat and dispersion of the plants –– all are growing in wet soil immediately beside the water or close by on the low, frequently flooded terrace.
    [Show full text]
  • The Crowfoot Family in Ohio
    THE CROWFOOT FAMILY IN OHIO. NELLIE F. HENDERSON. Ranunculaceae, Crowfoot Family. Perennial or annual herbs, or woody climbers, with acrid sap. Leaves usually alternate, sometimes opposite; simple or compound, with clasping or dilated base; stipules none. Flowers hypogynous, actinomorphic or sometimes zygomorphic, bispor- angiate or occasionally monosporangiate; perianth of similar segments or differentiated into calyx and corolla; capels usually separate; stamens numerous. Fruit an achene, follicle or berry. SYNOPSIS. I. Petals or sepals with a nectariferous pit, spur or tube. 1. Petals broad with a nectariferous pit; sepals not spurred. (I) Ranunculus; (2) Ficaria; (3) Batrichium. 2. Petals cup-shaped or narrow; sepals not spurred. (a) Pods sessile; leaves not trifoliate. (4) Trollius; (5) Helleborus; (6) Nigella. (b) Pods long stalked; leaves trifoliate. (7) Coptis. 3. Either petals or sepals spurred, or hooded; actinomorphic or zygomorphic. (8) Aquilegia; (9) Aconitum; (10) Delphinium. II. Sepals and petals without a nectar pit or spur; sepals usually petal-like. 1. Styles usually elongated, often very prominent in fruit; fruit an achene. (a) Sepals imbricated in the bud. (II) Anemone; (12) Hepatica. (b) Sepals valvate in the bud; leaves opposite. (13) Clematis; (14) yiorna. 2. Style short in fruit; fruit a many-seeded follicle, or a berry. (a) Flowers usually solitary, not racemose. (15) Caltha; (16) Hydrastis. (b) Flowers racemose. (17) Actaea; (18) Cimicifuga. 3. Style short in fruit; fruit an achene or a few-seeded follicle; leaves ternately compound or decompound. (19) Syndesmon; (20) Isopyrum; (21) Thalictrum. KEY TO THE GENERA. 1. Petals or sepals or both with a nectariferous cup, or spur; flowers frequently yellow.
    [Show full text]
  • Glossary of Landscape and Vegetation Ecology for Alaska
    U. S. Department of the Interior BLM-Alaska Technical Report to Bureau of Land Management BLM/AK/TR-84/1 O December' 1984 reprinted October.·2001 Alaska State Office 222 West 7th Avenue, #13 Anchorage, Alaska 99513 Glossary of Landscape and Vegetation Ecology for Alaska Herman W. Gabriel and Stephen S. Talbot The Authors HERMAN w. GABRIEL is an ecologist with the USDI Bureau of Land Management, Alaska State Office in Anchorage, Alaskao He holds a B.S. degree from Virginia Polytechnic Institute and a Ph.D from the University of Montanao From 1956 to 1961 he was a forest inventory specialist with the USDA Forest Service, Intermountain Regiono In 1966-67 he served as an inventory expert with UN-FAO in Ecuador. Dra Gabriel moved to Alaska in 1971 where his interest in the description and classification of vegetation has continued. STEPHEN Sa TALBOT was, when work began on this glossary, an ecologist with the USDI Bureau of Land Management, Alaska State Office. He holds a B.A. degree from Bates College, an M.Ao from the University of Massachusetts, and a Ph.D from the University of Alberta. His experience with northern vegetation includes three years as a research scientist with the Canadian Forestry Service in the Northwest Territories before moving to Alaska in 1978 as a botanist with the U.S. Army Corps of Engineers. or. Talbot is now a general biologist with the USDI Fish and Wildlife Service, Refuge Division, Anchorage, where he is conducting baseline studies of the vegetation of national wildlife refuges. ' . Glossary of Landscape and Vegetation Ecology for Alaska Herman W.
    [Show full text]